Encyclopedia of Complexity and Systems Science

Living Edition
| Editors: Robert A. Meyers

Membrane Computing

  • Gheorghe Pãun
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27737-5_328-3

Definition of the Subject

Membrane computing is a branch of natural computing initiated in Păun (1998) which abstracts computing models from the architecture and the functioning of living cells, as well as from the organization of cells in tissues, organs (the brain included), or other higher-order structures. The initial goal of membrane computing was to learn from the cell biology something possibly useful to computer science, and the area fast developed in this direction. Several classes of computing models (called P systems) were defined in this context, inspired from biological facts or motivated from mathematical or computer science points of view. A series of applications were reported in the last years, in biology/medicine, linguistics, computer graphics, economics, approximate optimization, cryptography, etc.

The main ingredients of a P system are (i) the membrane structure, (ii) the multisets of objects placed in the compartments of the membrane structure, and (iii) the rules...


Spike Train Turing Machine Evolution Rule Register Machine Membrane Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


Primary Literature

  1. Chen H, Ionescu M, Ishdorj TO (2006) On the efficiency of spiking neural P systems. In: Proceedings of 8th international conference on electronics, information, and communication, Ulanbator, June 2006, pp 4952Google Scholar
  2. Ciobanu G, Paun G, Pérez-Jiménez MJ (eds) (2006) Applications of membrane computing. Springer, BerlinzbMATHGoogle Scholar
  3. Ibarra OH (2004) The number of membranes matters. In: Marttn-Vide et al. (eds) International Workshop, 1044 WMC2003, Tarragona, Revised Papers LNCS, vol 2911. Springer, Berlin, pp 218231Google Scholar
  4. Ibarra OH, Yen HC (2006) Deterministic catalytic systems are not universal. Theor Comput Sci 363(2):149–161MathSciNetCrossRefzbMATHGoogle Scholar
  5. Ionescu M, Paun G, Yokomori T (2006) Spiking neural P systems. Fundam Informaticae 71(2–3):279–308MathSciNetzbMATHGoogle Scholar
  6. Korec I (1996) Small universal register machines. Theor Comput Sci 168(2):267–301MathSciNetCrossRefzbMATHGoogle Scholar
  7. Nishida TY (2004) An application of P systems: a new algorithm for NP-complete optimization problems. In: Callaos N et al. (eds) Proceedings of the 8th world multi-conference on systems, cybernetics and informatics, vol V. pp 109112Google Scholar
  8. Păun G (1998/2000) Computing with membranes. J Comput Syst Sci 61(1):108143. (and Turku Center for Computer ScienceReport – TUCS 208, Nov (1998) http://www.tucs.fi)
  9. Paun G (2002) Membrane computing. An introduction. Springer, BerlinCrossRefzbMATHGoogle Scholar
  10. Păun A, Păun G (2007) Small universal spiking neural P systems. Biosystems 90(1):48–60CrossRefzbMATHGoogle Scholar

Books and Reviews

  1. Alhazov A, Freund R, Rogozhin Y (2006) Computational power of symport/antiport: history, advances, and open problems. In: Freund R et al. (eds) Springer, Berlin, pp 4478Google Scholar
  2. Bernardini F, Gheorghe M (2004) Population P systems. J Univers Comput Sci 10(5):509–539MathSciNetGoogle Scholar
  3. Calude CS, Paun G, Rozenberg G, Salomaa A (eds) (2001) Multiset processing. Mathematical, computer science, and molecular computing points of view, vol 2235, LNCS. Springer, BerlinzbMATHGoogle Scholar
  4. Cardelli L, Paun G (2006) An universality result for a (mem)brane calculus based on mate/drip operations. Int J Found Comput Sci 17(1):49–68MathSciNetCrossRefzbMATHGoogle Scholar
  5. Ciobanu G, Pan L, Paun G, Perez-Jimenez MJ (2007) P systems with minimal parallelism. Theor Comput Sci 378(1):117–130MathSciNetCrossRefzbMATHGoogle Scholar
  6. Csuhaj-Varju E (2005) P automata. Models, results, and research topics. In: Mauri G et al. (eds) Springer, Berlin, pp 111Google Scholar
  7. Freund R, Kari L, Oswald M, Sosik P (2005) Computationally universal P systems without priorities: two catalysts are sufficient. Theor Comput Sci 330(2):251–266MathSciNetCrossRefzbMATHGoogle Scholar
  8. Freund R, Păun G, Rozenberg G, Salomaa A (eds) (2006) Membrane computing. In: 6th International Workshop, WMC6, Vienna, Austria, July 2005, Revised, Selected, and Invited Papers. LNCS, vol 3859. Springer, BerlinGoogle Scholar
  9. Gutiérrez-Naranjo MA, Păun G, Pérez-Jiménez MJ (eds) (2005) Cellular computing. Complexity aspects. Fenix Editora, SevillaGoogle Scholar
  10. Hoogeboom HJ, Păun G, Rozenberg G, Salomaa A (eds) (2006) Membrane computing. In: International Workshop, WMC7, Leiden, The Netherlands, 2006, Revised, Selected, and Invited Papers. LNCS, vol 4361. Springer, BerlinGoogle Scholar
  11. Huang L, Wang N (2006) An optimization algorithms inspired by membrane computing. In: Jiao L et al (eds) Proc. ICNC (2006), vol 4222, LNCS. Springer, Berlin, pp 49–55Google Scholar
  12. Jonoska N, Margenstern M (2004) Tree operations in P systems and X-calculus. Fundam Informaticae 59(1):67–90MathSciNetzbMATHGoogle Scholar
  13. Kleijn J, Koutny M (2006) Synchrony and asynchrony in membrane systems. In: Hoogeboom HJ et al. (eds) Springer, Berlin, pp 6685Google Scholar
  14. Leporati A, Mauri G, Zandron C (2006) Quantum sequential P systems with unit rules and energy assigned to membranes. In: Freund R et al. (eds) Springer, Berlin, pp 310325Google Scholar
  15. Manca V (2006) MP systems approaches to biochemical dynamics: biological rhythms and oscillations. In: Hoogeboom HJ et al. (eds) Springer, Berlin, pp 8699Google Scholar
  16. Martin-Vide C, Mauri G, Paun G, Rozenberg G, Salomaa A (eds) (2004) Membrane computing. In: International workshop, WMC2003, Tarragona, Revised papers LNCS, vol 2933. Springer, BerlinGoogle Scholar
  17. Mauri G, Paun G, Perez-Jimenez MJ, Rozenberg G, Salomaa A (eds) (2005) Membrane Computing. In: International workshop, WMC5, Milano, 2004, Selected papers. LNCS, vol 3365. Springer, BerlinGoogle Scholar
  18. Paun G (2001) P systems with active membranes: attacking NP-complete problems. J Autom Lang Comb 6(1):75–90MathSciNetzbMATHGoogle Scholar
  19. Păun A, Păun G (2002) The power of communication. P systems with symport/antiport. New Gener Comput 20(3):295–306CrossRefzbMATHGoogle Scholar
  20. Păun G, Păun R (2005) Membrane computing as a framework for modeling economic processes. In: Proceedings of conference SYNASC, Timisoara. Press IEEE, pp 1118Google Scholar
  21. Păun G, Rozenberg G (2002) A guide to membrane computing. Theor Comput Sci 287(1):73–100MathSciNetCrossRefzbMATHGoogle Scholar
  22. Păun G, Rozenberg G, Salomaa A, Zandron C (eds) (2003) Membrane computing. International workshop, WMC 2002, Curtea de Argeş, Romania, August 2002. Revised papers. LNCS, vol 2597. Springer, BerlinGoogle Scholar
  23. Păun G, Pazos J, Pérez-Jiménez MJ, Rodriguez-Patón A (2005) Symport/antiport P systems with three objects are universal. Fundam Informaticae 64(1–4):353–367MathSciNetzbMATHGoogle Scholar
  24. Păun A, Perez-Jimenez MJ, Romero-Campero FJ (2006) Modeling signal transduction using P systems. In: Hoogeboom HJ et al. (eds) Springer, Berlin, pp 100122Google Scholar
  25. Păun G, Pérez-Jiménez MJ, Salomaa A (2007) Spiking neural P systems. An early survey. Int J Found Comput Sci 18:435–456MathSciNetCrossRefzbMATHGoogle Scholar
  26. Păun G, Rozenberg G, Salomaa A (eds) (2010) The oxford handbook of membrane computing. Oxford University Press, OxfordzbMATHGoogle Scholar
  27. Pérez-Jiménez MJ (2005) An approach to computational complexity in membrane computing. In: Mauri G et al. (eds) Springer, Berlin, pp 85109Google Scholar
  28. Pérez-Jiménez MJ, Romero-Jiménez A, Sancho-Caparrini F (2002) Teoria de la complejidad en modelos de computacion celular con membranas. Kronos Editorial, SevillaGoogle Scholar
  29. Sosik P, Rodriguez-Patón A (2007) Membrane computing and complexity theory: a characterization of international PSPACE. J Found Comput Sci 73(1):137–152zbMATHGoogle Scholar
  30. Zaharie D, Ciobanu G (2006) Distributed evolutionary algorithms inspired by membranes in solving continuous optimization problems. In: Hoogeboom HJ et al. (eds) Springer, Berlin, pp 536554Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Mathematics of the Romanian AcademyBucureştiRomania