Skip to main content

Biomolecular Network Structure and Function

  • Living reference work entry
  • First Online:
Encyclopedia of Complexity and Systems Science

Definition of the Subject

Biological research over the past century or so has been dominated by reductionism – identifying and characterizing individual biomolecules – and has enjoyed enormous success. Throughout this history, however, it has become increasingly clear that an individual biomolecule can rarely account for a discrete biological function on its own. A biological process is almost always the result of a complex interplay of relationships among biomolecules (Alon 2003; Bray 2003; Hartwell et al. 1999; Hasty et al. 2002; Kitano 2002; Koonin et al. 2002; Oltvai and Barabasi 2002; Wall et al. 2004), and the treatment of these relationships as a graph is a natural and useful abstraction.

Broadly speaking, a biomolecular networkis a graph representation of relationships (of which there are many types) among a group of biomolecules. Vertices or nodes represent biomolecules, including macromolecules such as genes, proteins, and RNAs, or small biomolecules like amino acids,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Biomolecular network :

A graph representation of relationships among a group of biomolecules. Nodes or vertices represent biomolecules. An edge or link between two vertices indicates a relationship between the corresponding biomolecules, for example, physical interaction, genetic interaction, or regulatory relationship.

Biomolecule :

Any organic molecule that is produced by or essential to a living organism, sometimes specifically referring to macromolecules such as a protein or nucleic acid.

Genetic interaction (epistasis) :

Functional interaction between genes, in which the action of one gene is modified by the other gene, sometimes called the modifier gene. The gene whose phenotype is expressed is said to be epistatic, while the one whose phenotype is altered or suppressed is said to be hypostatic. Epistasis can either refer to this phenomenon or more broadly to any case in which two mutations together cause a phenotype that is surprising given the phenotypes of each single mutation alone.

“Multicolor” network :

A network with edges defined by more than one type of interaction or relationship, with each type corresponding to a different “color.”

Network motif :

A specific pattern of connected vertices and edges that occurs frequently within a given network.

Power-law network :

A network defined by a degree distribution which follows \( P(k)\sim {k}^{-\gamma } \), where the probability P(k) that a vertex in the network connects with k other vertices is roughly proportional to k γ. Sometimes networks that exhibit this behavior only at high degree are also called power law. The coefficient γ seems to vary approximately between 2 and 3 for most real networks. In a power-law network, majority of the vertices have low degree (connectivity), while a small fraction of the vertices have very high degree. Highly connected vertices are referred to as hubs.

Protein-protein interaction :

The physical association of two protein molecules with each other. A pair of proteins can interact directly with physical contact or indirectly through other biomolecules, often other proteins.

Scale-free network :

See power-law network.

“Single-color” network :

A network with edges defined by only one type of interaction or relationship.

Small-world network :

A special type of network with (1) short characteristic path length, such that most vertex pairs are connected to one another via only a small number of edges, and (2) high clustering coefficient, such that neighbors of a given vertex tend to be connected to one another.

Yeast two-hybrid :

An experimental method to examine protein-protein interaction, in which one protein is fused to a transcriptional activation domain (the GAL4 activation domain) and the other to a DNA-binding domain (the GAL4 DNA-binding domain), and both fusion proteins are introduced into yeast. Expression of a GAL4-regulated reporter gene with the appropriate DNA-binding sites upstream of its promoter indicates that the two proteins physically interact.

Bibliography

Primary Literature

  • Agrawal H (2002) Extreme self-organization in networks constructed from gene expression data. Phys Rev Lett 89:268702

    Article  ADS  Google Scholar 

  • Albert I, Albert R (2004) Conserved network motifs allow protein-protein interaction prediction. Bioinformatics 20(18):3346–3352

    Article  Google Scholar 

  • Albert R, Barabasi AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Albert R, Jeong H et al (2000) Error and attack tolerance of complex networks. Nature 406:378–382

    Article  ADS  Google Scholar 

  • Alon U (2003) Biological networks: the tinkerer as an engineer. Science 301:1866–1867

    Article  ADS  Google Scholar 

  • Amaral LA, Scala A et al (2000) Classes of small-world networks. Proc Natl Acad Sci U S A 97(21):11149–11152

    Article  ADS  Google Scholar 

  • Asthana S, King OD et al (2004) Predicting protein complex membership using probabilistic network reliability. Genome Res 14(6):1170–1175

    Article  Google Scholar 

  • Avery L, Wasserman S (1992) Ordering gene function: the interpretation of epistasis in regulatory hierarchies. Trends Genet 8(9):312–316

    Article  Google Scholar 

  • Bader JS (2003) Greedily building protein networks with confidence. Bioinformatics 19(15):1869–1874

    Article  Google Scholar 

  • Bader GD, Hogue CW (2002) Analyzing yeast protein-protein interaction data obtained from different sources. Nat Biotechnol 20(10):991–997

    Article  Google Scholar 

  • Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4(1):2

    Article  Google Scholar 

  • Bader JS, Chaudhuri A et al (2004) Gaining confidence in high-throughput protein interaction networks. Nat Biotechnol 22(1):78–85

    Article  Google Scholar 

  • Balazsi G, Barabasi AL et al (2005) Topological units of environmental signal processing in the transcriptional regulatory network of Escherichia coli. Proc Natl Acad Sci U S A 102(22):7841–7846

    Article  ADS  Google Scholar 

  • Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  MathSciNet  ADS  Google Scholar 

  • Bar-Joseph Z (2003) Computational discovery of gene modules and regulatory networks. Nat Biotechnol 21:1337–1342

    Article  Google Scholar 

  • Bornholdt S, Ebel H (2001) World Wide Web scaling exponent from Simon’s 1955 model. Phys Rev E 64(3):35104

    Article  ADS  Google Scholar 

  • Bornholdt S, Schuster HG (2003) Handbook of graphs and networks: from the genome to the internet

    Google Scholar 

  • Bray D (2003) Molecular networks: the top-down view. Science 301:1864–1865

    Article  ADS  Google Scholar 

  • Broder A (2000) Graph structure in the web. Comput Netw 33:309–320

    Article  Google Scholar 

  • Callaway DS, Newman MEJ et al (2000) Network robustness and fragility: percolation on random graphs. Phys Rev Lett 85:5468–5471

    Article  ADS  Google Scholar 

  • Cho RJ, Campbell MJ et al (1998) A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 2(1):65–73

    Article  Google Scholar 

  • Cohen R, Erez K et al (2000) Resilience of the Internet to random breakdowns. Phys Rev Lett 85:4626–4628

    Article  ADS  Google Scholar 

  • de Lichtenberg U, Jensen LJ et al (2005) Dynamic complex formation during the yeast cell cycle. Science 307(5710):724–727

    Article  ADS  Google Scholar 

  • Dobrin R, Beg QK et al (2004) Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network. BMC Bioinformatics 5(1):10

    Article  Google Scholar 

  • Dorogovtsev SN, Mendes JF (2003) Evolution of networks: from biological nets to the internet and WWW. Oxford University Press, Oxford

    Book  Google Scholar 

  • Drees BL, Thorsson V et al (2005) Derivation of genetic interaction networks from quantitative phenotype data. Genome Biol 6(4):R38

    Article  Google Scholar 

  • Fanning AS, Anderson JM (1996) Protein-protein interactions: PDZ domain networks. Curr Biol 6(11):1385–1388

    Article  Google Scholar 

  • Farh KK, Grimson A et al (2005) The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310(5755):1817–1821

    Article  ADS  Google Scholar 

  • Farkas IJ, Wu C et al (2006) Topological basis of signal integration in the transcriptional-regulatory network of the yeast, Saccharomyces cerevisiae. BMC Bioinformatics 7:478

    Article  Google Scholar 

  • Featherstone DE, Broadie K (2002) Wrestling with pleiotropy: genomic and topological analysis of the yeast gene expression network. Bioessays 24:267–274

    Article  Google Scholar 

  • Fell DA, Wagner A (2000) The small world of metabolism. Nat Biotechnol 18(11):1121–1122

    Article  Google Scholar 

  • Freudenberg J, Zimmer R et al (2002) A hypergraph-based method for unification of existing protein structure- and sequence-families. In Silico Biol 2(3):339–349

    Google Scholar 

  • Gavin AC, Bosche M et al (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141–147

    Article  ADS  Google Scholar 

  • Ge H, Liu Z et al (2001) Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nat Genet 29(4):482–486

    Article  MathSciNet  Google Scholar 

  • Geissler S, Siegers K et al (1998) A novel protein complex promoting formation of functional alpha-and gamma-tubulin. EMBO J 17(4):952–966

    Article  Google Scholar 

  • Getoor L, Rhee JT et al (2004) Understanding tuberculosis epidemiology using structured statistical models. Artif Intell Med 30(3):233–256

    Article  Google Scholar 

  • Giaever G (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  ADS  Google Scholar 

  • Gietz RD, Triggs-Raine B et al (1997) Identification of proteins that interact with a protein of interest: applications of the yeast two-hybrid system. Mol Cell Biochem 172(1–2):67–79

    Article  Google Scholar 

  • Giot L (2003) A protein interaction map of Drosophila melanogaster. Science 302:1727–1736

    Article  ADS  Google Scholar 

  • Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc Natl Acad Sci U S A 99:7821–7826

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Goldberg DS, Roth FP (2003) Assessing experimentally derived interactions in a small world. Proc Natl Acad Sci U S A 3:3

    Google Scholar 

  • Guelzim N, Bottani S et al (2002) Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet 31(1):60–63

    Article  Google Scholar 

  • Gunsalus KC, Ge H et al (2005) Predictive models of molecular machines involved in Caenorhabditis elegans early embryogenesis. Nature 436(7052):861–865

    Article  ADS  Google Scholar 

  • Han JD, Bertin N et al (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430(6995):88–93

    Article  ADS  Google Scholar 

  • Han JD, Dupuy D et al (2005) Effect of sampling on topology predictions of protein-protein interaction networks. Nat Biotechnol 23(7):839–844

    Article  Google Scholar 

  • Hanein D, Matlack KE et al (1996) Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation. Cell 87(4):721–732

    Article  Google Scholar 

  • Harbison CT, Gordon DB et al (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431(7004):99–104

    Article  ADS  Google Scholar 

  • Hartwell LH, Hopfield JJ et al (1999) From molecular to modular cell biology. Nature 402:C47–C52

    Article  Google Scholar 

  • Hasty J, McMillen D et al (2002) Engineered gene circuits. Nature 420:224–230

    Article  ADS  Google Scholar 

  • Ho Y, Gruhler A et al (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868):180–183

    Article  ADS  Google Scholar 

  • Holme P, Huss M et al (2003) Subnetwork hierarchies of biochemical pathways. Bioinformatics 19:532–538

    Article  Google Scholar 

  • Huh WK, Falvo JV et al (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686–691

    Article  ADS  Google Scholar 

  • Ihmels J (2002) Revealing modular organization in the yeast transcriptional network. Nat Genet 31:370–377

    Google Scholar 

  • Ito T (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A 98:4569–4574

    Article  ADS  Google Scholar 

  • Ito T, Tashiro K et al (2000) Toward a protein-protein interaction map of the budding yeast: a comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc Natl Acad Sci U S A 97(3):1143–1147

    Article  ADS  Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    Article  Google Scholar 

  • Jansen R, Greenbaum D et al (2002a) Relating whole-genome expression data with protein-protein interactions. Genome Res 12(1):37–46

    Article  Google Scholar 

  • Jansen R, Lan N et al (2002b) Integration of genomic datasets to predict protein complexes in yeast. J Struct Funct Genomics 2:71–81

    Article  Google Scholar 

  • Jansen R et al (2003) A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302(5644):449–453

    Article  ADS  Google Scholar 

  • Jeong H, Tombor B et al (2000) The large-scale organization of metabolic networks. Nature 407:651–654

    Article  ADS  Google Scholar 

  • Jeong H, Mason SP et al (2001) Lethality and centrality in protein networks. Nature 411(6833):41–42

    Article  ADS  Google Scholar 

  • Juvan P, Demsar J et al (2005) GenePath: from mutations to genetic networks and back. Nucleic Acids Res 33(Web Server issue):W749–W752

    Google Scholar 

  • King OD (2004) Comment on subgraphs in random networks. Phys Rev E Stat Nonlin Soft Matter Phys 70(5 Pt 2):058101, author reply 058102

    Article  ADS  Google Scholar 

  • Kitano H (2002) Computational systems biology. Nature 420:206–210

    Article  ADS  Google Scholar 

  • Koonin EV, Wolf YI et al (2002) The structure of the protein universe and genome evolution. Nature 420:218–223

    Article  ADS  Google Scholar 

  • Krogan NJ, Cagney G et al (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637–643

    Article  ADS  Google Scholar 

  • Kumar A, Agarwal S et al (2002) Subcellular localization of the yeast proteome. Genes Dev 16(6):707–719

    Article  Google Scholar 

  • Launer RL, Wilkinson GN (1979) Robustness in statistics. Academic, New York

    MATH  Google Scholar 

  • Lee TI, Rinaldi NJ et al (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298(5594):799–804

    Article  ADS  Google Scholar 

  • Lee I, Date SV et al (2004) A probabilistic functional network of yeast genes. Science 306(5701):1555–1558

    Article  ADS  Google Scholar 

  • Li S (2004) A map of the interactome network of the metazoan, C. elegans. Science 303:590–593

    Article  Google Scholar 

  • Li W, Liu Y et al (2007) Dynamical systems for discovering protein complexes and functional modules from biological networks. IEEE/ACM Trans Comput Biol Bioinform 4(2):233–250

    Article  Google Scholar 

  • Lockhart DJ, Dong H et al (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14(13):1675–1680

    Article  Google Scholar 

  • Ma HW, Buer J et al (2004) Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach. BMC Bioinformatics 5:199

    Article  Google Scholar 

  • Ma’ayan A, Jenkins SL et al (2005) Formation of regulatory patterns during signal propagation in a mammalian cellular network. Science 309(5737):1078–1083

    Article  ADS  Google Scholar 

  • MacIsaac KD, Wang T et al (2006) An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7:113

    Article  Google Scholar 

  • Mangan S, Itzkovitz S et al (2006) The incoherent feed-forward loop accelerates the response-time of the gal system of Escherichia coli. J Mol Biol 356(5):1073–1081

    Article  Google Scholar 

  • Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296:910–913

    Article  ADS  Google Scholar 

  • Milo R, Shen-Orr S et al (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–827

    Article  ADS  Google Scholar 

  • Milo R, Itzkovitz S et al (2004) Superfamilies of evolved and designed networks. Science 303(5663):1538–1542

    Article  ADS  Google Scholar 

  • Monod J, Jacob F (1961) Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb Symp Quant Biol 26:389–401

    Article  Google Scholar 

  • Monod J, Cohen-Bazire G et al (1951) The biosynthesis of beta-galactosidase (lactase) in Escherichia coli; the specificity of induction. Biochim Biophys Acta 7(4):585–599

    Article  Google Scholar 

  • Nadvornik P, Drozen V (1964) Models of neurons and neuron networks. Act Nerv Super (Praha) 6:293–302

    Google Scholar 

  • Newman MEJ (2002) Assortative mixing in networks. Phys Rev Lett 89:208701

    Article  ADS  Google Scholar 

  • Newman ME, Strogatz SH et al (2001) Random graphs with arbitrary degree distributions and their applications. Phys Rev E Stat Nonlin Soft Matter Phys 64(2 Pt 2):026118

    Article  ADS  Google Scholar 

  • Novick A, Weiner M (1957) Enzyme induction as an all-or-none phenomenon. Proc Natl Acad Sci U S A 43(7):553–566

    Article  ADS  Google Scholar 

  • Oltvai ZN, Barabasi AL (2002) Life’s complexity pyramid. Science 298:763–764

    Article  Google Scholar 

  • Pastor-Satorras R, Vazquez A et al (2001) Dynamical and correlation properties of the internet. Phys Rev Lett 87:258701

    Article  ADS  Google Scholar 

  • Ptacek J, Devgan G et al (2005) Global analysis of protein phosphorylation in yeast. Nature 438(7068):679–684

    Article  ADS  Google Scholar 

  • Qi Y, Klein-Seetharaman J et al (2005) Random forest similarity for protein-protein interaction prediction from multiple sources. Pac Symp Biocomput 531–542

    Google Scholar 

  • Rajewsky N (2006) microRNA target predictions in animals. Nat Genet 38(Suppl):S8–S13

    Article  Google Scholar 

  • Ravasz E, Barabasi AL (2003) Hierarchical organization in complex networks. Phys Rev E Stat Nonlin Soft Matter Phys 67:026112

    Article  ADS  Google Scholar 

  • Ravasz E, Somera AL et al (2002) Hierarchical organization of modularity in metabolic networks. Science 297(5586):1551–1555

    Article  ADS  Google Scholar 

  • Rives AW, Galitski T (2003) Modular organization of cellular networks. Proc Natl Acad Sci U S A 100(3):1128–1133

    Article  ADS  Google Scholar 

  • Rouvray H (1990) The origins of chemical graph theory. In: Bonchev D, Rouvray DH (eds) Chemical graph theory: introduction and fundamentals, vol 41. Gordon and Breach Science, New York

    Google Scholar 

  • Rual JF, Venkatesan K et al (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature 437(7062):1173–1178

    Article  ADS  Google Scholar 

  • Schena M, Shalon D et al (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470

    Article  ADS  Google Scholar 

  • Schleif R (2000) Regulation of the L-arabinose operon of Escherichia coli. Trends Genet 16(12):559–565

    Article  Google Scholar 

  • Schuster S, Pfeiffer T et al (2002) Exploring the pathway structure of metabolism: decomposition into subnetworks and application to Mycoplasma pneumoniae. Bioinformatics 18:351–361

    Article  Google Scholar 

  • Shen-Orr SS, Milo R et al (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31(1):64–68

    Article  Google Scholar 

  • Simon HA (1955) On a class of skew distribution functions. Biometrika 42:425–440

    Article  MATH  MathSciNet  Google Scholar 

  • Simonis N, van Helden J et al (2004) Transcriptional regulation of protein complexes in yeast. Genome Biol 5(5):R33

    Article  Google Scholar 

  • Simonis N, Gonze D et al (2006) Modularity of the transcriptional response of protein complexes in yeast. J Mol Biol 363(2):589–610

    Article  Google Scholar 

  • Smith LM, Fung S et al (1985) The synthesis of oligonucleotides containing an aliphatic amino group at the 5′ terminus: synthesis of fluorescent DNA primers for use in DNA sequence analysis. Nucleic Acids Res 13(7):2399–2412

    Article  Google Scholar 

  • Smith LM, Sanders JZ et al (1986) Fluorescence detection in automated DNA sequence analysis. Nature 321(6071):674–679

    Article  ADS  Google Scholar 

  • Snel B, Bork P et al (2002) The identification of functional modules from the genomic association of genes. Proc Natl Acad Sci U S A 99:5890–5895

    Article  ADS  Google Scholar 

  • Sole RV, Pastor-Satorras R et al (2002) A model of large-scale proteome evolution. Adv Complex Syst 5:43–54

    Article  MATH  Google Scholar 

  • Sood P, Krek A et al (2006) Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci U S A 103(8):2746–2751

    Article  ADS  Google Scholar 

  • Spellman PT, Sherlock G et al (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Cell Biol 9(12):3273–3297

    Article  Google Scholar 

  • Spirin V, Mirny LA (2003) Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci U S A 100(21):12123–12128

    Article  ADS  Google Scholar 

  • St Onge RP, Mani R et al (2007) Systematic pathway analysis using high-resolution fitness profiling of combinatorial gene deletions. Nat Genet 39(2):199–206

    Article  Google Scholar 

  • Stark A, Brennecke J et al (2005) Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123(6):1133–1146

    Article  Google Scholar 

  • Stelzl U, Worm U et al (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122(6):957–968

    Article  Google Scholar 

  • Strogatz SH (2001) Exploring complex networks. Nature 410(6825):268–276

    Article  ADS  Google Scholar 

  • Stuart JM, Segal E et al (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302:249–255

    Article  ADS  Google Scholar 

  • Tanaka R (2005) Scale-rich metabolic networks. Phys Rev Lett 94(16):168101

    Article  ADS  Google Scholar 

  • Taylor RJ, Siegel AF et al (2007) Network motif analysis of a multi-mode genetic-interaction network. Genome Biol 8(8):R160

    Article  Google Scholar 

  • Thieffry D, Huerta AM et al (1998) From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. Bioessays 20(5):433–440

    Article  Google Scholar 

  • Tong AH, Lesage G et al (2004) Global mapping of the yeast genetic interaction network. Science 303(5659):808–813

    Article  ADS  Google Scholar 

  • Tornow S, Mewes HW (2003) Functional modules by relating protein interaction networks and gene expression. Nucleic Acids Res 31:6283–6289

    Article  Google Scholar 

  • Tsang J, Zhu J et al (2007) MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell 26(5):753–767

    Article  Google Scholar 

  • Uetz P, Giot L et al (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403(6770):623–627

    Article  ADS  Google Scholar 

  • Wagner A (2001) The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol Biol Evol 18(7):1283–1292

    Article  Google Scholar 

  • Wagner A, Fell DA (2001) The small world inside large metabolic networks. Proc Biol Sci 268(1478):1803–1810

    Article  Google Scholar 

  • Wall ME, Hlavacek WS et al (2004) Design of gene circuits: lessons from bacteria. Nat Rev Genet 5:34–42

    Article  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442

    Article  ADS  Google Scholar 

  • Wen X, Fuhrman S et al (1998) Large-scale temporal gene expression mapping of central nervous system development. Proc Natl Acad Sci U S A 95(1):334–339

    Article  ADS  Google Scholar 

  • Winzeler EA (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    Article  Google Scholar 

  • Wong SL, Zhang LV et al (2004) Combining biological networks to predict genetic interactions. Proc Natl Acad Sci U S A 101(44):15682–15687

    Article  ADS  Google Scholar 

  • Wunderlich Z, Mirny LA (2006) Using the topology of metabolic networks to predict viability of mutant strains. Biophys J 91(6):2304–2311

    Article  Google Scholar 

  • Yeger-Lotem E, Sattath S et al (2004) Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. Proc Natl Acad Sci U S A 101(16):5934–5939

    Article  ADS  Google Scholar 

  • Yook SH, Oltvai ZN et al (2004) Functional and topological characterization of protein interaction networks. Proteomics 4(4):928–942

    Article  Google Scholar 

  • Yu H, Gerstein M (2006) Genomic analysis of the hierarchical structure of regulatory networks. Proc Natl Acad Sci U S A 103(40):14724–14731

    Article  ADS  Google Scholar 

  • Yu H, Luscombe NM et al (2003) Genomic analysis of gene expression relationships in transcriptional regulatory networks. Trends Genet 19(8):422–427

    Article  Google Scholar 

  • Zhang LV, Wong SL et al (2004) Predicting co-complexed protein pairs using genomic and proteomic data integration. BMC Bioinformatics 5(1):38

    Article  Google Scholar 

  • Zhang L, King O et al (2005) Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. J Biol 4(2):6

    Article  Google Scholar 

Books and Reviews

  • Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5(2):101–113

    Article  Google Scholar 

  • Diestel R (2005) Graph theory, 3rd edn. Springer, Heidelberg

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan V. Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Zhang, L.V., Roth, F.P. (2015). Biomolecular Network Structure and Function. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_38-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_38-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics