Skip to main content

Perturbation of Systems with Nilpotent Real Part

  • Living reference work entry
  • First Online:
  • 205 Accesses

Definition of the Subject

The main goal of this entry is to dwell upon the influence of the presence (explicit and/or hidden) of nontrivial real nilpotent perturbations appearing in problems in dynamical systems, partial differential equations, and mathematical physics. Under the term nilpotent perturbation, we will mean, broadly speaking, a classical linear algebra typesetting: we start with an object (vector field or map near a fixed point, first-order singular partial differential equations, system of evolution partial differential equations) whose “linear part” A is semisimple (diagonalizable) and we add a (small) nilpotent part N. The problems of interest might be summarized as follows: are the “relevant properties” (in suitable functional framework) of the initial “object” stable under the perturbation N? If instabilities occur, to classify, if possible, the novel features of the perturbed systems.

Broadly speaking, the cases when the instabilities occur are rare; they form some...

This is a preview of subscription content, log in via an institution.

Abbreviations

Perturbation:

Typically, one starts with an “initial” system S 0, which is usually simple and/or well understood. We perturb the system by adding a (small) perturbation R so that the new object becomes S 0 + R. In our context the typical examples for S 0 will be systems of linear ordinary differential equations with constant coefficients in \( {\mathbb{K}}^n \) or the associated linear vector fields.

Nilpotent Linear Transformation:

Let \( A:{\mathbb{K}}^n\to {\mathbb{K}}^n \) be a linear map, where \( \mathbb{K}=\mathrm{\mathbb{R}} \) or \( \mathbb{K}=\mathrm{\mathbb{C}} \). We call A nilpotent if there exists a positive integer r such that the rth iteration A r becomes the zero map, in short A r = 0.

Gevrey Spaces:

Let Ω be an open domain in ℝn and let σ ≥ 1. The Gevrey space G σ(Ω) stands for the set of all functions fC (Ω) such that for every compact subset K ⊂ ⊂ Ω, one can find C = C K,f > 0 such that

$$ \underset{x\in K}{ \sup}\left|{\partial}_x^{\alpha }f(x)\right|\le {C}^{\left|\alpha \right|+1}\alpha {!}^{\sigma } $$
(1)

for all α = (α 1, …, α n ) ∈ ℤ n+ , α! = α1!…α n !, | α | : = α 1 + ⋯ + α n . If σ = 1 we recapture the space of real analytic functions in Ω while the scale G σ(Ω), σ > 1, serves as an intermediate space between the real analytic functions and the set of all C functions in Ω. By the Stirling formula, one may replace α!σ by | α | !σ, | α | σ | α | or Γ(σ | α |), where Γ(z) stands for the Euler gamma function; cf. the book of Rodino (1993) for more details on the Gevrey spaces.

One associates also Gevrey index to formal power series, namely, given a (formal) power series

$$ f(x)={\displaystyle \sum_{\alpha }{f}_{\alpha }}{x}^{\alpha } $$

this is in the formal Gevrey space \( {G}_f^{\sigma}\left({\mathbb{K}}^n\right) \) if there exist C > 0 and R > 0 such that

$$ \left|{f}_{\alpha}\right|\le {C}^{\left|\alpha \right|+1}\left|\alpha \right|{!}^{\sigma -1} $$
(2)

for all α ∈ ℤ n+ .

In fact, one can find in the literature another definition of the formal Gevrey spaces G f τ of index τ, namely, replacing σ−1 by τ (see, e.g., Ramis 1984).

References

  • Abate M (2000) Diagonalization of nondiagonalizable discrete holomorphic dynamical systems. Am J Math 122:757–781

    Article  MATH  MathSciNet  Google Scholar 

  • Arnold VI (1971) Matrices depending on parameters. Uspekhi Mat Nauk 26:101–114; Russ Math Surv 26:29–43 (in Russian)

    Google Scholar 

  • Arnold VI (1983) Geometrical methods in the theory of ordinary differential equations. Springer, New York

    Book  MATH  Google Scholar 

  • Arnold VI, Ilyashenko YU (1988) In: Anosov DV, Arnold VI (eds) Encyclopedia of Math Sci, vol 1. Dynamical systems I. Springer, New York, pp 1–155

    Google Scholar 

  • Bambusi D, Cicogna G, Gaeta G, Marmo G (1998) Normal forms, symmetry and linearization of dynamical systems. J Phys A 31:5065–5082

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Belitskii GR (1978) Equivalence and normal forms of germs of smooth mappings. Uspekhi Mat Nauk 33:95–155, 263; Russ Math Surv 33:107–177 (in Russian)

    MATH  MathSciNet  Google Scholar 

  • Belitskii GR (1979) Normal forms, invariants, and local mappings. Naukova Dumka, Kiev (in Russian)

    MATH  Google Scholar 

  • Bove A, Nishitani T (2003) Necessary conditions for hyperbolic systems. II. Jpn J Math (NS) 29:357–388

    MATH  MathSciNet  Google Scholar 

  • Bruno AD (1971) The analytic form of differential equations. Tr Mosk Mat O-va 25:119–262; (1972) 26:199–239 (in Russian); See also (1971) Trans Mosc Math Soc 25:131–288; (1972) 26:199–239

    Google Scholar 

  • Bruno AD, Walcher S (1994) Symmetries and convergence of normalizing transformations. J Math Anal Appl 183:571–576

    Article  MATH  MathSciNet  Google Scholar 

  • Chen KT (1965) Diffeomorphisms: C -realizations of formal properties. Am J Math 87:140–157

    Article  MATH  Google Scholar 

  • Cicogna G, Gaeta G (1999) Symmetry and perturbation theory in nonlinear dynamics, vol 57, Lecture notes in physics. New series M: monographs. Springer, Berlin

    MATH  Google Scholar 

  • Cicogna G, Walcher S (2002) Convergence of normal form transformations: the role of symmetries. (English summary) Symmetry and perturbation theory. Acta Appl Math 70:95–111

    Article  MATH  MathSciNet  Google Scholar 

  • Coddington EA, Levinson N (1955) Theory of ordinary differential equations. McGraw-Hill, New York

    MATH  Google Scholar 

  • Craig W (1987) Nonstrictly hyperbolic nonlinear systems. Math Ann 277:213–232

    Article  MATH  MathSciNet  Google Scholar 

  • Cushman R, Sanders JA (1990) A survey of invariant theory applied to normal forms of vector fields with nilpotent linear part. In: Stanton D (ed) Invariant theory and tableaux. Springer, New York, pp 82–106, IMA vol Math Appl, vol 19

    Google Scholar 

  • DeLatte D, Gramchev T (2002) Biholomorphic maps with linear parts having Jordan blocks: linearization and resonance type phenomena. Math Phys Electron J 8(2):1–27

    MathSciNet  Google Scholar 

  • Dumortier F, Roussarie R (1980) Smooth linearization of germs of R 2-actions and holomorphic vector fields. Ann Inst Fourier Grenoble 30:31–64

    Article  MATH  MathSciNet  Google Scholar 

  • Gaeta G, Walcher S (2005) Dimension increase and splitting for Poincaré-Dulac normal forms. J Nonlinear Math Phys 12(1):327–342

    Article  ADS  MathSciNet  Google Scholar 

  • Gaeta G, Walcher S (2006) Embedding and splitting ordinary differential equations in normal form. J Differ Equ 224:98–119

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Gantmacher FR (1959) The theory of matrices, vols 1, 2. Chelsea, New York

    Google Scholar 

  • Ghedamsi M, Gourdin D, Mechab M, Takeuchi J (2002) Équations et systèmes du type de Schrödinger à racines caractéristiques de multiplicité deux. Bull Soc R Sci Liège 71:169–187

    MATH  MathSciNet  Google Scholar 

  • Gramchev T (2002) On the linearization of holomorphic vector fields in the Siegel Domain with linear parts having nontrivial Jordan blocks. In: Abenda S, Gaeta G, Walcher S (eds) Symmetry and perturbation theory, Cala Gonone, 16–22 May 2002. World Scientific Publication, River Edge, pp 106–115

    Chapter  Google Scholar 

  • Gramchev T, Orrú N (2011) Cauchy problem for a class of nondiagonalizable hyperbolic systems. Dynamical systems, differential equations and applications. 8th AIMS Conference. Discrete Contin Dyn Syst I(Suppl):533–542

    Google Scholar 

  • Gramchev T, Ruzhansky M (2013) Cauchy problem for some 2 × 2 hyperolic systems of pseudo-differential equations with nondiagonalisable principal part. In: Cicognani M, Colombini F, Del Santo D (eds) Studies in space phase analysis with applications to PDEs, progress in nonlinear differential equations and their applications, vol 84, Chapter 7., pp 129–146

    Chapter  Google Scholar 

  • Gramchev T, Tolis E (2006) Solvability of systems of singular partial differential equations in function spaces. Integr Transform Spec Funct 17:231–237

    Article  MATH  MathSciNet  Google Scholar 

  • Gramchev T, Walcher S (2005) Normal forms of maps: formal and algebraic aspects. Acta Appl Math 85:123–146

    Article  MathSciNet  Google Scholar 

  • Gramchev T, Yoshino M (2007) Normal forms for commuting vector fields near a common fixed point. In: Gaeta G, Vitolo R, Walcher S (eds) Symmetry and perturbation theory, Oltranto, 2–9 June 2007. World Scientific Publication, River Edge, pp 203–217

    Google Scholar 

  • Hasselblatt B, Katok A (2003) A first course in dynamics: with a panorama of recent developments. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Herman M (1987) Recent results and some open questions on Siegel’s linearization theorem of germs of complex analytic diffeomorphisms of C n near a fixed point. VIIIth international congress on mathematical physics, Marseille 1986. World Scientific Publication, Singapore, pp 138–184

    Google Scholar 

  • Hibino M (1999) Divergence property of formal solutions for first order linear partial differential equations. Publ Res Inst Math Sci 35:893–919

    Article  MATH  MathSciNet  Google Scholar 

  • Hibino M (2003) Borel summability of divergent solutions for singular first order linear partial differential equations with polynomial coefficients. J Math Sci Univ Tokyo 10:279–309

    MATH  MathSciNet  Google Scholar 

  • Hibino M (2006) Formal Gevrey theory for singular first order quasi-linear partial differential equations. Publ Res Inst Math Sci 42:933–985

    Article  MATH  MathSciNet  Google Scholar 

  • Il’yashenko Y (1979) Divergence of series reducing an analytic differential equation to linear form at a singular point. Funct Anal Appl 13:227–229

    MathSciNet  Google Scholar 

  • Iooss G, Lombardi E (2005) Polynomial normal forms with exponentially small remainder for vector fields. J Differ Equ 212:1–61

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Kajitani K (1979) Cauchy problem for non-strictly hyperbolic systems. Publ Res Inst Math 15:519–550

    Article  MATH  MathSciNet  Google Scholar 

  • Katok A, Katok S (1995) Higher cohomology for Abelian groups of toral automorphisms. Ergod Theory Dyn Syst 15:569–592

    Article  MATH  MathSciNet  Google Scholar 

  • Murdock J (2002) On the structure of nilpotent normal form modules. J Differ Equ 180:198–237

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Murdock J, Sanders JA (2007) A new transvectant algorithm for nilpotent normal forms. J Differ Equ 238:234–256

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Pérez Marco R (2001) Total convergence or small divergence in small divisors. Commun Math Phys 223:451–464

    Article  ADS  MATH  Google Scholar 

  • Petkov VM (1979) Microlocal forms for hyperbolic systems. Math Nachr 93:117–131

    Article  MATH  MathSciNet  Google Scholar 

  • Raissy J (2012) Holomorphic linearization of commuting germs of holomorphic maps. J Geom Anal. doi:10.1007/s12220-012-9316-2, Online first

    Google Scholar 

  • Ramis J-P (1984) Théorèmes d’indices Gevrey pour les équations différentielles ordinaires. Mem Am Math Soc 48:296

    MathSciNet  Google Scholar 

  • Rodino L (1993) Linear partial differential operators in Gevrey spaces. World Science, Singapore

    Book  MATH  Google Scholar 

  • Sanders JA (2005) Normal form in filtered Lie algebra representations. Acta Appl Math 87:165–189

    Article  MATH  MathSciNet  Google Scholar 

  • Sanders JA, Verhulst F, Murdock J (2007) Averaging methods in nonlinear dynamical systems, vol 59, 2nd edn, Applied mathematical sciences. Springer, New York

    MATH  Google Scholar 

  • Siegel CL (1942) Iteration of analytic functions. Ann Math 43:607–614

    Article  MATH  Google Scholar 

  • Sternberg S (1958) The structure of local homeomorphisms. II, III. Am J Math 80:623–632; 81:578–604

    Article  MATH  MathSciNet  Google Scholar 

  • Stolovitch L (2000) Singular complete integrability. Publ Math IHES 91:134–210

    Article  Google Scholar 

  • Stolovitch L (2005) Normalisation holomorphe d’algèbres de type Cartan de champs de vecteurs holomorphes singuliers. Ann Math 161:589–612

    Article  MATH  MathSciNet  Google Scholar 

  • Taylor M (1981) Pseudodifferential operators, vol 34, Princeton mathematical series. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Thiffeault J-L, Morison PJ (2000) Classification and Casimir invariants of Lie-Poisson brackets. Phys D 136:205–244

    Article  MATH  MathSciNet  Google Scholar 

  • Vaillant J (1999) Invariants des systèmes d’opérateurs différentiels et sommes formelles asymptotiques. Jpn J Math (NS) 25:1–153

    MATH  MathSciNet  Google Scholar 

  • Yamahara H (2000) Cauchy problem for hyperbolic systems in Gevrey class. A note on Gevrey indices. Ann Fac Sci Toulouse Math 19:147–160

    Article  MathSciNet  Google Scholar 

  • Yoccoz J-C (1995) A remark on Siegel’s theorem for nondiagonalizable linear part. Manuscript, 1978; See also Théorème de Siegel, nombres de Bruno e polynômes quadratic. Astérisque 231:3–88

    Google Scholar 

  • Yoshino M (1999) Simultaneous normal forms of commuting maps and vector fields. In: Degasperis A, Gaeta G (eds) Symmetry and perturbation theory SPT 98, Rome, 16–22 December 1998. World Scientific, Singapore, pp 287–294

    Google Scholar 

  • Yoshino M, Gramchev T (2008) Simultaneous reduction to normal forms of commuting singular vector fields with linear parts having Jordan blocks. Ann Inst Fourier (Grenoble) 58:263–297

    Article  MATH  MathSciNet  Google Scholar 

  • Zung NT (2002) Convergence versus integrability in Poincaré-Dulac normal form. Math Res Lett 9:217–228

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todor Gramchev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Gramchev, T. (2013). Perturbation of Systems with Nilpotent Real Part. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-3-642-27737-5_395-4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_395-4

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics