Encyclopedia of Complexity and Systems Science

Living Edition
| Editors: Robert A. Meyers

Biomolecular Network Structure and Function

  • Lan V. Zhang
  • Frederick P. Roth
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27737-5_38-3

Definition of the Subject

Biological research over the past century or so has been dominated by reductionism – identifying and characterizing individual biomolecules – and has enjoyed enormous success. Throughout this history, however, it has become increasingly clear that an individual biomolecule can rarely account for a discrete biological function on its own. A biological process is almost always the result of a complex interplay of relationships among biomolecules (Alon 2003; Bray 2003; Hartwell et al. 1999; Hasty et al. 2002; Kitano 2002; Koonin et al. 2002; Oltvai and Barabasi 2002; Wall et al. 2004), and the treatment of these relationships as a graph is a natural and useful abstraction.

Broadly speaking, a biomolecular networkis a graph representation of relationships (of which there are many types) among a group of biomolecules. Vertices or nodes represent biomolecules, including macromolecules such as genes, proteins, and RNAs, or small biomolecules like amino acids,...

Keywords

Degree Distribution Preferential Attachment Network Motif Transcriptional Regulatory Network Biomolecular Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

Primary Literature

  1. Agrawal H (2002) Extreme self-organization in networks constructed from gene expression data. Phys Rev Lett 89:268702ADSCrossRefGoogle Scholar
  2. Albert I, Albert R (2004) Conserved network motifs allow protein-protein interaction prediction. Bioinformatics 20(18):3346–3352CrossRefGoogle Scholar
  3. Albert R, Barabasi AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47zbMATHMathSciNetADSCrossRefGoogle Scholar
  4. Albert R, Jeong H et al (2000) Error and attack tolerance of complex networks. Nature 406:378–382ADSCrossRefGoogle Scholar
  5. Alon U (2003) Biological networks: the tinkerer as an engineer. Science 301:1866–1867ADSCrossRefGoogle Scholar
  6. Amaral LA, Scala A et al (2000) Classes of small-world networks. Proc Natl Acad Sci U S A 97(21):11149–11152ADSCrossRefGoogle Scholar
  7. Asthana S, King OD et al (2004) Predicting protein complex membership using probabilistic network reliability. Genome Res 14(6):1170–1175CrossRefGoogle Scholar
  8. Avery L, Wasserman S (1992) Ordering gene function: the interpretation of epistasis in regulatory hierarchies. Trends Genet 8(9):312–316CrossRefGoogle Scholar
  9. Bader JS (2003) Greedily building protein networks with confidence. Bioinformatics 19(15):1869–1874CrossRefGoogle Scholar
  10. Bader GD, Hogue CW (2002) Analyzing yeast protein-protein interaction data obtained from different sources. Nat Biotechnol 20(10):991–997CrossRefGoogle Scholar
  11. Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4(1):2CrossRefGoogle Scholar
  12. Bader JS, Chaudhuri A et al (2004) Gaining confidence in high-throughput protein interaction networks. Nat Biotechnol 22(1):78–85CrossRefGoogle Scholar
  13. Balazsi G, Barabasi AL et al (2005) Topological units of environmental signal processing in the transcriptional regulatory network of Escherichia coli. Proc Natl Acad Sci U S A 102(22):7841–7846ADSCrossRefGoogle Scholar
  14. Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512MathSciNetADSCrossRefGoogle Scholar
  15. Bar-Joseph Z (2003) Computational discovery of gene modules and regulatory networks. Nat Biotechnol 21:1337–1342CrossRefGoogle Scholar
  16. Bornholdt S, Ebel H (2001) World Wide Web scaling exponent from Simon’s 1955 model. Phys Rev E 64(3):35104ADSCrossRefGoogle Scholar
  17. Bornholdt S, Schuster HG (2003) Handbook of graphs and networks: from the genome to the internetGoogle Scholar
  18. Bray D (2003) Molecular networks: the top-down view. Science 301:1864–1865ADSCrossRefGoogle Scholar
  19. Broder A (2000) Graph structure in the web. Comput Netw 33:309–320CrossRefGoogle Scholar
  20. Callaway DS, Newman MEJ et al (2000) Network robustness and fragility: percolation on random graphs. Phys Rev Lett 85:5468–5471ADSCrossRefGoogle Scholar
  21. Cho RJ, Campbell MJ et al (1998) A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 2(1):65–73CrossRefGoogle Scholar
  22. Cohen R, Erez K et al (2000) Resilience of the Internet to random breakdowns. Phys Rev Lett 85:4626–4628ADSCrossRefGoogle Scholar
  23. de Lichtenberg U, Jensen LJ et al (2005) Dynamic complex formation during the yeast cell cycle. Science 307(5710):724–727ADSCrossRefGoogle Scholar
  24. Dobrin R, Beg QK et al (2004) Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network. BMC Bioinformatics 5(1):10CrossRefGoogle Scholar
  25. Dorogovtsev SN, Mendes JF (2003) Evolution of networks: from biological nets to the internet and WWW. Oxford University Press, OxfordCrossRefGoogle Scholar
  26. Drees BL, Thorsson V et al (2005) Derivation of genetic interaction networks from quantitative phenotype data. Genome Biol 6(4):R38CrossRefGoogle Scholar
  27. Fanning AS, Anderson JM (1996) Protein-protein interactions: PDZ domain networks. Curr Biol 6(11):1385–1388CrossRefGoogle Scholar
  28. Farh KK, Grimson A et al (2005) The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310(5755):1817–1821ADSCrossRefGoogle Scholar
  29. Farkas IJ, Wu C et al (2006) Topological basis of signal integration in the transcriptional-regulatory network of the yeast, Saccharomyces cerevisiae. BMC Bioinformatics 7:478CrossRefGoogle Scholar
  30. Featherstone DE, Broadie K (2002) Wrestling with pleiotropy: genomic and topological analysis of the yeast gene expression network. Bioessays 24:267–274CrossRefGoogle Scholar
  31. Fell DA, Wagner A (2000) The small world of metabolism. Nat Biotechnol 18(11):1121–1122CrossRefGoogle Scholar
  32. Freudenberg J, Zimmer R et al (2002) A hypergraph-based method for unification of existing protein structure- and sequence-families. In Silico Biol 2(3):339–349Google Scholar
  33. Gavin AC, Bosche M et al (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141–147ADSCrossRefGoogle Scholar
  34. Ge H, Liu Z et al (2001) Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nat Genet 29(4):482–486MathSciNetCrossRefGoogle Scholar
  35. Geissler S, Siegers K et al (1998) A novel protein complex promoting formation of functional alpha-and gamma-tubulin. EMBO J 17(4):952–966CrossRefGoogle Scholar
  36. Getoor L, Rhee JT et al (2004) Understanding tuberculosis epidemiology using structured statistical models. Artif Intell Med 30(3):233–256CrossRefGoogle Scholar
  37. Giaever G (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391ADSCrossRefGoogle Scholar
  38. Gietz RD, Triggs-Raine B et al (1997) Identification of proteins that interact with a protein of interest: applications of the yeast two-hybrid system. Mol Cell Biochem 172(1–2):67–79CrossRefGoogle Scholar
  39. Giot L (2003) A protein interaction map of Drosophila melanogaster. Science 302:1727–1736ADSCrossRefGoogle Scholar
  40. Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc Natl Acad Sci U S A 99:7821–7826zbMATHMathSciNetADSCrossRefGoogle Scholar
  41. Goldberg DS, Roth FP (2003) Assessing experimentally derived interactions in a small world. Proc Natl Acad Sci U S A 3:3Google Scholar
  42. Guelzim N, Bottani S et al (2002) Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet 31(1):60–63CrossRefGoogle Scholar
  43. Gunsalus KC, Ge H et al (2005) Predictive models of molecular machines involved in Caenorhabditis elegans early embryogenesis. Nature 436(7052):861–865ADSCrossRefGoogle Scholar
  44. Han JD, Bertin N et al (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430(6995):88–93ADSCrossRefGoogle Scholar
  45. Han JD, Dupuy D et al (2005) Effect of sampling on topology predictions of protein-protein interaction networks. Nat Biotechnol 23(7):839–844CrossRefGoogle Scholar
  46. Hanein D, Matlack KE et al (1996) Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation. Cell 87(4):721–732CrossRefGoogle Scholar
  47. Harbison CT, Gordon DB et al (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431(7004):99–104ADSCrossRefGoogle Scholar
  48. Hartwell LH, Hopfield JJ et al (1999) From molecular to modular cell biology. Nature 402:C47–C52CrossRefGoogle Scholar
  49. Hasty J, McMillen D et al (2002) Engineered gene circuits. Nature 420:224–230ADSCrossRefGoogle Scholar
  50. Ho Y, Gruhler A et al (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868):180–183ADSCrossRefGoogle Scholar
  51. Holme P, Huss M et al (2003) Subnetwork hierarchies of biochemical pathways. Bioinformatics 19:532–538CrossRefGoogle Scholar
  52. Huh WK, Falvo JV et al (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686–691ADSCrossRefGoogle Scholar
  53. Ihmels J (2002) Revealing modular organization in the yeast transcriptional network. Nat Genet 31:370–377Google Scholar
  54. Ito T (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A 98:4569–4574ADSCrossRefGoogle Scholar
  55. Ito T, Tashiro K et al (2000) Toward a protein-protein interaction map of the budding yeast: a comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc Natl Acad Sci U S A 97(3):1143–1147ADSCrossRefGoogle Scholar
  56. Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356CrossRefGoogle Scholar
  57. Jansen R, Greenbaum D et al (2002a) Relating whole-genome expression data with protein-protein interactions. Genome Res 12(1):37–46CrossRefGoogle Scholar
  58. Jansen R, Lan N et al (2002b) Integration of genomic datasets to predict protein complexes in yeast. J Struct Funct Genomics 2:71–81CrossRefGoogle Scholar
  59. Jansen R et al (2003) A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302(5644):449–453ADSCrossRefGoogle Scholar
  60. Jeong H, Tombor B et al (2000) The large-scale organization of metabolic networks. Nature 407:651–654ADSCrossRefGoogle Scholar
  61. Jeong H, Mason SP et al (2001) Lethality and centrality in protein networks. Nature 411(6833):41–42ADSCrossRefGoogle Scholar
  62. Juvan P, Demsar J et al (2005) GenePath: from mutations to genetic networks and back. Nucleic Acids Res 33(Web Server issue):W749–W752Google Scholar
  63. King OD (2004) Comment on subgraphs in random networks. Phys Rev E Stat Nonlin Soft Matter Phys 70(5 Pt 2):058101, author reply 058102ADSCrossRefGoogle Scholar
  64. Kitano H (2002) Computational systems biology. Nature 420:206–210ADSCrossRefGoogle Scholar
  65. Koonin EV, Wolf YI et al (2002) The structure of the protein universe and genome evolution. Nature 420:218–223ADSCrossRefGoogle Scholar
  66. Krogan NJ, Cagney G et al (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637–643ADSCrossRefGoogle Scholar
  67. Kumar A, Agarwal S et al (2002) Subcellular localization of the yeast proteome. Genes Dev 16(6):707–719CrossRefGoogle Scholar
  68. Launer RL, Wilkinson GN (1979) Robustness in statistics. Academic, New YorkzbMATHGoogle Scholar
  69. Lee TI, Rinaldi NJ et al (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298(5594):799–804ADSCrossRefGoogle Scholar
  70. Lee I, Date SV et al (2004) A probabilistic functional network of yeast genes. Science 306(5701):1555–1558ADSCrossRefGoogle Scholar
  71. Li S (2004) A map of the interactome network of the metazoan, C. elegans. Science 303:590–593CrossRefGoogle Scholar
  72. Li W, Liu Y et al (2007) Dynamical systems for discovering protein complexes and functional modules from biological networks. IEEE/ACM Trans Comput Biol Bioinform 4(2):233–250CrossRefGoogle Scholar
  73. Lockhart DJ, Dong H et al (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14(13):1675–1680CrossRefGoogle Scholar
  74. Ma HW, Buer J et al (2004) Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach. BMC Bioinformatics 5:199CrossRefGoogle Scholar
  75. Ma’ayan A, Jenkins SL et al (2005) Formation of regulatory patterns during signal propagation in a mammalian cellular network. Science 309(5737):1078–1083ADSCrossRefGoogle Scholar
  76. MacIsaac KD, Wang T et al (2006) An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7:113CrossRefGoogle Scholar
  77. Mangan S, Itzkovitz S et al (2006) The incoherent feed-forward loop accelerates the response-time of the gal system of Escherichia coli. J Mol Biol 356(5):1073–1081CrossRefGoogle Scholar
  78. Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296:910–913ADSCrossRefGoogle Scholar
  79. Milo R, Shen-Orr S et al (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–827ADSCrossRefGoogle Scholar
  80. Milo R, Itzkovitz S et al (2004) Superfamilies of evolved and designed networks. Science 303(5663):1538–1542ADSCrossRefGoogle Scholar
  81. Monod J, Jacob F (1961) Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb Symp Quant Biol 26:389–401CrossRefGoogle Scholar
  82. Monod J, Cohen-Bazire G et al (1951) The biosynthesis of beta-galactosidase (lactase) in Escherichia coli; the specificity of induction. Biochim Biophys Acta 7(4):585–599CrossRefGoogle Scholar
  83. Nadvornik P, Drozen V (1964) Models of neurons and neuron networks. Act Nerv Super (Praha) 6:293–302Google Scholar
  84. Newman MEJ (2002) Assortative mixing in networks. Phys Rev Lett 89:208701ADSCrossRefGoogle Scholar
  85. Newman ME, Strogatz SH et al (2001) Random graphs with arbitrary degree distributions and their applications. Phys Rev E Stat Nonlin Soft Matter Phys 64(2 Pt 2):026118ADSCrossRefGoogle Scholar
  86. Novick A, Weiner M (1957) Enzyme induction as an all-or-none phenomenon. Proc Natl Acad Sci U S A 43(7):553–566ADSCrossRefGoogle Scholar
  87. Oltvai ZN, Barabasi AL (2002) Life’s complexity pyramid. Science 298:763–764CrossRefGoogle Scholar
  88. Pastor-Satorras R, Vazquez A et al (2001) Dynamical and correlation properties of the internet. Phys Rev Lett 87:258701ADSCrossRefGoogle Scholar
  89. Ptacek J, Devgan G et al (2005) Global analysis of protein phosphorylation in yeast. Nature 438(7068):679–684ADSCrossRefGoogle Scholar
  90. Qi Y, Klein-Seetharaman J et al (2005) Random forest similarity for protein-protein interaction prediction from multiple sources. Pac Symp Biocomput 531–542Google Scholar
  91. Rajewsky N (2006) microRNA target predictions in animals. Nat Genet 38(Suppl):S8–S13CrossRefGoogle Scholar
  92. Ravasz E, Barabasi AL (2003) Hierarchical organization in complex networks. Phys Rev E Stat Nonlin Soft Matter Phys 67:026112ADSCrossRefGoogle Scholar
  93. Ravasz E, Somera AL et al (2002) Hierarchical organization of modularity in metabolic networks. Science 297(5586):1551–1555ADSCrossRefGoogle Scholar
  94. Rives AW, Galitski T (2003) Modular organization of cellular networks. Proc Natl Acad Sci U S A 100(3):1128–1133ADSCrossRefGoogle Scholar
  95. Rouvray H (1990) The origins of chemical graph theory. In: Bonchev D, Rouvray DH (eds) Chemical graph theory: introduction and fundamentals, vol 41. Gordon and Breach Science, New YorkGoogle Scholar
  96. Rual JF, Venkatesan K et al (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature 437(7062):1173–1178ADSCrossRefGoogle Scholar
  97. Schena M, Shalon D et al (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470ADSCrossRefGoogle Scholar
  98. Schleif R (2000) Regulation of the L-arabinose operon of Escherichia coli. Trends Genet 16(12):559–565CrossRefGoogle Scholar
  99. Schuster S, Pfeiffer T et al (2002) Exploring the pathway structure of metabolism: decomposition into subnetworks and application to Mycoplasma pneumoniae. Bioinformatics 18:351–361CrossRefGoogle Scholar
  100. Shen-Orr SS, Milo R et al (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31(1):64–68CrossRefGoogle Scholar
  101. Simon HA (1955) On a class of skew distribution functions. Biometrika 42:425–440zbMATHMathSciNetCrossRefGoogle Scholar
  102. Simonis N, van Helden J et al (2004) Transcriptional regulation of protein complexes in yeast. Genome Biol 5(5):R33CrossRefGoogle Scholar
  103. Simonis N, Gonze D et al (2006) Modularity of the transcriptional response of protein complexes in yeast. J Mol Biol 363(2):589–610CrossRefGoogle Scholar
  104. Smith LM, Fung S et al (1985) The synthesis of oligonucleotides containing an aliphatic amino group at the 5′ terminus: synthesis of fluorescent DNA primers for use in DNA sequence analysis. Nucleic Acids Res 13(7):2399–2412CrossRefGoogle Scholar
  105. Smith LM, Sanders JZ et al (1986) Fluorescence detection in automated DNA sequence analysis. Nature 321(6071):674–679ADSCrossRefGoogle Scholar
  106. Snel B, Bork P et al (2002) The identification of functional modules from the genomic association of genes. Proc Natl Acad Sci U S A 99:5890–5895ADSCrossRefGoogle Scholar
  107. Sole RV, Pastor-Satorras R et al (2002) A model of large-scale proteome evolution. Adv Complex Syst 5:43–54zbMATHCrossRefGoogle Scholar
  108. Sood P, Krek A et al (2006) Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci U S A 103(8):2746–2751ADSCrossRefGoogle Scholar
  109. Spellman PT, Sherlock G et al (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Cell Biol 9(12):3273–3297CrossRefGoogle Scholar
  110. Spirin V, Mirny LA (2003) Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci U S A 100(21):12123–12128ADSCrossRefGoogle Scholar
  111. St Onge RP, Mani R et al (2007) Systematic pathway analysis using high-resolution fitness profiling of combinatorial gene deletions. Nat Genet 39(2):199–206CrossRefGoogle Scholar
  112. Stark A, Brennecke J et al (2005) Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123(6):1133–1146CrossRefGoogle Scholar
  113. Stelzl U, Worm U et al (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122(6):957–968CrossRefGoogle Scholar
  114. Strogatz SH (2001) Exploring complex networks. Nature 410(6825):268–276ADSCrossRefGoogle Scholar
  115. Stuart JM, Segal E et al (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302:249–255ADSCrossRefGoogle Scholar
  116. Tanaka R (2005) Scale-rich metabolic networks. Phys Rev Lett 94(16):168101ADSCrossRefGoogle Scholar
  117. Taylor RJ, Siegel AF et al (2007) Network motif analysis of a multi-mode genetic-interaction network. Genome Biol 8(8):R160CrossRefGoogle Scholar
  118. Thieffry D, Huerta AM et al (1998) From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. Bioessays 20(5):433–440CrossRefGoogle Scholar
  119. Tong AH, Lesage G et al (2004) Global mapping of the yeast genetic interaction network. Science 303(5659):808–813ADSCrossRefGoogle Scholar
  120. Tornow S, Mewes HW (2003) Functional modules by relating protein interaction networks and gene expression. Nucleic Acids Res 31:6283–6289CrossRefGoogle Scholar
  121. Tsang J, Zhu J et al (2007) MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell 26(5):753–767CrossRefGoogle Scholar
  122. Uetz P, Giot L et al (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403(6770):623–627ADSCrossRefGoogle Scholar
  123. Wagner A (2001) The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol Biol Evol 18(7):1283–1292CrossRefGoogle Scholar
  124. Wagner A, Fell DA (2001) The small world inside large metabolic networks. Proc Biol Sci 268(1478):1803–1810CrossRefGoogle Scholar
  125. Wall ME, Hlavacek WS et al (2004) Design of gene circuits: lessons from bacteria. Nat Rev Genet 5:34–42CrossRefGoogle Scholar
  126. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442ADSCrossRefGoogle Scholar
  127. Wen X, Fuhrman S et al (1998) Large-scale temporal gene expression mapping of central nervous system development. Proc Natl Acad Sci U S A 95(1):334–339ADSCrossRefGoogle Scholar
  128. Winzeler EA (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906CrossRefGoogle Scholar
  129. Wong SL, Zhang LV et al (2004) Combining biological networks to predict genetic interactions. Proc Natl Acad Sci U S A 101(44):15682–15687ADSCrossRefGoogle Scholar
  130. Wunderlich Z, Mirny LA (2006) Using the topology of metabolic networks to predict viability of mutant strains. Biophys J 91(6):2304–2311CrossRefGoogle Scholar
  131. Yeger-Lotem E, Sattath S et al (2004) Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. Proc Natl Acad Sci U S A 101(16):5934–5939ADSCrossRefGoogle Scholar
  132. Yook SH, Oltvai ZN et al (2004) Functional and topological characterization of protein interaction networks. Proteomics 4(4):928–942CrossRefGoogle Scholar
  133. Yu H, Gerstein M (2006) Genomic analysis of the hierarchical structure of regulatory networks. Proc Natl Acad Sci U S A 103(40):14724–14731ADSCrossRefGoogle Scholar
  134. Yu H, Luscombe NM et al (2003) Genomic analysis of gene expression relationships in transcriptional regulatory networks. Trends Genet 19(8):422–427CrossRefGoogle Scholar
  135. Zhang LV, Wong SL et al (2004) Predicting co-complexed protein pairs using genomic and proteomic data integration. BMC Bioinformatics 5(1):38CrossRefGoogle Scholar
  136. Zhang L, King O et al (2005) Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. J Biol 4(2):6CrossRefGoogle Scholar

Books and Reviews

  1. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5(2):101–113CrossRefGoogle Scholar
  2. Diestel R (2005) Graph theory, 3rd edn. Springer, HeidelbergzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUSA