Skip to main content

Optical Computing

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Complexity and Systems Science

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Coherent light:

Light of a narrowband of wavelengths (temporally coherent) and a light beam whose phase is approximately constant over its cross-sectional area (spatial coherence). For example, coherent light can be produced by a laser.

Continuous space machine (CSM):

A general optical model of computation that is defined in section “Continuous Space Machine (CSM).”

Detector:

A device for sensing light.

Incoherent light:

Light which is not spatially coherent and not temporally coherent. For example, incoherent light is produced by a conventional light bulb.

P, NP, PSPACE, NC:

Complexity classes: these classes are respectively defined as the set of problems solvable on polynomial time deterministic Turing machines, polynomial time nondeterministic Turing machines, polynomial space Turing machines, and parallel computers that use polylogarithmic time and polynomial hardware (Papadimitriou 1995).

Parallel computation thesis:

This thesis states that parallel time corresponds, within a polynomial, to sequential space, for reasonable parallel and sequential machines (Chandra and Stockmeyer 1976; Goldschlager 1977; Karp and Ramachandran 1990; Parberry 1987; van Emde Boas 1990).

Source:

A device for generating light.

Spatial light modulator (SLM):

A device that imposes some form of spatially varying modulation on a beam of light. An SLM may modulate the intensity, phase, or both of the light.

Bibliography

  • Abushagur MAG, Caulfield HJ (1987) Speed and convergence of bimodal optical computers. Opt Eng 26(1):22–27

    Article  Google Scholar 

  • Adleman LM (1994) Molecular computation of solutions to combinatorial problems. Science 266:1021–1024

    Article  ADS  Google Scholar 

  • Alhazov A, de Jesús Pérez-Jiménez M (2007) Uniform solution to QSAT using polarizationless active membranes. In: Durand-Lose J, Margenstern M (eds) Machines, Computations and Universality (MCU), vol 4664, LNCS. Springer, Orléans, pp 122–133

    Chapter  Google Scholar 

  • Armitage JD, Lohmann AW (1965) Character recognition by incoherent spatial filtering. Appl Opt 4(4):461–467

    Article  ADS  Google Scholar 

  • Arsenault HH, Sheng Y (1992) An introduction to optics in computers, vol TT8, Tutorial texts in optical engineering. SPIE Press, Bellingham

    Google Scholar 

  • Arsenault HH, Hsu YN, Chalasinska-Macukow K (1984) Rotation-invariant pattern recognition. Opt Eng 23(6):705–709

    Article  ADS  Google Scholar 

  • Balcázar JL, Díaz J, Gabarró J (1988) Structural complexity, vol I and II, EATCS monographs on theoretical computer science. Springer, Berlin

    Book  MATH  Google Scholar 

  • Beyette FR Jr, Mitkas PA, Feld SA, Wilmsen CW (1994) Bitonic sorting using an optoelectronic recirculating architecture. Appl Opt 33(35):8164–8172

    Article  ADS  Google Scholar 

  • Borodin A (1977) On relating time and space to size and depth. SIAM J Comput 6(4):733–744

    Article  MathSciNet  MATH  Google Scholar 

  • Bracewell RN (1978) The Fourier transform and its applications, 2nd edn, Electrical and electronic engineering series. McGraw-Hill, New York

    MATH  Google Scholar 

  • Brenner KH, Huang A, Streibl N (1986) Digital optical computing with symbolic substitution. Appl Opt 25(18):3054–3060

    Article  ADS  Google Scholar 

  • Brenner KH, Kufner M, Kufner S (1990) Highly parallel arithmetic algorithms for a digital optical processor using symbolic substitution logic. Appl Opt 29(11):1610–1618

    Article  ADS  Google Scholar 

  • Casasent DP (1984) Unified synthetic discriminant function computational formulation. Appl Opt 23:1620–1627

    Article  ADS  Google Scholar 

  • Casasent DP, House GP (1994a) Comparison of coherent and noncoherent optical correlators. In: Optical pattern recognition V. Proceedings of SPIE, vol 2237. SPIE, Bellingham, pp 170–178

    Google Scholar 

  • Casasent DP, House GP (1994b) Implementation issues for a noncoherent optical correlator. In: Optical pattern recognition V. Proceedings of SPIE, vol 2237. SPIE, Bellingham, pp 179–188

    Google Scholar 

  • Casasent DP, Psaltis D (1976a) Position, rotation, and scale invariant optical correlation. Appl Opt 15(7):1795–1799

    Article  ADS  Google Scholar 

  • Casasent DP, Psaltis D (1976b) Scale invariant optical transforms. Opt Eng 15(3):258–261

    Article  ADS  Google Scholar 

  • Casasent DP, Jackson J, Neuman CP (1983) Frequency-multiplexed and pipelined iterative optical systolic array processors. Appl Opt 22:115–124

    Article  ADS  Google Scholar 

  • Caulfield HJ (ed) (1979) Handbook of optical holography. Academic, New York

    Google Scholar 

  • Caulfield HJ (1989a) Computing with light. Byte 14:231–237

    Google Scholar 

  • Caulfield HJ (1989b) The energetic advantage of analog over digital computing, vol 9, OSA optical computing technical digest series. Optical Society of America, Washington, DC, pp 180–183

    Google Scholar 

  • Caulfield HJ (1990) Space-time complexity in optical computing. In: Javidi B (ed) Optical information-processing systems and architectures II, vol 1347, SPIE. SPIE Press, Bellingham, pp 566–572

    Chapter  Google Scholar 

  • Caulfield HJ, Abushagur MAG (1986) Hybrid analog-digital algebra processors. In: Optical and hybrid computing II. Proceedings of SPIE, vol 634. SPIE Press, Bellingham, pp 86–95

    Google Scholar 

  • Caulfield HJ, Haimes R (1980) Generalized matched filtering. Appl Opt 19(2):181–183

    Article  ADS  Google Scholar 

  • Caulfield HJ, Horvitz S, Winkle WAV (1977) Introduction to the special issue on optical computing. Proc IEEE 65(1):4–5

    Article  Google Scholar 

  • Caulfield HJ, Rhodes WT, Foster MJ, Horvitz S (1981) Optical implementation of systolic array processing. Opt Commun 40:86–90

    Article  ADS  Google Scholar 

  • Caulfield HJ, Kinser JM, Rogers SK (1989) Optical neural networks. Proc IEEE 77:1573–1582

    Article  Google Scholar 

  • Cerf NJ, Adami C, Kwiat PG (1998) Optical simulation of quantum logic. Phys Rev A 57(3):R1477–R1480

    Article  ADS  MathSciNet  Google Scholar 

  • Chandra AK, Stockmeyer LJ (1976) Alternation. In: 17th annual symposium on foundations of computer science, IEEE, Houston, pp 98–108

    Google Scholar 

  • Chandra AK, Kozen DC, Stockmeyer LJ (1981) Alternation. J ACM 28(1):114–133

    Article  MathSciNet  MATH  Google Scholar 

  • Chang S, Arsenault HH, Garcia-Martinez P, Grover CP (2000) Invariant pattern recognition based on centroids. Appl Opt 39(35):6641–6648

    Article  ADS  Google Scholar 

  • Chen FS, LaMacchia JT, Fraser DB (1968) Holographic storage in lithium niobate. Appl Phys Lett 13(7):223–225

    Article  ADS  Google Scholar 

  • Chiou AE (1999) Photorefractive phase-conjugate optics for image processing, trapping, and manipulation of microscopic objects. Proc IEEE 87(12):2074–2085

    Article  Google Scholar 

  • Clavero R, Ramos F, Martí J (2005) All-optical flip-flop based on an active Mach-Zehnder interferometer with a feedback loop. Opt Lett 30(21):2861–2863

    Article  ADS  Google Scholar 

  • Cutrona LJ, Leith EN, Palermo CJ, Porcello LJ (1960) Optical data processing and filtering systems. IRE Trans Inf Theory 6(3):386–400

    Article  MathSciNet  Google Scholar 

  • Cutrona LJ, Leith EN, Porcello LJ, Vivian WE (1966) On the application of coherent optical processing techniques to synthetic-aperture radar. Proc IEEE 54(8):1026–1032

    Article  Google Scholar 

  • Desmulliez MPY, Wherrett BS, Waddie AJ, Snowdon JF, Dines JAB (1996) Performance analysis of self-electro-optic-effect-device-based (seed-based) smart-pixel arrays used in data sorting. Appl Opt 35(32):6397–6416

    Article  ADS  Google Scholar 

  • Dolev S, Fitoussi H (2007) The traveling beam: optical solution for bounded NP-complete problems. In: Crescenzi P, Prencipe G, Pucci G (eds) The fourth international conference on fun with algorithms (FUN). Springer, Heidelberg, pp 120–134

    Chapter  Google Scholar 

  • Dorren HJS, Hill MT, Liu Y, Calabretta N, Srivatsa A, Huijskens FM, de Waardt H, Khoe GD (2003) Optical packet switching and buffering by using all-optical signal processing methods. J Lightwave Technol 21(1):2–12

    Article  ADS  Google Scholar 

  • Durand-Lose J (2006) Reversible conservative rational abstract geometrical computation is Turing-universal. In: Logical approaches to computational barriers, second conference on computability in Europe, (CiE). vol 3988, Lecture notes in computer science. Springer, Swansea, pp 163–172

    Google Scholar 

  • Efron U, Grinberg J, Braatz PO, Little MJ, Reif PG, Schwartz RN (1985) The silicon liquid crystal light valve. J Appl Phys 57(4):1356–1368

    Article  ADS  Google Scholar 

  • Esteve-Taboada JJ, García J, Ferreira C (2000) Extended scale-invariant pattern recognition with white-light illumination. Appl Opt 39(8):1268–1271

    Article  ADS  Google Scholar 

  • Farhat NH, Psaltis D (1984) New approach to optical information processing based on the Hopfield model. J Opt Soc Am A 1:1296

    ADS  Google Scholar 

  • Feitelson DG (1988) Optical computing: a survey for computer scientists. MIT Press, Cambridge, MA

    Google Scholar 

  • Feng JH, Chin GF, Wu MX, Yan SH, Yan YB (1995) Multiobject recognition in a multichannel joint- transform correlator. Opt Lett 20(1):82–84

    Article  ADS  Google Scholar 

  • Fortune S, Wyllie J (1978) Parallelism in random access machines. In: Proceedings 10th annual ACM symposium on theory of computing. ACM, New York, pp 114–118

    Google Scholar 

  • Gabor D (1948) A new microscopic principle. Nature 161(4098):777–778

    Article  ADS  Google Scholar 

  • Gara AD (1979) Real time tracking of moving objects by optical correlation. Appl Opt 18(2):172–174

    Article  ADS  Google Scholar 

  • Geldenhuys R, Liu Y, Calabretta N, Hill MT, Huijskens FM, Khoe GD, Dorren HJS (2004) All-optical signal processing for optical packet switching. J Opt Netw 3(12):854–865

    Article  Google Scholar 

  • Ghosh AK, Casasent DP, Neuman CP (1985) Performance of direct and iterative algorithms on an optical systolic processor. Appl Opt 24(22):3883–3892

    Article  ADS  Google Scholar 

  • Goldberg L, Lee SH (1979) Integrated optical half adder circuit. Appl Opt 18:2045–2051

    Article  ADS  Google Scholar 

  • Goldschlager LM (1977) Synchronous parallel computation. PhD thesis, University of Toronto, Computer Science Department

    Google Scholar 

  • Goldschlager LM (1978) A unified approach to models of synchronous parallel machines. In: Proceedings 10th annual ACM symposium on theory of computing. ACM, New York, pp 89–94

    Google Scholar 

  • Goldschlager LM (1982) A universal interconnection pattern for parallel computers. J ACM 29(4):1073–1086

    Article  MathSciNet  MATH  Google Scholar 

  • Goodman JW (1977) Operations achievable with coherent optical information processing systems. Proc IEEE 65(1):29–38

    Article  Google Scholar 

  • Goodman JW (2005) Introduction to fourier optics, 3rd edn. Roberts & Company, Englewood

    Google Scholar 

  • Grinberg J, Jacobson AD, Bleha WP, Miller L, Fraas L, Boswell D, Myer G (1975) A new real-time noncoherent to coherent light image converter: the hybrid field effect liquid crystal light valve. Opt Eng 14(3):217–225

    Article  ADS  Google Scholar 

  • Grover LK (1996) A fast quantum mechanical algorithm for database search. In: Proceedings 28th annual ACM symposium on theory of computing. ACM, New York, pp 212–219

    Google Scholar 

  • Guilfoyle PS, Hessenbruch JM, Stone RV (1998) Free-space interconnects for high-performance optoelectronic switching. IEEE Comput 31(2):69–75

    Article  Google Scholar 

  • Haist T, Osten W (2007) An optical solution for the travelling salesman problem. Opt Express 15(16):10473–10482

    Article  ADS  Google Scholar 

  • Hartmanis J, Simon J (1974) On the power of multiplication in random access machines. In: Proceedings of the 15th annual symposium on switching and automata theory. IEEE, The University of New Orleans, pp 13–23

    Google Scholar 

  • Head T (1987) Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors. Bull Math Biol 49(6):737–759

    Article  MathSciNet  MATH  Google Scholar 

  • Horner JL (ed) (1987) Optical signal processing. Academic, San Diego

    Google Scholar 

  • Hough PVC (1962) Methods and measures for recognising complex patterns. US Patent No. 3,069,654

    Google Scholar 

  • Hsu YN, Arsenault HH (1982) Optical pattern recognition using circular harmonic expansion. Appl Opt 21(22):4016–4019

    Article  ADS  Google Scholar 

  • Hsu KY, Li HY, Psaltis D (1990) Holographic implementation of a fully connected neural network. Proc IEEE 78(10):1637–1645

    Article  ADS  Google Scholar 

  • Huang A (1984) Architectural considerations involved in the design of an optical digital computer. Proc IEEE 72(7):780–786

    Article  Google Scholar 

  • Huang A, Tsunoda Y, Goodman JW, Ishihara S (1979) Optical computation using residue arithmetic. Appl Opt 18(2):149–162

    Article  ADS  Google Scholar 

  • Jacobson AD, Beard TD, Bleha WP, Morgerum JD, Wong SY (1972) The liquid crystal light value, an optical-to-optical interface device. In: Proceedings of the conference on parallel image processing, document X-711-72-308, Goddard Space Flight Center. NASA, Washington, DC, pp 288–299

    Google Scholar 

  • Javidi B (1989) Nonlinear joint power spectrum based optical correlation. Appl Opt 28(12):2358–2367

    Article  ADS  Google Scholar 

  • Javidi B (1990) Generalization of the linear matched filter concept to nonlinear matched filters. Appl Opt 29(8):1215–1217

    Article  ADS  Google Scholar 

  • Javidi B, Wang J (1995) Optimum distortion-invariant filter for detecting a noisy distorted target in nonoverlapping background noise. J Opt Soc Am A 12(12):2604–2614

    Article  ADS  Google Scholar 

  • Karim MA, Awwal AAS (1992) Optical computing: an introduction. Wiley, New York

    Google Scholar 

  • Karp RM, Ramachandran V (1990) Parallel algorithms for shared memory machines. In: van Leeuwen J (ed) Handbook of theoretical computer science, vol A. Elsevier, Amsterdam, pp 869–941

    Google Scholar 

  • Knill E, LaFlamme R, Milburn GJ (2001) A scheme for efficient quantum computation with linear optics. Nature 409:46–52

    Article  ADS  MATH  Google Scholar 

  • Lee JN (ed) (1995) Design issues in optical processing. Cambridge studies in modern optics. Cambridge University Press, Cambridge

    Google Scholar 

  • Leith EN (1977) Complex spatial filters for image deconvolution. Proc IEEE 65(1):18–28

    Article  Google Scholar 

  • Lenslet Labs (2001) Optical digital signal processing engine. White paper report, Lenslet Ltd., 12 Hachilazon St., Ramat-Gan, Israel 52522

    Google Scholar 

  • Lipton RJ (1995) Using DNA to solve NP-complete problems. Science 268:542–545

    Article  ADS  Google Scholar 

  • Lohmann AW (1993) Image rotation, Wigner rotation, and the fractional Fourier transform. J Opt Soc Am A 10(10):2181–2186

    Article  ADS  MathSciNet  Google Scholar 

  • Louri A, Post A (1992) Complexity analysis of optical-computing paradigms. Appl Opt 31(26):5568–5583

    Article  ADS  Google Scholar 

  • Louri A, Hatch JA Jr, Na J (1995) Constant-time parallel sorting algorithm and its optical implementation using smart pixels. Appl Opt 34(17):3087–3097

    Article  ADS  Google Scholar 

  • Lu XJ, Yu FTS, Gregory DA (1990) Comparison of Vander lugt and joint transform correlators. Appl Phys B 51:153–164

    Article  ADS  Google Scholar 

  • McAulay AD (1991) Optical computer architectures: the application of optical concepts to next generation computers. Wiley, New York

    MATH  Google Scholar 

  • Mead C (1989) Analog VLSI and neural systems. Addison-Wesley, Reading

    Book  MATH  Google Scholar 

  • Miller DA (2000) Rationale and challenges for optical interconnects to electronic chips. Proc IEEE 88(6):728–749

    Article  Google Scholar 

  • Moore C (1991) Generalized shifts: undecidability and unpredictability in dynamical systems. Nonlinearity 4:199–230

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Moore C (1997) Majority-vote cellular automata, Ising dynamics and P-completeness. J Stat Phys 88(3/4):795–805

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Naughton TJ (2000a) Continuous-space model of computation is Turing universal. In: Bains S, Irakliotis LJ (eds) Critical technologies for the future of computing. Proc SPIE, vol 4109. SPIE Press, San Diego, pp 121–128

    Google Scholar 

  • Naughton TJ (2000b) A model of computation for Fourier optical processors. In: Lessard RA, Galstian T (eds) Optics in computing 2000. Proc SPIE, vol 4089. SPIE Press, Quebec, pp 24–34

    Google Scholar 

  • Naughton TJ, Woods D (2001) On the computational power of a continuous-space optical model of computation. In: Margenstern M, Rogozhin Y (eds) Machines, computations and universality: third international conference (MCU’01), vol 2055, LNCS. Springer, Heidelberg, pp 288–299

    Chapter  Google Scholar 

  • Naughton T, Javadpour Z, Keating J, Klíma M, Rott J (1999) General-purpose acousto-optic connectionist processor. Opt Eng 38(7):1170–1177

    Article  ADS  Google Scholar 

  • O’Neill EL (1956) Spatial filtering in optics. IRE Trans Inf Theory 2:56–65

    Article  Google Scholar 

  • Oltean M (2006) A light-based device for solving the Hamiltonian path problem. In: Fifth international conference on unconventional computation (UC’06). LNCS, vol 4135. Springer, New York, pp 217–227

    Google Scholar 

  • Paek EG, Choe JY, Oh TK, Hong JH, Chang TY (1997) Nonmechanical image rotation with an acousto-optic dove prism. Opt Lett 22(15):1195–1197

    Article  ADS  Google Scholar 

  • Papadimitriou CH (1995) Computational complexity. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Parberry I (1987) Parallel complexity theory. Wiley, New York

    MATH  Google Scholar 

  • Păun G (2002) Membrane computing: an introduction. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Pe’er A, Wang D, Lohmann AW, Friesem AA (1999) Optical correlation with totally incoherent light. Opt Lett 24(21):1469–1471

    Article  ADS  Google Scholar 

  • Pittman TB, Fitch MJ, Jacobs BC, Franson JD (2003) Experimental controlled-NOT logic gate for single photons in the coincidence basis. Phys Rev A 68:032316–3

    Article  ADS  Google Scholar 

  • Pratt VR, Stockmeyer LJ (1976) A characterisation of the power of vector machines. J Comput Syst Sci 12:198–221

    Article  MathSciNet  MATH  Google Scholar 

  • Pratt VR, Rabin MO, Stockmeyer LJ (1974) A characterisation of the power of vector machines. In: Proceedings of 6th annual ACM symposium on theory of computing. ACM, New York, pp 122–134

    Google Scholar 

  • Psaltis D, Farhat NH (1985) Optical information processing based on an associative-memory model of neural nets with thresholding and feedback. Opt Lett 10(2):98–100

    Article  ADS  Google Scholar 

  • Pu A, Denkewalter RF, Psaltis D (1997) Real-time vehicle navigation using a holographic memory. Opt Eng 36(10):2737–2746

    Article  ADS  Google Scholar 

  • Reif JH, Tyagi A (1997) Efficient parallel algorithms for optical computing with the discrete Fourier transform (DFT) primitive. Appl Opt 36(29):7327–7340

    Article  ADS  Google Scholar 

  • Reif J, Tygar D, Yoshida A (1990) The computability and complexity of optical beam tracing. In: 31st annual IEEE symposium on Foundations of Computer Science (FOCS). IEEE, St. Louis, pp 106114

    Google Scholar 

  • Rhodes WT (1981) Acousto-optic signal processing: convolution and correlation. Proc IEEE 69(1):65–79

    Article  ADS  MathSciNet  Google Scholar 

  • Sawchuk AA, Strand TC (1984) Digital optical computing. Proc IEEE 72(7):758–779

    Article  Google Scholar 

  • Shaked NT, Simon G, Tabib T, Mesika S, Dolev S, Rosen J (2006) Optical processor for solving the traveling salesman problem (TSP). In: Javidi B, Psaltis D, Caulfield HJ (eds) Proceedings of SPIE, optical information systems IV, vol 63110G. SPIE, Bellingham

    Google Scholar 

  • Shaked NT, Messika S, Dolev S, Rosen J (2007) Optical solution for bounded NP-complete problems. Appl Opt 46(5):711–724

    Article  ADS  Google Scholar 

  • Shor P (1994) Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th annual symposium on foundations computer science. ACM, New York, pp 124–134

    Google Scholar 

  • Sosik P (2003) The computational power of cell division in P systems: beating down parallel computers? Nat Comput 2(3):287–298

    Article  MathSciNet  MATH  Google Scholar 

  • Sosik P, Rodriguez-Paton A (2007) Membrane computing and complexity theory: a characterization of PSPACE. J Comput Syst Sci 73(1):137–152

    Article  MathSciNet  MATH  Google Scholar 

  • Stirk CW, Athale RA (1988) Sorting with optical compare-and-exchange modules. Appl Opt 27(9):1721–1726

    Article  ADS  Google Scholar 

  • Stone RV (1994) Optoelectronic processor is programmable and flexible. Laser Focus World 30(8):77–79

    Google Scholar 

  • Stone RV, Zeise FF, Guilfoyle PS (1991) DOC II 32-bit digital optical computer: optoelectronic hardware and software. In: Optical enhancements to computing technology, Proc SPIE, vol 1563. SPIE, Bellingham, pp 267–278

    Google Scholar 

  • Stroke GW, Halioua M, Thon F, Willasch DH (1974) Image improvement in high-resolution electron microscopy using holographic image deconvolution. Optik 41(3):319–343

    Google Scholar 

  • Sullivan DL (1972) Alignment of rotational prisms. Appl Opt 11(9):2028–2032

    Article  ADS  Google Scholar 

  • Tromp J, van Emde Boas P (1993) Associative storage modification machines. In: Ambos-Spies K, Homer S, Schoning U (eds) Complexity theory: current research. Cambridge University Press, Cambridge, UK, pp 291–313

    Google Scholar 

  • Turin GL (1960) An introduction to matched filters. IRE Trans Inf Theory 6(3):311–329

    Article  MathSciNet  Google Scholar 

  • Upatnieks J (1983) Portable real-time coherent optical correlator. Appl Opt 22(18):2798–2803

    Article  ADS  Google Scholar 

  • van Emde Boas P (1990) Machine models and simulations, chap 1. In: van Leeuwen J (ed) Handbook of theoretical computer science, vol A. Elsevier, Amsterdam

    Google Scholar 

  • van Leeuwen J, Wiedermann J (1987) Array processing machines. BIT 27:25–43

    Article  MathSciNet  MATH  Google Scholar 

  • VanderLugt A (1964) Signal detection by complex spatial filtering. IEEE Trans Inf Theory 10(2):139–145

    Article  Google Scholar 

  • VanderLugt A (1974) Coherent optical processing. Proc IEEE 62(10):1300–1319

    Article  ADS  Google Scholar 

  • VanderLugt A (1992) Optical signal processing. Wiley, New York

    Google Scholar 

  • Wang CH, Jenkins BK (1990) Subtracting incoherent optical neuron model – analysis, experiment and applications. Appl Opt 29(14):2171–2186

    Article  ADS  Google Scholar 

  • Wang PY, Saffman M (1999) Selecting optical patterns with spatial phase modulation. Opt Lett 24(16):1118–1120

    Article  ADS  Google Scholar 

  • Weaver CS, Goodman JW (1966) A technique for optically convolving two functions. Appl Opt 5(7):1248–1249

    Article  ADS  Google Scholar 

  • Woods D (2005a) Computational complexity of an optical model of computation. PhD thesis, National University of Ireland, Maynooth

    Google Scholar 

  • Woods D (2005b) Upper bounds on the computational power of an optical model of computation. In: Deng X, Du D (eds) 16th international symposium on algorithms and computation (ISAAC 2005). LNCS, vol 3827. Springer, Heidelberg, pp 777–788

    Google Scholar 

  • Woods D (2006) Optical computing and computational complexity. In: Fifth international conference on unconventional computation (UC’06). LNCS, vol 4135. Springer, pp 27–40

    Google Scholar 

  • Woods D, Gibson JP (2005a) Complexity of continuous space machine operations. In: Cooper SB, Löewe B, Torenvliet L (eds) New computational paradigms, first conference on computability in Europe (CiE 2005), vol 3526, LNCS. Springer, Amsterdam, pp 540–551

    Google Scholar 

  • Woods D, Gibson JP (2005b) Lower bounds on the computational power of an optical model of computation. In: Calude CS, Dinneen MJ, Păun G, Pérez-Jiménez MJ, Rozenberg G (eds) Fourth international conference on unconventional computation (UC’05), vol 3699, LNCS. Springer, Heidelberg, pp 237–250

    Chapter  Google Scholar 

  • Woods D, Naughton TJ (2005) An optical model of computation. Theor Comput Sci 334(1-3):227–258

    Article  MathSciNet  MATH  Google Scholar 

  • Woods D, Naughton TJ (2008) Parallel and sequential optical computing. In: International workshop on optical supercomputing. LNCS. Springer, Heidelberg

    Google Scholar 

  • Yamaguchi I, Zhang T (1997) Phase-shifting digital holography. Opt Lett 22(16):1268–1270

    Article  ADS  Google Scholar 

  • Yokomori T (2002) Molecular computing paradigm – toward freedom from Turing’s charm. Nat Comput 1(4):333–390

    Article  MathSciNet  MATH  Google Scholar 

  • Yu FTS (1996) Garden of joint transform correlators: an account of recent advances. In: Second international conference on optical information processing. Proc SPIE, vol 2969. SPIE, Bellingham, pp 396–401

    Google Scholar 

  • Yu FTS, Lu T, Yang X, Gregory DA (1990) Optical neural network with pocket-sized liquid-crystal televisions. Opt Lett 15(15):863–865

    Article  ADS  Google Scholar 

  • Yu FTS, Jutamulia S, Yin S (eds) (2001) Introduction to information optics. Academic, San Diego

    Google Scholar 

  • Zhai H, Mu G, Sun J, Zhu X, Liu F, Kang H, Zhan Y (1999) Color pattern recognition in white-light, joint transform correlation. Appl Opt 38(35):7238–7244

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Naughton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Naughton, T.J., Woods, D. (2015). Optical Computing. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_377-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_377-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics