Skip to main content

Mechanical Systems: Symmetries and Reduction

  • Living reference work entry
  • First Online:
Encyclopedia of Complexity and Systems Science

Glossary

Coadjoint orbit:

The orbit of an element of the dual of the Lie algebra under the natural action of the group.

Cotangent bundle:

A mechanical phase space that has a structure that distinguishes configurations and momenta. The momenta lie in the dual to the space of velocity vectors of configurations.

Equivariance:

Equivariance of a momentum map is a property that reflects the consistency of the mapping with a group action on its domain and range.

Free action:

An action that moves every point under any nontrivial group element.

KKS (Kostant-Kirillov-Souriau) form:

The natural symplectic form on coadjoint orbits.

Lie group action:

A process by which a Lie group, acting as a symmetry, moves points in a space. When points in the space that are related by a group element are identified, one obtains the quotient space.

Magnetic terms:

These are expressions that are built out of the curvature of a connection. They are so named because terms of this form occur in the equations of a...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Abraham R, Marsden JE (2008) Foundations of mechanics, 2nd edn. AMS Chelsea Publ, Providence. Originally published in 1967; 2nd edition revised and enlarged with the assistance of Tudor Ratiu and Richard Cushman, 1978

    Google Scholar 

  • Abraham R, Marsden JE, Ratiu T (1988) Manifolds, tensor analysis and applications, Applied Mathematical Sciences, vol 75, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Alber MS, Luther GG, Marsden JE, Robbins JM (1998) Geometric phases, reduction and Lie-Poisson structure for the resonant three-wave interaction. Physica D 123:271–290

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Arms JM, Marsden JE, Moncrief V (1981) Symmetry and bifurcations of momentum mappings. Commun Math Phys 78:455–478

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Arms JM, Marsden JE, Moncrief V (1982) The structure of the space solutions of Einstein’s equations: II several killing fields and the Einstein-Yang-Mills equations. Ann Phys 144:81–106

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Arms JM, Cushman RH, Gotay M (1991) A universal reduction procedure for Hamiltonian group actions. In: Ratiu T (ed) The geometry of Hamiltonian systems, MSRI series, vol 22. Springer, New York, pp 33–52

    Chapter  Google Scholar 

  • Arnold VI (1966) Sur la géométrie differentielle des groupes de Lie de dimenson infinie et ses applications à l’hydrodynamique des fluids parfaits. Ann Inst Fourier Grenoble 16:319–361

    Article  MathSciNet  Google Scholar 

  • Arnold VI (1969) On an a priori estimate in the theory of hydrodynamical stability. Am Math Soc Trans 79:267–269

    Google Scholar 

  • Arnold VI (1989) Mathematical methods of classical mechanics, 1st edn 1978, 2nd edn 1989. Graduate texts in math, vol 60. Springer, New York

    Google Scholar 

  • Arnold VI, Koslov VV, Neishtadt AI (1988) Dynamical systems III. In: Encyclopedia of mathematics, vol 3. Springer, New York

    Google Scholar 

  • Atiyahf M, Bott R (1982) The Yang-Mills equations over Riemann surfaces. Phil Trans R Soc Lond A 308:523–615

    Article  ADS  MathSciNet  Google Scholar 

  • Bates L, Lerman E (1997) Proper group actions and symplectic stratified spaces. Pac J Math 181:201–229

    Article  MathSciNet  MATH  Google Scholar 

  • Bates L, Sniatycki J (1993) Nonholonomic reduction. Rep Math Phys 32:99–115

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Birtea P, Puta M, Ratiu TS, Tudoran R (2005) Symmetry breaking for toral actions in simple mechanical systems. J Diff Equat 216:282–323

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Blankenstein G, Van Der Schaft AJ (2001) Symmetry and reduction in implicit generalized Hamiltonian systems. Rep Math Phys 47:57–100

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Blaom AD (2000) Reconstruction phases via Poisson reduction. Diff Geom Appl 12:231–252

    Article  MathSciNet  MATH  Google Scholar 

  • Blaom AD (2001) A geometric setting for Hamiltonian perturbation theory. Mem Am Math Soc 153(727):xviii+112

    MathSciNet  MATH  Google Scholar 

  • Bloch AM (2003) Nonholonomic mechanics and control. In: Interdisciplinary applied mathematics – systems and control, vol 24. Springer, New York. With the collaboration of Baillieul J, Crouch P, Marsden J, with scientific input from Krishnaprasad PS, Murray RM, Zenkov D

    Google Scholar 

  • Bloch AM, Krishnaprasad PS, Marsden JE, Murray R (1996a) Nonholonomic mechanical systems with symmetry. Arch Ration Mech Anal 136:21–99

    Article  MathSciNet  MATH  Google Scholar 

  • Bloch AM, Krishnaprasad PS, Marsden JE, Ratiu T (1996b) The Euler-Poincaré equations and double bracket dissipation. Commun Math Phys 175:1–42

    Article  ADS  MATH  Google Scholar 

  • Bloch AM, Crouch P, Marsden JE, Ratiu T (2002) The symmetric representation of the rigid body equations and their discretization. Nonlinearity 15:1309–1341

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bobenko AI, Suris YB (1999) Discrete Lagrangian reduction, discrete Euler-Poincaré equations, and semidirect products. Lett Math Phys 49:79–93

    Article  MathSciNet  MATH  Google Scholar 

  • Bobenko AI, Reyman AG, Semenov-Tian-Shansky MA (1989) The Kowalewski top 99 years later: a Lax pair, generalizations and explicit solutions. Commun Math Phys 122:321–354

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bourbaki N (1998) Lie groups and lie algebras. In: Elements of mathematics. Springer, Berlin, Chap 1–3, No MR1728312, 2001g:17006. Translated from the French, Reprint of the 1989 English translation

    Google Scholar 

  • Bretherton FP (1970) A note on Hamilton’s principle for perfect fluids. J Fluid Mech 44:19–31

    Article  ADS  MATH  Google Scholar 

  • Cartan E (1922) Leçons sur les Invariants Intégraux, 1971st edn. Hermann, Paris

    MATH  Google Scholar 

  • Castrillón-López M, Marsden JE (2003) Some remarks on Lagrangian and Poisson reduction for field theories. J Geom Phys 48:52–83

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Castrillón-López M, Ratiu T (2003) Reduction in principal bundles: covariant Lagrange-Poincaré equations. Commun Math Phys 236:223–250

    Article  ADS  MATH  Google Scholar 

  • Castrillón-López M, Ratiu T, Shkoller S (2000) Reduction in principal fiber bundles: covariant Euler-Poincaré equations. Proc Am Math Soc 128:2155–2164

    Article  MATH  Google Scholar 

  • Castrillón-López M, Garcia Pérez PL, Ratiu TS (2001) Euler-Poincaré reduction on principal bundles. Lett Math Phys 58:167–180

    Article  MathSciNet  MATH  Google Scholar 

  • Cendra H, Marsden JE (1987) Lin constraints, Clebsch potentials and variational principles. Physica D 27:63–89

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Cendra H, Ibort A, Marsden JE (1987) Variational principal fiber bundles: a geometric theory of Clebsch potentials and Lin constraints. J Geom Phys 4:183–206

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Cendra H, Holm DD, Hoyle MJW, Marsden JE (1998a) The Maxwell-Vlasov equations in Euler-Poincaré form. J Math Phys 39:3138–3157

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Cendra H, Holm DD, Marsden JE, Ratiu T (1998b) Lagrangian reduction, the Euler-Poincaré equations and semidirect products. Am Math Soc Transl 186:1–25

    MATH  Google Scholar 

  • Cendra H, Marsden JE, Ratiu TS (2001a) Lagrangian reduction by stages. Mem Am Math Soc 722:1–108

    MathSciNet  MATH  Google Scholar 

  • Cendra H, Marsden JE, Ratiu T (2001b) Geometric mechanics, Lagrangian reduction and nonholonomic systems. In: Enquist B, Schmid W (eds) Mathematics unlimited-2001 and beyond. Springer, New York, pp 221–273

    Chapter  Google Scholar 

  • Cendra H, Marsden JE, Pekarsky S, Ratiu TS (2003) Variational principles for Lie-Poisson and Hamilton-Poincaré equations. Moscow Math J 3:833–867

    MathSciNet  MATH  Google Scholar 

  • Chang D, Bloch AM, Leonard N, Marsden JE, Woolsey C (2002) The equivalence of controlled Lagrangian and controlled Hamiltonian systems. Control Calc Var. (special issue) 8:393–422

    MathSciNet  MATH  Google Scholar 

  • Chernoff PR, Marsden JE (1974) Properties of infinite dimensional Hamiltonian systems, Lecture Notes in Mathematics, vol 425. Springer, New York

    MATH  Google Scholar 

  • Chetayev NG (1941) On the equations of Poincaré. J Appl Math Mech 5:253–262

    MathSciNet  Google Scholar 

  • Chossat P, Ortega JP, Ratiu T (2002) Hamiltonian Hopf bifurcation with symmetry. Arch Ration Mech Anal 163(1–33; 167):83–84

    MathSciNet  MATH  Google Scholar 

  • Chossat P, Lewis D, Ortega JP, Ratiu T (2003) Bifurcation of relative equilibria in mechanical systems with symmetry. Adv Appl Math 31:10–45

    Article  MathSciNet  MATH  Google Scholar 

  • Condevaux M, Dazord P, Molino P (1988) Geometrie du moment. Seminaire Sud-Rhodanien, Lyon

    Google Scholar 

  • Cushman R, Bates L (1997) Global aspects of classical integrable systems. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  • Cushman R, Rod D (1982) Reduction of the semi-simple 1:1 resonance. Physica D 6:105–112

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Cushman R, Śniatycki J (1999) Hamiltonian mechanics on principal bundles. C R Math Acad Sci Soc R Can 21:60–64

    MathSciNet  MATH  Google Scholar 

  • Cushman R, Śniatycki J (2002) Nonholonomic reduction for free and proper actions. Regular Chaotic Dyn 7:61–72

    Article  MathSciNet  MATH  Google Scholar 

  • Duistermaat J, Kolk J (1999) Lie groups. Springer, New York

    MATH  Google Scholar 

  • Ebin DG, Marsden JE (1970) Groups of diffeomorphisms and the motion of an incompressible fluid. Ann Math 92:102–163

    Article  MathSciNet  MATH  Google Scholar 

  • Feynman R, Hibbs AR (1965) Quantum mechanics and path integrals. McGraw-Hill, Murray Hill

    MATH  Google Scholar 

  • Fischer AE, Marsden JE, Moncrief V (1980) The structure of the space of solutions of Einstein’s equations, I: one killing field. Ann Inst Henri Poincaré 33:147–194

    MathSciNet  MATH  Google Scholar 

  • Golubitsky M, Stewart I, Schaeffer D (1988) Singularities and groups in bifurcation theory, vol 2, Applied mathematical sciences, vol 69. Springer, New York

    Book  MATH  Google Scholar 

  • Grabsi F, Montaldi J, Ortega JP (2004) Bifurcation and forced symmetry breaking in Hamiltonian systems. C R Acad Sci Paris Sér I Math 338:565–570

    Article  MathSciNet  MATH  Google Scholar 

  • Guichardet A (1984) On rotation and vibration motions of molecules. Ann Inst Henri Poincaré 40:329–342

    MathSciNet  MATH  Google Scholar 

  • Guillemin V, Sternberg S (1978) On the equations of motions of a classic particle in a Yang-Mills field and the principle of general covariance. Hadronic J 1:1–32

    MathSciNet  MATH  Google Scholar 

  • Guillemin V, Sternberg S (1980) The moment map and collective motion. Ann Phys 1278:220–253

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Guillemin V, Sternberg S (1984) Symplectic techniques in physics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Hamel G (1904) Die Lagrange-Eulerschen Gleichungen der Mechanik. Z Math Phys 50:1–57

    MATH  Google Scholar 

  • Hamel G (1949) Theoretische Mechanik. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Hernandez A, Marsden JE (2005) Regularization of the amended potential and the bifurcation of relative equilibria. J Nonlinear Sci 15:93–132

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Holm DD, Marsden JE, Ratiu T, Weinstein A (1985) Nonlinear stability of fluid and plasma equilibria. Phys Rep 123:1–196

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Holm DD, Marsden JE, Ratiu T (1998) The Euler-Poincaré equations and semidirect products with applications to continuum theories. Adv Math 137:1–81

    Article  MathSciNet  MATH  Google Scholar 

  • Holm DD, Marsden JE, Ratiu T (2002) The Euler-Poincaré equations in geophysical fluid dynamics. In: Norbury J, Roulstone I (eds) Large-scale atmosphere-ocean dynamics II: geometric methods and models. Cambridge University Press, Cambridge, pp 251–300

    Google Scholar 

  • Hopf H (1931) Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche. Math Ann 104:38–63

    Article  MATH  Google Scholar 

  • Huebschmann J (1998) Smooth structures on certain moduli spaces for bundles on a surface. J Pure Appl Algebra 126:183–221

    Article  MathSciNet  MATH  Google Scholar 

  • Iwai T (1987) A geometric setting for classical molecular dynamics. Ann Inst Henri Poincaré Phys Theor 47:199–219

    MathSciNet  MATH  Google Scholar 

  • Iwai T (1990) On the Guichardet/Berry connection. Phys Lett A 149:341–344

    Article  ADS  MathSciNet  Google Scholar 

  • Jalnapurkar S, Marsden J (2000) Reduction of Hamilton’s variational principle. Dyn Stab Syst 15:287–318

    Article  MathSciNet  MATH  Google Scholar 

  • Jalnapurkar S, Leok M, Marsden JE, West M (2006) Discrete Routh reduction. J Phys A Math Gen 39:5521–5544

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kane C, Marsden JE, Ortiz M, West M (2000) Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. Int J Numer Math Eng 49:1295–1325

    Article  MathSciNet  MATH  Google Scholar 

  • Kanso E, Marsden JE, Rowley CW, Melli-Huber J (2005) Locomotion of articulated bodies in a perfect fluid. J Nonlinear Sci 15:255–289

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kazhdan D, Kostant B, Sternberg S (1978) Hamiltonian group actions and dynamical systems of Calogero type. Commun Pure Appl Math 31:481–508

    Article  MathSciNet  MATH  Google Scholar 

  • Kirk V, Marsden JE, Silber M (1996) Branches of stable three-tori using Hamiltonian methods in Hopf bifurcation on a rhombic lattice. Dyn Stab Syst 11:267–302

    Article  MathSciNet  MATH  Google Scholar 

  • Kobayashi S, Nomizu K (1963) Foundations of differential geometry. Wiley, New York

    MATH  Google Scholar 

  • Koiller J (1992) Reduction of some classical nonholonomic systems with symmetry. Arch Ration Mech Anal 118:113–148

    Article  MathSciNet  MATH  Google Scholar 

  • Koon WS, Marsden JE (1997) Optimal control for holonomic and nonholonomic mechanical systems with symmetry and Lagrangian reduction. SIAM J Control Optim 35:901–929

    Article  MathSciNet  MATH  Google Scholar 

  • Koon WS, Marsden JE (1998) The Poisson reduction of nonholonomic mechanical systems. Rep Math Phys 42:101–134

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kostant B (1966) Orbits, symplectic structures and representation theory. In: Proc US-Japan Seminar on Diff Geom, vol 77. Nippon Hyronsha, Kyoto

    Google Scholar 

  • Kummer M (1981) On the construction of the reduced phase space of a Hamiltonian system with symmetry. Indiana Univ Math J 30:281–291

    Article  MathSciNet  MATH  Google Scholar 

  • Kummer M (1990) On resonant classical Hamiltonians with n frequencies. J Diff Equat 83:220–243

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lagrange JL (1788) Mécanique Analytique. Chez la Veuve Desaint, Paris

    Google Scholar 

  • Landsman NP (1995) Rieffel induction as generalized quantum Marsden-Weinstein reduction. J Geom Phys 15:285–319. Erratum: J Geom Phys 17:298

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Landsman NP (1998) Mathematical topics between classical and quantum mechanics. J Geom Phys 17:298

    Article  ADS  Google Scholar 

  • Lerman E, Singer SF (1998) Stability and persistence of relative equilibria at singular values of the moment map. Nonlinearity 11:1637–1649

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lerman E, Tokieda T (1999) On relative normal modes. C R Acad Sci Paris Sér I Math 328:413–418

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lerman E, Montgomery R, Jamaar RS (1993) Examples of singular reduction. In: Symplectic Geometry. London Math Soc Lecture Note Ser, vol 192. Cambridge University Press, Cambridge, pp 127–155

    Google Scholar 

  • Lew A, Marsden JE, Ortiz M, West M (2004) Variational time integration for mechanical systems. Int J Numer Methods Eng 60:153–212

    Article  MATH  Google Scholar 

  • Lewis D, Marsden JE, Montgomery R, Ratiu T (1986) The Hamiltonian structure for dynamic free boundary problems. Physica D 18:391–404

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Libermann P, Marle CM (1987) Symplectic geometry and analytical mechanics. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  • Lie S (1890) Theorie der transformationsgruppen. Zweiter Abschnitt, Teubner

    MATH  Google Scholar 

  • Marle CM (1976) Symplectic manifolds, dynamical groups and Hamiltonian mechanics. In: Cahen M, Flato M (eds) Differential geometry and relativity. Reidel, Boston, pp 249–269

    Chapter  Google Scholar 

  • Marsden JE (1981) Lectures on geometric methods in mathematical physics. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Marsden JE (1992) Lectures on mechanics, London Mathematical Society Lecture Notes Series, vol 174. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Marsden JE, Hughes TJR (1983) Mathematical foundations of elasticity. Prentice Hall, Englewood Cliffs. Reprinted 1994 by Dover

    MATH  Google Scholar 

  • Marsden JE, Ostrowski J (1996) Symmetries in motion: geometric foundations of motion control. Nonlinear Sci Today. http://link.springer-ny.com

  • Marsden JE, Perlmutter M (2000) The orbit bundle picture of cotangent bundle reduction. C R Math Acad Sci Soc R Can 22:33–54

    MathSciNet  MATH  Google Scholar 

  • Marsden JE, Ratiu T (1986) Reduction of Poisson manifolds. Lett Math Phys 11:161–170

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Marsden JE, Ratiu T (1994) Introduction to mechanics and symmetry. Texts in applied mathematics, vol 17. (1999), 2nd edn. Springer, New York

    Google Scholar 

  • Marsden JE, Scheurle J (1993a) Lagrangian reduction and the double spherical pendulum. ZAMP 44:17–43

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Marsden JE, Scheurle J (1993b) The reduced Euler-Lagrange equations. Fields Inst Commun 1:139–164

    MathSciNet  MATH  Google Scholar 

  • Marsden JE, Weinstein A (1974) Reduction of symplectic manifolds with symmetry. Rep Math Phys 5:121–130

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Marsden JE, Weinstein A (1982) The Hamiltonian structure of the Maxwell-Vlasov equations. Physica D 4:394–406

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Marsden JE, Weinstein A (1983) Coadjoint orbits, vortices and Clebsch variables for incompressible fluids. Physica D 7:305–323

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Marsden JE, West M (2001) Discrete mechanics and variational integrators. Acta Numer 10:357–514

    Article  MathSciNet  MATH  Google Scholar 

  • Marsden J, Weinstein A, Ratiu T, Schmid R, Spencer R (1982) Hamiltonian systems with symmetry, coadjoint orbits and plasma physics. In: Proceedings of IUTAM-IS1MM symposium on modern developments in analytical mechanics, Torino, vol 117. Atti della Acad della Sc di Torino, pp 289–340

    Google Scholar 

  • Marsden JE, Ratiu T, Weinstein A (1984a) Semi-direct products and reduction in mechanics. Trans Am Math Soc 281:147–177

    Article  MATH  Google Scholar 

  • Marsden JE, Ratiu T, Weinstein A (1984b) Reduction and Hamiltonian structures on duals of semidirect product Lie algebras. Contemp Math 28:55–100

    Article  MathSciNet  MATH  Google Scholar 

  • Marsden JE, Montgomery R, Morrison PJ, Thompson WB (1986) Covariant Poisson brackets for classical fields. Ann Phys 169:29–48

    Article  ADS  MathSciNet  Google Scholar 

  • Marsden JE, Montgomery R, Ratiu T (1990) Reduction, symmetry and phases in mechanics, Memoirs of the AMS, vol 436. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Marsden J, Misiolek G, Perlmutter M, Ratiu T (1998a) Symplectic reduction for semidirect products and central extensions. Differ Geom Appl 9:173–212

    Article  MathSciNet  MATH  Google Scholar 

  • Marsden JE, Patrick GW, Shkoller S (1998b) Multisymplectic geometry, variational integrators and nonlinear PDEs. Commun Math Phys 199:351–395

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Marsden JE, Pekarsky S, Shkoller S (1999) Discrete Euler-Poincaré and Lie-Poisson equations. Nonlinearity 12:1647–1662

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Marsden JE, Ratiu T, Scheurle J (2000) Reduction theory and the Lagrange-Routh equations. J Math Phys 41:3379–3429

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Marsden J, Ek GM, Ortega JP, Perlmutter M, Ratiu T (2007) Hamiltonian reduction by stages, Springer Lecture Notes in Mathematics, vol 1913. Springer, Heidelberg

    MATH  Google Scholar 

  • Martin JL (1959) Generalized classical dynamics and the “classical analogue” of a Fermi oscillation. Proc Roy Soc A 251:536

    Article  ADS  MATH  Google Scholar 

  • Mcduff D, Salamon D (1995) Introduction to symplectic topology. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Meyer KR (1973) Symmetries and integrals in mechanics. In: Peixoto M (ed) Dynamical systems. Academic, New York, pp 259–273

    Chapter  Google Scholar 

  • Mielke A (1991) Hamiltonian and lagrangian flows on center manifolds, with applications to elliptic variational problems, Lecture notes in mathematics, vol 1489. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Mikami K, Weinstein A (1988) Moments and reduction for symplectic groupoid actions. Publ RIMS Kyoto Univ 24:121–140

    Article  MATH  Google Scholar 

  • Montgomery R (1984) Canonical formulations of a particle in a Yang-Mills field. Lett Math Phys 8:59–67

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Montgomery R (1986) The bundle picture in mechanics. PhD thesis, University of California Berkeley

    Google Scholar 

  • Montgomery R (1988) The connection whose holonomy is the classical adiabatic angles of Hannay and Berry and its generalization to the non-integrable case. Commun Math Phys 120:269–294

    Article  ADS  MATH  Google Scholar 

  • Montgomery R (1990) Isoholonomic problems and some applications. Commun Math Phys 128:565–592

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Montgomery R (1991a) Optimal control of deformable bodies and its relation to gauge theory. In: Ratiu T (ed) The geometry of Hamiltonian systems. Springer, New York, pp 403–438

    Chapter  Google Scholar 

  • Montgomery R (1991b) How much does a rigid body rotate? A Berry’s phase from the 18th century. Am J Phys 59:394–398

    Article  ADS  MathSciNet  Google Scholar 

  • Montgomery R (1993) Gauge theory of the falling cat. Fields Inst Commun 1:193–218

    MathSciNet  MATH  Google Scholar 

  • Montgomery R, Marsden JE, Ratiu T (1984) Gauged Lie-Poisson structures. In: Fluids and plasmas: geometry and dynamics. Boulder, 1983. American Mathematical Society, Providence, pp 101–114

    Google Scholar 

  • Morrison PJ, Greene JM (1980) Noncanonical Hamiltonian density formulation of hydrodynamics and ideal magnetohydrodynamics. Phys Rev Lett 45:790–794. (1982) errata 48:569

    Article  ADS  MathSciNet  Google Scholar 

  • Nambu Y (1973) Generalized Hamiltonian dynamics. Phys Rev D 7:2405–2412

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ortega JP (1998) Symmetry, reduction, and stability in Hamiltonian systems. PhD thesis, University of California, Santa Cruz

    Google Scholar 

  • Ortega JP (2002) The symplectic reduced spaces of a Poisson action. C R Acad Sci Paris Sér I Math 334:999–1004

    Article  MathSciNet  MATH  Google Scholar 

  • Ortega JP (2003) Relative normal modes for nonlinear Hamiltonian systems. Proc Royal Soc Edinb Sect A 133:665–704

    Article  MathSciNet  MATH  Google Scholar 

  • Ortega JP, Planas-Bielsa V (2004) Dynamics on Leibniz manifolds. J Geom Phys 52:1–27

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ortega JP, Ratiu T (1997) Persistence and smoothness of critical relative elements in Hamiltonian systems with symmetry. C R Acad Sci Paris Sér I Math 325:1107–1111

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ortega JP, Ratiu T (1999a) Non-linear stability of singular relative periodic orbits in Hamiltonian systems with symmetry. J Geom Phys 32:160–188

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ortega JP, Ratiu T (1999b) Stability of Hamiltonian relative equilibria. Nonlinearity 12:693–720

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ortega JP, Ratiu T (2002) The optimal momentum map. In: Newton P, Holmes P, Weinstein A (eds) Geometry, mechanics and dynamics. Springer, New York, pp 329–362

    Chapter  Google Scholar 

  • Ortega JP, Ratiu T (2004a) Momentum maps and Hamiltonian reduction, Progress in mathematics, vol 222. Birkhäuser, Boston, p xxxiv+497

    Book  MATH  Google Scholar 

  • Ortega JP, Ratiu T (2004b) Relative equilibria near stable and unstable Hamiltonian relative equilibria. Proc Royal Soc Lond Ser A 460:1407–1431

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ortega JP, Ratiu T (2006a) The reduced spaces of a symplectic Lie group action. Ann Glob Anal Geom 30:335–381

    Article  MathSciNet  MATH  Google Scholar 

  • Ortega JP, Ratiu T (2006b) The stratified spaces of a symplectic Lie group action. Rep Math Phys 58:51–75

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ortega JP, Ratiu T (2006c) Symmetry and symplectic reduction. In: Françoise JP, Naber G, Tsun TS (eds) Encyclopedia of mathematical physics. Elsevier, New York, pp 190–198

    Chapter  Google Scholar 

  • Otto M (1987) A reduction scheme for phase spaces with almost Kähler symmetry. Regularity results for momentum level sets. J Geom Phys 4:101–118

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Palais RS (1957) A global formulation of the Lie theory of transformation groups, Mem Am Math Soc, vol 22. American Mathematical Society, Providence, p iii+123

    MATH  Google Scholar 

  • Patrick G (1992) Relative equilibria in Hamiltonian systems: the dynamic interpretation of nonlinear stability on a reduced phase space. J Geom Phys 9:111–119

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Patrick G, Roberts M, Wulff C (2004) Stability of Poisson equilibria and Hamiltonian relative equilibria by energy methods. Arch Ration Mech Anal 174:301–344

    Article  MathSciNet  MATH  Google Scholar 

  • Pauli W (1953) On the Hamiltonian structure of non-local field theories. Il Nuovo Cim X:648–667

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Pedroni M (1995) Equivalence of the Drinfelćd-Sokolov reduction to a bi-Hamiltonian reduction. Lett Math Phys 35:291–302

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Perlmutter M, Ratiu T (2005) Gauged Poisson structures. Preprint

    Google Scholar 

  • Perlmutter M, Rodríguez-Olmos M, Dias MS (2006) On the geometry of reduced cotangent bundles at zero momentum. J Geom Phys 57:571–596

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Perlmutter M, Rodríguez-Olmos M, Dias MS (2007) On the symplectic normal space for cotangent lifted actions. Differ Geom Appl 26:277–297

    Article  MathSciNet  MATH  Google Scholar 

  • Planas-Bielsa V (2004) Point reduction in almost symplectic manifolds. Rep Math Phys 54:295–308

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Poincaré H (1901) Sur une forme nouvelle des équations de la méchanique. C R Acad Sci 132:369–371

    MATH  Google Scholar 

  • Ratiu T (1980a) The Euler-Poisson equations and integrability. PhD thesis, University of California at Berkeley

    Google Scholar 

  • Ratiu T (1980b) Involution theorems. In: Kaiser G, Marsden J (eds) Geometric methods in mathematical physics, Lecture notes in mathematics, vol 775. Springer, Berlin, pp 219–257

    Chapter  Google Scholar 

  • Ratiu T (1980c) The motion of the free n-dimensional rigid body. Indiana Univ Math J 29:609–629

    Article  MathSciNet  MATH  Google Scholar 

  • Ratiu T (1981) Euler-Poisson equations on Lie algebras and the N-dimensional heavy rigid body. Proc Natl Acad Sci U S A 78:1327–1328

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ratiu T (1982) Euler-Poisson equations on Lie algebras and the N-dimensional heavy rigid body. Am J Math 104(409–448):1337

    MathSciNet  MATH  Google Scholar 

  • Roberts M, de Sousa DM (1997) Bifurcations from relative equilibria of Hamiltonian systems. Nonlinearity 10:1719–1738

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Roberts M, Wulff C, Lamb J (2002) Hamiltonian systems near relative equilibria. J Differ Equat 179:562–604

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Routh EJ (1860) Treatise on the dynamics of a system of rigid bodies. MacMillan, London

    Google Scholar 

  • Routh EJ (1877) Stability of a given state of motion. Halsted Press, New York. Reprinted (1975) In: Fuller AT (ed) Stability of Motion

    MATH  Google Scholar 

  • Routh EJ (1884) Advanced rigid dynamics. MacMillian, London

    Google Scholar 

  • Satake I (1956) On a generalization of the notion of manifold. Proc Nat Acad Sci USA 42:359–363

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Satzer WJ (1977) Canonical reduction of mechanical systems invariant under Abelian group actions with an application to celestial mechanics. Indiana Univ Math J 26:951–976

    Article  MathSciNet  MATH  Google Scholar 

  • Simo JC, Lewis DR, Marsden JE (1991) Stability of relative equilibria I: the reduced energy momentum method. Arch Ration Mech Anal 115:15–59

    Article  MathSciNet  MATH  Google Scholar 

  • Sjamaar R, Lerman E (1991) Stratified symplectic spaces and reduction. Ann Math 134:375–422

    Article  MathSciNet  MATH  Google Scholar 

  • Smale S (1970) Topology and mechanics. Invent Math 10:305–331. 11:45–64

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Souriau J (1966) Quantification géométrique. Commun Math Phys 1:374–398

    MathSciNet  MATH  Google Scholar 

  • Souriau JM (1970) Structure des Systemes Dynamiques. Dunod, Paris

    MATH  Google Scholar 

  • Sternberg S (1977) Minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang-Mills field. Proc Natl Acad Sci 74:5253–5254

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Sudarshan ECG, Mukunda N (1974) Classical mechanics: a modern perspective. Wiley, New York. (1983) 2nd edn. Krieber, Melbourne

    Google Scholar 

  • Tulczyjew WM, Urbański P (1999) A slow and careful Legendre transformation for singular Lagrangians. Acta Phys Pol B 30:2909–2978. The Infeld Centennial Meeting, Warsaw, 1998

    MathSciNet  MATH  Google Scholar 

  • Vanhaecke P (1996) Integrable systems in the realm of algebraic geometry, Lecture notes in mathematics, vol 1638. Springer, New York

    MATH  Google Scholar 

  • Weinstein A (1978) A universal phase space for particles in Yang-Mills fields. Lett Math Phys 2:417–420

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Weinstein A (1983) Sophus Lie and symplectic geometry. Expo Math 1:95–96

    MathSciNet  MATH  Google Scholar 

  • Weinstein A (1996) Lagrangian mechanics and groupoids. Fields Inst Commun 7:207–231

    MathSciNet  MATH  Google Scholar 

  • Wendlandt JM, Marsden JE (1997) Mechanical integrators derived from a discrete variational principle. Physica D 106:223–246

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Whittaker E (1937) A treatise on the analytical dynamics of particles and rigid bodies, 4th edn. Cambridge University Press, Cambridge. (1904) 1st edn. (1937) 5th edn. (1944) Reprinted by Dover and (1988) 4th edn, Cambridge University Press

    Google Scholar 

  • Wulff C (2003) Persistence of relative equilibria in Hamiltonian systems with non-compact symmetry. Nonlinearity 16:67–91

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wulff C, Roberts M (2002) Hamiltonian systems near relative periodic orbits. SIAM J Appl Dyn Syst 1:1–43

    Article  MathSciNet  MATH  Google Scholar 

  • Zaalani N (1999) Phase space reduction and Poisson structure. J Math Phys 40:3431–3438

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work summarizes the contributions of many people. We are especially grateful to Alan Weinstein, Victor Guillemin and Shlomo Sternberg for their incredible insights and work over the last few decades. We also thank Hernán Cendra and Darryl Holm, our collaborators on the Lagrangian context and Juan-Pablo Ortega, a longtime collaborator on Hamiltonian reduction and other projects; he along with Gerard Misiolek and Matt Perlmutter were our collaborators on Marsden et al. (2007), a key recent project that helped us pull many things together. We also thank many other colleagues for their input and invaluable support over the years; this includes Larry Bates, Tony Bloch, Marco Castrillón-López, Richard Cushman, Laszlo Fehér, Mark Gotay, John Harnad, Eva Kanso, Thomas Kappeler, P.S. Krishnaprasad, Naomi Leonard, Debra Lewis, James Montaldi, George Patrick, Mark Roberts, Miguel Rodríguez-Olmos, Steve Shkoller, Jȩdrzej Śniatycki, Leon Takhtajan, Karen Vogtmann, and Claudia Wulff.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix: Principal Connections

Appendix: Principal Connections

In preparation for the next section which gives a brief exposition of the cotangent bundle reduction theorem, we now give a review and summary of facts that we shall need about principal connections. An important thing to keep in mind is that the magnetic terms in the cotangent bundle reduction theorem will appear as the curvature of a connection.

Principal Connections Defined

We consider the following basic set up. Let Q be a manifold and let G be a Lie group acting freely and properly on the left on Q. Let

$$ {\pi}_{Q,G}:Q\to Q/G $$

denote the bundle projection from the configuration manifold Q to shape space S = Q/G. We refer to π Q , G  : QQ/Gas a principal bundle.

One can alternatively use right actions, which is common in the principal bundle literature, but we shall stick with the case of left actions for the main exposition.

Vectors that are infinitesimal generators, namely those of the form ξ Q (q) are called vertical since they are sent to zero by the tangent of the projection map π Q,G .

Definition 1

A connection, also called a principal connection on the bundle π Q , G  : QQ/G, is a Lie algebra valued 1-form

$$ \mathcal{A}:\mathrm{TQ}\to \mathfrak{g} $$

where \( \mathfrak{g} \) denotes the Lie algebra of G, with the following properties:

  1. 1.

    the identity \( \mathcal{A} \)(ξ Q (q)) = ξ holds for all ξ\( \mathfrak{g} \); that is, \( \mathcal{A} \) takes infinitesimal generators of a given Lie algebra element to that same element, and

  2. 2.

    we have equivariance: \( \mathcal{A}\left({T}_q{\Phi}_g(v)\right)={\mathrm{Ad}}_g\left(\mathcal{A}(v)\right) \)

for all vT q Q, where Φ g : QQ denotes the given action for gG and where \( {\mathrm{Ad}}_g \) denotes the adjoint action of G on \( \mathfrak{g} \).

A remark is noteworthy at this point. The equivariance identity for infinitesimal generators noted previously (see Eq. 7), namely,

$$ {T}_q{\Phi}_{\mathfrak{g}}\left({\xi}_Q(q)\right)={\left({\mathrm{Ad}}_{\mathfrak{g}}\xi \right)}_Q\left(\mathfrak{g}\cdot q\right) $$

shows that if the first condition for a connection holds, then the second condition holds automatically on vertical vectors.

If the G-action on Q is a right action, the equivariance condition (ii) in Definition 1 needs to be changed to \( \mathcal{A}\left({T}_q{\Phi}_g(v)\right)={\mathrm{Ad}}_{g^{-1}}\left(\mathcal{A}(v)\right) \) for all g ∈ G and vT q Q.

Associated One-Forms

Since \( \mathcal{A} \) is a Lie algebra valued 1-form, for each qQ, we get a linear map \( \mathcal{A} \)(q): T q Q\( \mathfrak{g} \) and so we can form its dual \( \mathcal{A}{(q)}^{\ast }:{\mathfrak{g}}^{\ast}\to {T}_q^{\ast }Q \). Evaluating this on μ produces an ordinary 1-form:

$$ {\alpha}_{\mu }(q)=\mathcal{A}{(q)}^{\ast}\left(\mu \right). $$
(24)

This 1-form satisfies two important properties given in the next Proposition.

Proposition 5

For any connection \( \mathcal{A} \) and μ\( {\mathfrak{g}}^{\ast } \), the corresponding 1-form α μ defined by Eq. 24 takes values in J −1(μ) and satisfies the following G-equivariance property:

$$ {\Phi}_g^{\ast }{\alpha}_{\mu }={\alpha}_{{\mathrm{Ad}}_g^{\ast}\mu }. $$

Notice in particular, if the group is Abelian or if μ is G-invariant, (for example, if μ = 0), then α μ is an invariant 1-form.

Horizontal and Vertical Spaces

Associated with any connection are vertical and horizontal spaces defined as follows.

Definition 3

Given the connection \( \mathcal{A} \), its horizontal space at qQ is defined by

$$ {H}_q=\left\{{v}_q\in {T}_qQ|\mathcal{A}\left({v}_q\right)=0\right\} $$

and the vertical space at qQ is, as above,

$$ {V}_q=\left\{{\xi}_Q(q)|\xi \in \mathfrak{g}\right\}. $$

The map

$$ {v}_q\mapsto {\mathrm{ver}}_q\left({v}_q\right):= {\left[\mathcal{A}(q)\left({v}_q\right)\right]}_Q(q) $$

is called the vertical projection, while the map

$$ {v}_q\mapsto {\mathrm{hor}}_q\left({v}_q\right):= {v}_q-{\mathrm{ver}}_q\left({v}_q\right) $$

is called the horizontal projection.

Because connections map infinitesimal generators of a Lie algebra elements to that same Lie algebra element, the vertical projection is indeed a projection for each fixed q onto the vertical space and likewise with the horizontal projection.

By construction, we have

$$ {v}_q={\mathrm{ver}}_q\left({v}_q\right)+{\mathrm{hor}}_q\left({v}_q\right) $$

and so

$$ {T}_qQ={H}_q\oplus {V}_q $$

and the maps hor q and ver q are projections onto these subspaces.

It is sometimes convenient to define a connection by the specification of a space H q declared to be the horizontal space that is complementary to V q at each point, varies smoothly with q and respects the group action in the sense thatH g ⋅ q  = T q Φ g (H q ). Clearly this alternative definition of a principal connection is equivalent to the definition given above.

Given a point qQ, the tangent of the projection map π Q,G restricted to the horizontal space H q gives an isomorphism between H q and T [q](Q/G). Its inverse \( {\left[{\left.{T}_q{\pi}_{Q,G}\right|}_{H_q}\right]}^{-1}:{T}_{\pi_{Q,G}(q)}\left(Q/G\right)\to {H}_q \) is called the horizontal lift to qQ.

The Mechanical Connection

As an example of defining a connection by the specification of a horizontal space, suppose that the configuration manifold Q is a Riemannian manifold. Of course, the Riemannian structure will often be that defined by the kinetic energy of a given mechanical system.

Thus, assume that Q is a Riemannian manifold, with metric denoted ≪ , ≫ and that G acts freely and properly on Q by isometries, so π Q,G : QQ/G is a principal G-bundle.

In this context we may define the horizontal space at a point simply to be the metric orthogonal to the vertical space. This therefore defines a connection called the mechanical connection.

Recall from the historical survey in the introduction that this connection was first introduced by Kummer (1981) following motivation from Smale (1970) and Abraham and Marsden (2008). See also Guichardet (1984), who applied these ideas in an interesting way to molecular dynamics. The number of references since then making use of the mechanical connection is too large to survey here.

In Proposition 7 we develop an explicit formula for the associated Lie algebra valued 1-form in terms of an inertia tensor and the momentum map. As a prelude to this formula, we show the following basic link with mechanics. In this context we write the momentum map on TQ simply as J: TQ\( {\mathfrak{g}}^{\ast } \).

Proposition 6

The horizontal space of the mechanical connection at a point qQ consists of the set of vectors v q  ∈ T q Q such that J(v q ) = 0.

For each qQ, define the locked inertia tensor 𝕀(q) to be the linear map \( \mathbb{I}(q):\mathfrak{g}\to {\mathfrak{g}}^{\ast } \) defined by

$$ \left\langle \mathbb{I}(q)\eta, \zeta \right\rangle =\left\langle \left\langle {\eta}_Q(q),{\zeta}_Q(q)\right\rangle \right\rangle $$
(25)

for any η, ζ\( \mathfrak{g} \). Since the action is free, 𝕀(q) is nondegenerate, so Eq. 25 defines an inner product. The terminology “locked inertia tensor” comes from the fact that for coupled rigid or elastic systems, 𝕀(q) is the classical moment of inertia tensor of the rigid body obtained by locking all the joints of the system. In coordinates,

$$ {I}_{ab}={g}_{ij}{K}_a^i{K}_b^j, $$
(26)

where \( {\left[{\xi}_Q(q)\right]}^i={K}_a^i(q){\xi}^a \) define the action functions \( {K}_a^i \).

Define the map \( \mathcal{A} \): TQ\( \mathfrak{g} \) which assigns to each v q  ∈ T q Q the corresponding angular velocity of the locked system:

$$ \mathcal{A}(q)\left({v}_q\right)=\mathbb{I}{(q)}^{-1}\left(\mathbf{J}\left({v}_q\right)\right), $$
(27)

where L is the kinetic energy Lagrangian. In coordinates,

$$ {\mathcal{A}}^a={I}^{ab}{g}_{ij}{K}_b^i{v}^j $$
(28)

since \( {J}_a\left(q,p\right)={p}_i{K}_a^i(q) \).

We defined the mechanical connection by declaring its horizontal space to be the metric orthogonal to the vertical space. The next proposition shows that \( \mathcal{A} \) is the associated connection one-form.

Proposition 7

The \( \mathfrak{g} \)-valued one-form defined by Eq. 27 is the mechanical connection on the principal G-bundle π Q,G : QQ/G.

Given a general connection \( \mathcal{A} \) and an element μ\( {\mathfrak{g}}^{\ast } \), we can define the μ-component of \( \mathcal{A} \) to be the ordinary one-form α μ given by

$$ {\displaystyle \begin{array}{l}\, {\alpha}_{\mu }(q)=\mathcal{A}{(q)}^{\ast}\mu \in {T}_q^{\ast }Q;\,\, \, \mathrm{i}.\mathrm{e}.,\, \left\langle {\alpha}_{\mu }(q),{v}_q\right\rangle \\ {}\quad =\left\langle \mu, \mathcal{A}(q)\left({v}_q\right)\right\rangle \end{array}} $$

for all v q  ∈ T q Q. Note that α μ is a G μ -invariant one-form. It takes values in J −1(μ) since for any ξ\( \mathfrak{g} \), we have

$$ {\displaystyle \begin{array}{l}\;\left\langle \mathbf{J}\left({\alpha}_{\mu }(q)\right),\xi \right\rangle =\left\langle {\alpha}_{\mu }(q),{\xi}_Q\right\rangle =\left\langle \mu, \mathcal{A}(q)\left({\xi}_Q(q)\right)\right\rangle \\ {}\qquad =\left\langle \mu, \xi \right\rangle .\end{array}} $$

In the Riemannian context, Smale (1970) constructed α μ by a minimization process. Let \( {\alpha}_q^{\sharp}\in {T}_qQ \) be the tangent vector that corresponds to \( {\alpha}_q\in {T}_q^{\ast }Q \) via the metric ≪, ≫ on Q.

Proposition 8

The 1-form \( {\alpha}_{\mu }(q)=\mathcal{A}{(q)}^{\ast}\mu \in {T}_q^{\ast }Q \) associated with the mechanical connection \( \mathcal{A} \) given by Eq. 27 is characterized by

$$ K\left({\alpha}_{\mu }(q)\right)=\inf \left\{K\left({\beta}_q\right)|{\beta}_q\in {\mathbf{J}}^{-1}\left(\mu \right)\cap {T}_q^{\ast }Q\right\}, $$
(28)

where \( K\left({\beta}_q\right)=\frac{1}{2}{\left\Vert {\beta}_q^{\sharp}\right\Vert}^2 \) is the kinetic energy function on T * Q. See Fig. 2.

Fig. 2
figure 2

The extremal characterization of the mechanical connection

The proof is a direct verification. We do not give here it since this proposition will not be used later in this book. The original approach of Smale (1970) was to take Eq. 28 as the definition of α μ . To prove from here that α μ is a smooth one-form is a nontrivial fact; see the proof in Smale (1970) or of Proposition 4.4.5 in Abraham and Marsden (2008). Thus, one of the merits of the previous proposition is to show easily that this variational definition of α μ does indeed yield a smooth one-form on Q with the desired properties. Note also that α μ (q) lies in the orthogonal space to \( {T}_q^{\ast }Q\cap {\mathbf{J}}^{-1}\left(\mu \right) \) in the fiber \( {T}_q^{\ast }Q \) relative to the bundle metric on T * Q defined by the Riemannian metric on Q. It also follows that α μ (q) is the unique critical point of the kinetic energy of the bundle metric on T * Q restricted to the fiber \( {T}_q^{\ast }Q\cap {\mathbf{J}}^{-1}\left(\mu \right) \).

Curvature

The curvature ℬ of a connection \( \mathcal{A} \) is defined as follows.

Definition 4

The curvature of a connection \( \mathcal{A} \) is the Lie algebra valued two-form on Q defined by

$$ \mathrm{\mathcal{B}}(q)\left({u}_q,{v}_q\right)=\mathbf{d}\mathcal{A}\left({\mathrm{hor}}_q\left({u}_q\right),{\mathrm{hor}}_q\left({v}_q\right)\right), $$
(29)

where d is the exterior derivative.

When one replaces vectors in the exterior derivative with their horizontal projections, then the result is called the exterior covariant derivative and one writes the preceding formula for ℬ as

$$ \mathrm{\mathcal{B}}={\mathbf{d}}^{\mathcal{A}}\mathcal{A}. $$

For a general Lie algebra valued k-form α on Q, the exterior covariant derivative is the k + 1-form d A α defined on tangent vectors v 0 , v 1 , … , v k  ∈ T q Q by

$$ {\displaystyle \begin{array}{l}\operatorname{}{\mathbf{d}}^{\mathcal{A}}\alpha \left({v}_0,{v}_1,\dots, {v}_k\right)\\ {}=\mathbf{d}\alpha \left({\mathrm{hor}}_q\left({v}_0\right),{\mathrm{hor}}_q\left({v}_1\right),\dots, {\mathrm{hor}}_q\left({v}_k\right)\right).\end{array}} $$
(30)

Here, the symbol \( {\mathbf{d}}^{\mathcal{A}} \) reminds us that it is like the exterior derivative but that it depends on the connection \( \mathcal{A} \). Curvature measures the lack of integrability of the horizontal distribution in the following sense.

Proposition 9

On two vector fields u, v on Q one has

$$ \mathrm{\mathcal{B}}\left(u,v\right)=-\mathcal{A}\left(\left[\mathrm{hor}(u),\mathrm{hor}(v)\right]\right). $$

Given a general distribution \( \mathcal{D} \)TQ on a manifold Q one can also define its curvature in an analogous way directly in terms of its lack of integrability. Define vertical vectors at qQ to be the quotient space \( {T}_qQ/{\mathcal{D}}_q \) and define the curvature acting on two horizontal vector fields u, v (that is, two vector fields that take their values in the distribution) to be the projection onto the quotient of their Jacobi-Lie bracket. One can check that this operation depends only on the point values of the vector fields, so indeed defines a two-form on horizontal vectors.

Cartan Structure Equations

We now derive an important formula for the curvature of a principal connection.

Theorem 8 (Cartan structure equations)

For any vector fields u, v on Q we have

$$ \mathrm{\mathcal{B}}\left(u,v\right)=\mathbf{d}\mathcal{A}\left(u,v\right)-\left[\mathcal{A}(u),\mathcal{A}(v)\right], $$
(31)

where the bracket on the right hand side is the Lie bracket in \( \mathfrak{g} \). We write this equation for short as

$$ \mathrm{\mathcal{B}}=\mathbf{d}\mathcal{A}-\left[\mathcal{A},\mathcal{A}\right]. $$

If the G-action on Q is a right action, then the Cartan Structure Equations read ℬ = d \( \mathcal{A} \) + [\( \mathcal{A} \), \( \mathcal{A} \)].

The following Corollary shows how the Cartan Structure Equations yield a fundamental equivariance property of the curvature.

Corollary 3

For all gG we have \( {\Phi}_g^{\ast}\mathrm{\mathcal{B}}={\mathrm{Ad}}_g\circ \mathrm{\mathcal{B}} \). If the G-action on Q is on the right, equivariance means \( {\varPhi}_g^{\ast}\mathrm{\mathcal{B}}={\mathrm{Ad}}_{g^{-1}}\circ \mathrm{\mathcal{B}} \).

Bianchi Identity

The Bianchi Identity, which states that the exterior covariant derivative of the curvature is zero, is another important consequence of the Cartan Structure Equations.

Corollary 4

If ℬ = \( {\mathbf{d}}^{\mathcal{A}} \) \( \mathcal{A} \) ∈ Ω2(Q; \( \mathfrak{g} \)) is the curvature two-form of the connection \( \mathcal{A} \), then the Bianchi Identity holds:

$$ {\mathbf{d}}^{\mathcal{A}}\mathrm{\mathcal{B}}=0. $$

This form of the Bianchi identity is implied by another version, namely

$$ \mathbf{d}\mathrm{\mathcal{B}}={\left[\mathrm{\mathcal{B}},\mathcal{A}\right]}^{\wedge }, $$

where the bracket on the right hand side is that of Lie algebra valued differential forms, a notion that we do not develop here; see the brief discussion at the end of §9.1 in Marsden and Ratiu (1994). The proof of the above form of the Bianchi identity can be found in, for example, Kobayashi and Nomizu (1963).

Curvature as a Two-Form on the Base

We now show how the curvature two-form drops to a two-form on the base with values in the adjoint bundle.

The associated bundle to the given left principal bundle π Q, G  : QQ/G via the adjoint action is called the adjoint bundle. It is defined in the following way. Consider the free proper action (g, (q, ξ)) ∈ G × (Q ×\( \mathfrak{g} \))↦(g · q, Ad g ξ)∈ Q ×\( \, \mathfrak{g} \) and form the quotient \( \tilde{\mathfrak{g}}:= Q{\times}_G\mathfrak{g}:= \left(Q\times \mathfrak{g}\right)/G \) which is easily verified to be a vector bundle \( {\pi}_{\tilde{\mathfrak{g}}}:\tilde{\mathfrak{g}}\to Q/G \), where \( {\pi}_{\tilde{\mathfrak{g}}}\left(g,\xi \right):= {\pi}_{Q,G}(q) \). This vector bundle has an additional structure: it is a Lie algebra bundle; that is, a vector bundle whose fibers are Lie algebras. In this case the bracket is defined pointwise:

$$ \left[{\pi}_{\tilde{\mathfrak{g}}}\left(g,\xi \right),{\pi}_{\tilde{\mathfrak{g}}}\left(g,\eta \right)\right]:= {\pi}_{\tilde{\mathfrak{g}}}\left(g,\left[\xi, \eta \right]\right) $$

for all gG and ξ, η\( \mathfrak{g} \). It is easy to check that this defines a Lie bracket on every fiber and that this operation is smooth as a function of π Q,G (q).

The curvature two-form ℬ ∈ Ω2(Q; \( \mathfrak{g} \)) (the vector space of \( \mathfrak{g} \)-valued two-forms on Q) naturally induces a two-form \( \overline{\mathrm{\mathcal{B}}} \) on the base Q/G with values in \( \tilde{\mathfrak{g}} \) by

$$ {\displaystyle \begin{array}{l}\overline{\mathrm{\mathcal{B}}}\left({\pi}_{Q,G}(q)\right)\left({T}_q{\pi}_{Q,G}(u),{T}_q{\pi}_{Q,G}(v)\right)\\ {}\operatorname{}:= {\pi}_{\tilde{\mathfrak{g}}}\left(q,\mathrm{\mathcal{B}}\left(u,v\right)\right)\end{array}} $$
(32)

for all qQ and u, vT q Q. One can check that \( \overline{\mathrm{\mathcal{B}}} \) is well defined.

Since Eq. 32 can be equivalently written as \( {\pi}_{Q,G}^{\ast}\overline{\mathrm{\mathcal{B}}}={\pi}_{\tilde{\mathfrak{g}}}\circ \left({\mathrm{id}}_Q\times \mathrm{\mathcal{B}}\right) \) and π Q,G is a surjective submersion, it follows that \( \overline{\mathrm{\mathcal{B}}} \) is indeed a smooth two-form on Q/G with values in \( \tilde{\mathfrak{g}} \).

Associated Two-Forms

Since ℬ is a \( \mathfrak{g} \)-valued two-form, in analogy with Eq. 24, for every μ\( {\mathfrak{g}}^{\ast } \) we can define the μ-component of ℬ, an ordinary two-form ℬ μ ∈ Ω2(Q) on Q, by

$$ {\mathrm{\mathcal{B}}}_{\mu }(q)\left({u}_q,{v}_q\right):= \left\langle \mu, \mathrm{\mathcal{B}}(q)\left({u}_q,{v}_q\right)\right\rangle $$
(33)

for all qQ and u q  , v q  ∈ T q Q.

The adjoint bundle valued curvature two-form \( \overline{\mathrm{\mathcal{B}}} \) induces an ordinary two-form on the base Q/G. To obtain it, we consider the dual \( {\tilde{\mathfrak{g}}}^{\ast } \) of the adjoint bundle. This is a vector bundle over Q/G which is the associated bundle relative to the coadjoint action of the structure group G of the principal (left) bundle π Q , G  : QQ/G on \( {\mathfrak{g}}^{\ast } \). This vector bundle has additional structure: each of its fibers is a Lie-Poisson space and the associated Poisson tensors on each fiber depend smoothly on the base, that is, \( {\pi}_{{\tilde{\mathfrak{g}}}^{\ast }}:{\tilde{\mathfrak{g}}}^{\ast}\to Q/G \) is a Lie-Poisson bundle over Q/G.

Given μ\( {\mathfrak{g}}^{\ast } \), define the ordinary two-form \( {\overline{\mathrm{\mathcal{B}}}}_{\mu } \) on Q/G by

$$ {\displaystyle \begin{array}{l}{\overline{\mathrm{\mathcal{B}}}}_{\mu}\left({\pi}_{Q,G}(q)\right)\left({T}_q{\pi}_{Q,G}\left({u}_q\right),{T}_q{\pi}_{Q,G}\left({v}_q\right)\right)\\ {}:= \left\langle {\pi}_{{\tilde{\mathfrak{g}}}^{\ast }}\left(q,\mu \right),\overline{\mathrm{\mathcal{B}}}\left({\pi}_{Q,G}(q)\right)\left({T}_q{\pi}_{Q,G}\left({u}_q\right),{T}_q{\pi}_{Q,G}\left({v}_q\right)\right)\right\rangle \\ {}=\left\langle \mu, \mathrm{\mathcal{B}}(q)\left({u}_q,{v}_q\right)\right\rangle ={\mathrm{\mathcal{B}}}_{\mu }(q)\left({u}_q,{v}_q\right),\end{array}} $$
(34)

where qQ, u q , v q T q Q, and in the second equality \( \left\langle, \right\rangle :{\tilde{\mathfrak{g}}}^{\ast}\times \tilde{\mathfrak{g}}\to \mathbb{R} \) is the duality pairing between the coadjoint and adjoint bundles. Since \( \overline{\mathrm{\mathcal{B}}} \) is well defined and smooth, so is \( {\overline{\mathrm{\mathcal{B}}}}_{\mu } \).

Proposition 10

Let \( \mathcal{A} \) ∈ Ω1(Q; \( \mathfrak{g} \)) be a connection one-form on the (left) principal bundle π Q , G  : QQ/G and ℬ ∈ Ω2(Q; \( \mathfrak{g} \)) its curvature two-form on Q. If μ\( {\mathfrak{g}}^{\ast } \), the corresponding two-forms ℬ μ ∈ Ω2(Q) and \( {\overline{\mathrm{\mathcal{B}}}}_{\mu}\in {\Omega}^2\left(Q/G\right) \) defined by Eqs. 33 and 34, respectively, are related by \( {\pi}_{Q,G}^{\ast }{\overline{\mathrm{\mathcal{B}}}}_{\mu }={\mathrm{\mathcal{B}}}_{\mu } \). In addition, ℬ μ satisfies the following G-equivariance property:

\( {\Phi}_g^{\ast }{\mathrm{\mathcal{B}}}_{\mu }={\mathrm{\mathcal{B}}}_{{\mathrm{Ad}}_g^{\ast}\mu }. \)

Thus, if G = G μ then \( \mathbf{d}{\alpha}_{\mu }={\mathrm{\mathcal{B}}}_{\mu }={\pi}_{Q,G}^{\ast }{\overline{\mathrm{\mathcal{B}}}}_{\mu } \), where α μ (q) = \( \mathcal{A} \)(q)*(μ).

Further relations between α μ and the μ-component of the curvature will be studied in the next section when discussing the magnetic terms appearing in cotangent bundle reduction.

The Maurer-Cartan Equations

A consequence of the structure equations relates curvature to the process of left and right trivialization and hence to momentum maps.

Theorem 9 (Maurer-Cartan equations)

Let G be a Lie group and let θ R: TG\( \mathfrak{g} \) be the map (called the right Maurer-Cartan form) that right translates vectors to the identity:

$$ {\theta}^R\left({v}_g\right)={T}_g{R}_{g^{-1}}\left({v}_g\right). $$

Then

$$ \mathbf{d}{\theta}^R-\left[{\theta}^R,{\theta}^R\right]=0. $$

There is a similar result for the left trivialization θL, namely the identity

$$ \mathbf{d}{\theta}^L+\left[{\theta}^L,{\theta}^L\right]=0. $$

Of course there is much more to this subject, such as the link with classical connection theory, Riemannian geometry, etc. We refer to Marsden et al. (2007) for further basic information and references and to Bloch (2003) for applications to nonholonomic systems, and to Cendra et al. Ratiu (2001a) for applications to Lagrangian reduction.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Marsden, J.E., Ratiu, T.S. (2017). Mechanical Systems: Symmetries and Reduction. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_326-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_326-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27737-5

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics