Encyclopedia of Complexity and Systems Science

Living Edition
| Editors: Robert A. Meyers

Mechanical Computing: The Computational Complexity of Physical Devices

  • John H. Reif
Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-3-642-27737-5_325-4


This chapter overviews a wide variety of mechanical devices used for computation. The history of mechanical computing devices is also overviewed. Also discussed are lower bounds on the computational resources required to simulate a mechanical system observing given physical laws.


Turing Machine Mechanical Device Billiard Ball Universal Turing Machine Polynomial Time Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Adamatzky AI (1996) On the particle-like waves in the discrete model of excitable medium. Neural Netw World 1:3–10Google Scholar
  2. Adamatzky AI (1998a) Universal dynamical computation in multidimensional excitable lattices. Int J Theory Phys 37:3069–3108MathSciNetzbMATHCrossRefGoogle Scholar
  3. Adamatzky AI (1998b) Chemical processor for computation of voronoi diagram. Adv Mater Opt Electron 6(4):191–196Google Scholar
  4. Adamatzky A (ed) (2001) Collision-based computing. Springer, LondonzbMATHGoogle Scholar
  5. Adamatzky A, De Lacy CB, Asai T (2005) Reaction-diffusion computers. Elsevier, New York. isbn:0444520422Google Scholar
  6. Adleman LM (1994) Molecular computation of solutions to combinatorial problems. Science 266(11):1021–1024ADSCrossRefGoogle Scholar
  7. Adleman L (1998) Computing with DNA. Sci Am 279(2):34–41CrossRefGoogle Scholar
  8. Babbage C (1822) On machinery for calculating and printing mathematical tables. Edinb Philos J. In: Jameson R, Brewster D (eds) vol VII. Archibald Constable, Edinburgh, pp 274–281Google Scholar
  9. Babbage C (1825) Observations on the application of machinery to the computation of mathematical tables. Phil Mag J LXV:311–314. London: Richard TaylorGoogle Scholar
  10. Babbage C (1826) On a method of expressing by signs the action of machinery. Philos Trans R Soc Lond 116(Part III):250–265CrossRefGoogle Scholar
  11. Bath J, Turberfield AJ (2007) DNA nanomachines. Nat Nanotechnol 2:275–284ADSCrossRefGoogle Scholar
  12. Benioff P (1982) Quantum mechanical models of Turing machines that dissipate no energy. Phys Rev Lett 48:1581ADSMathSciNetCrossRefGoogle Scholar
  13. Bennett CH (1973) Logical reversibility of computation. IBM J Res Dev 17(6):525–532MathSciNetzbMATHCrossRefGoogle Scholar
  14. Bennett CH (1982) The thermodynamics of computation – a review. Int J Theor Phys 21(12):905–940CrossRefGoogle Scholar
  15. Bennett CH (2003) Notes on Landauer’s principle, reversible computation, and Maxwell’s demon. Stud Hist Philos Mod Phys 34:501–510. eprint physics/0210005MathSciNetzbMATHCrossRefGoogle Scholar
  16. Berger R (1966) The undecidability of the domino problem. Mem Am Math Soc 66:1–72MathSciNetzbMATHGoogle Scholar
  17. Bernal JD (1964) The structure of liquids. Proc R Soc Lond Ser A 280:299ADSCrossRefGoogle Scholar
  18. Blum L, Cucker F, Shub M, Smale S (1996) Complexity and real computation: a manifesto. Int J Bifurc Chaos 6(1):3–26. World Scientific, SingaporeMathSciNetzbMATHCrossRefGoogle Scholar
  19. Boole G (1847) Mathematical analysis of logic: the mathematical analysis of logic: Being an essay towards a calculus of deductive reasoning, pamphletGoogle Scholar
  20. Boole G (1854) An investigation of the laws of thought, on which are founded the mathematical theories of logic and probabilities. Macmillan, LondonzbMATHCrossRefGoogle Scholar
  21. Bragg L, Lomer WM (1948) A dynamical model of a crystal structure II. Proc R Soc A 196:171–181ADSCrossRefGoogle Scholar
  22. Bragg L, Nye JF (1947) A dynamical model of a crystal structure. Proc R Soc A 190:474–481ADSCrossRefGoogle Scholar
  23. Bush V (1931) The differential analyzer: a new machine for solving differential equations. J Frankl Inst 212:447zbMATHCrossRefGoogle Scholar
  24. Canny J (1988) Some algebraic and geometric computations in PSPACE. In: Cole R (ed) Proceedings of the 20th annual ACM symposium on the theory of computing. ACM Press, Chicago, pp 460–467Google Scholar
  25. Canny J, Reif JH (1987) New lower bound techniques for robot motion planning problems. In: 28th annual IEEE symposium on foundations of computer science, Los Angeles, pp 49–60Google Scholar
  26. Canny J, Donald B, Reif JH, Xavier P (1988) On the complexity of kinodynamic planning. In: 29th annual IEEE symposium on foundations of computer science, White Plains, pp 306–316. Published as Kinodynamic motion planning J ACM 40(5): 1048–1066 (1993)Google Scholar
  27. Chandran H, Gopalkrishnan N, Reif J (2013) In: Mavroidis C, Ferreira A (eds) DNA nanoRobotics, chapter, nanorobotics: current approaches and techniques. Springer, New York, pp 355–382. ISBN 13 : 9781461421184, ISBN 10 : 1461421187Google Scholar
  28. Chase GC (1980) History of mechanical computing machinery. IEEE Ann Hist Comput 2(3):198–226MathSciNetzbMATHCrossRefGoogle Scholar
  29. Cohen IB, Welch GW (1999) Makin’ numbers: Howard Aiken and the computer. MIT Press, Cambridge, MAGoogle Scholar
  30. Corcoran SG, Colton RJ, Lilleodden ET, Gerberich WW (1997) Phys Rev B 190:474Google Scholar
  31. Crescenzi P, Papadimitriou CH (1995) Reversible simulation of space-bounded computations. Theor Comput Sci 143(1):159–165MathSciNetzbMATHCrossRefGoogle Scholar
  32. Danial R, Woo SS, Turicchia L, Sarpeshkar R (2011) Analog transistor models of bacterial genetic circuits. In: Proceedings of the 2011 I.E. biological circuits and systems (BioCAS) conference, San Diego, pp 333–336Google Scholar
  33. Daniel R, Rubens J, Sarpeshkar R, Lu T (2013) Synthetic analog computation in living cells. Nature. doi: 10.1038/nature12148 Google Scholar
  34. Davis M (2000) The universal computer: the road from Leibniz to Turing. Norton Press, NortonzbMATHGoogle Scholar
  35. Deutsch D (1985) Quantum theory, the church-Turing principle and the universal quantum computer. Proc R Soc Lond A400:97–117ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. Dolev S, Fitoussi H (2010) Masking traveling beams: optical solutions for NP-complete problems, trading space for time. Theor Comput Sci 411:837–853MathSciNetzbMATHCrossRefGoogle Scholar
  37. Engineering Research Associates Staff (1950) High-speed computing devices. McGraw-Hill Book, New York CityzbMATHGoogle Scholar
  38. Feynman RP (1963) “ratchet and pawl”, chapter 46. In: Feynman RP, Leighton RB, Sands M (eds) The Feynman lectures on physics, vol 1. Addison-Wesley, ReadingGoogle Scholar
  39. Feynman RP (1982) Simulating physics with computers. Int J Theor Phys 21(6/7):467–488MathSciNetCrossRefGoogle Scholar
  40. Finney JL (1970) Random packings and the structure of simple liquids. I The geometry of random close packing Proc R Soc Lond A Math Phys Sci 319(1539):479–493CrossRefGoogle Scholar
  41. Fisher EG (1911) Tide-predicting machine. Eng News 66:69–73Google Scholar
  42. Fredkin E, Toffoli T (1982) Conservative logic. Int J Theory Phys 21:219–253MathSciNetzbMATHCrossRefGoogle Scholar
  43. Freeth T, Bitsakis Y, Moussas X, Seiradakis JH, Tselikas A, Mangou H, Zafeiropoulou M, Hadland R, Bate D, Ramsey A, Allen M, Crawley A, Hockley P, Malzbender T, Gelb D, Ambrisco W, Edmunds MG (2006) Decoding the ancient Greek astronomical calculator known as the Antikythera mechanism. Nature 444:587–591ADSCrossRefGoogle Scholar
  44. Goliaei S, Foroughmand-Araabi M (2013) Light ray concentration reduces the complexity of the wavelength-based machine on PSPACE languages, unpublished manuscriptGoogle Scholar
  45. Goliaei S, Jalili S (2009) An optical wavelength-based solution to the 3-SAT problem. In: Dolev S, Oltean M (eds) Optical supercomputing, Lecture notes in computer science, vol, vol 5882, pp 77–85CrossRefGoogle Scholar
  46. Goliaei S, Jalili S (2012) An optical wavelength-based computational machine. Unconventional computation and natural computation lecture notes in computer science, vol 7445, pp 94–105. Also, Int J Unconv Comput (in press)Google Scholar
  47. Grunbaum S, Branko SGC (1987) Tilings and patterns, chapter 11. H Freeman, San FranciscozbMATHGoogle Scholar
  48. Gruska J (1999) Quantum computing. McGraw-Hill, New YorkzbMATHGoogle Scholar
  49. Haist T, Osten W (2007) An optical solution for the traveling salesman problem. Opt Express 15(16):10473–10482ADSCrossRefGoogle Scholar
  50. Hamer D, Sullivan G, Weierud F (1998) Enigma variations: an extended family of machines. Cryptologia 22(3):211–229CrossRefGoogle Scholar
  51. Hartree DR (1950) Calculating instruments and machines. Cambridge University Press, LondonzbMATHGoogle Scholar
  52. Henrici (1894) On a new harmonic analyzer, Phil Mag 38:110Google Scholar
  53. Hopcroft JE, Schwartz JT, Sharir M (1984) On the complexity of motion planning for multiple independent objects: PSPACE hardness of the warehouseman’s problem. Int J Robot Res 3(4):76–88CrossRefGoogle Scholar
  54. Horsburgh EM (1914) Modern instruments of calculation. G. Bell & Sons, London, p 223zbMATHGoogle Scholar
  55. Jaeger G (2006) Quantum information: an overview. Springer, BerlinGoogle Scholar
  56. Jakubowski MH, Steiglitz K, Squier R (1998) State transformations of colliding optical solitons and possible application to computation in bulk media. Phys Rev E58:6752–6758ADSGoogle Scholar
  57. Jakubowski MH, Steiglitz K, Squier R (2001) Computing with solitons: a review and prospectus, collision-based computing. Springer, London, pp 277–297zbMATHGoogle Scholar
  58. Jevons WS (1870) On the mechanical performance of logical inference. Philos Trans R Soc 160(Part II):497–518CrossRefGoogle Scholar
  59. Jevons SW (1873) The principles of science; a treatise on logic and scientific method. Macmillan, LondonzbMATHGoogle Scholar
  60. Kelvin L (1878) Harmonic analyzer and synthesizer. Proc R Soc 27:371CrossRefGoogle Scholar
  61. Knott CG (ed) (1915) Napier tercentenary memorial volume. Published for the Royal Society of Edinburgh by Longmans, Green, LondonzbMATHGoogle Scholar
  62. Landauer R (1961) Irreversibility and heat generation in the computing process. IBM J Res Dev 5:183MathSciNetzbMATHCrossRefGoogle Scholar
  63. Lehmer DH (1928) The mechanical combination of linear forms. Am Math Mon 35:114–121MathSciNetzbMATHCrossRefGoogle Scholar
  64. Lenstra AK, Shamir A (2000) Analysis and optimization of the TWINKLE factoring device, proc. Eurocrypt 2000, LNCS 1807. Springer, Heidelberg, pp 35–52Google Scholar
  65. Lewis HR, Papadimitriou CH (1981) Elements of the theory of computation. Prentice-Hall, Upper Saddle River, pp 296–300. and 345–348Google Scholar
  66. Lewis HR, Papadimitriou CH (1997) Elements of the theory of computation, 2nd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  67. Li M, Vitanyi P (1996) Reversibility and adiabatic computation: trading time and space for energy. Proc R Soc Lond Ser A 452:769–789. (Online preprint quant-ph/9703022)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  68. Lindgren M (1990) Glory and failure: difference engines of Johann Muller, Charles Babbage and Georg and Edvard Scheutz. MIT Press, Cambridge, MAGoogle Scholar
  69. Lovelace A, translation of “Sketch of the Analytical Engine” by L. F. Menabrea with Ada's notes and extensive commentary. Ada Lovelace (1843) Sketch of the analytical engine invented by Charles Babbage. Esq Scientific Memoirs 3:666–731Google Scholar
  70. Ludgate P (1909–1910) On a proposed analytical engine. Sci Proc Roy Dublin Soc 12:77–91Google Scholar
  71. Madou MJ (2002) Fundamentals of microfabrication: the science of miniaturization, 2nd edn. CRC Publishers, Boca RatonGoogle Scholar
  72. Magnasco MO (1997) Chemical kinetics is Turing universal. Phys Rev Lett 78:1190–1193ADSCrossRefGoogle Scholar
  73. Mao C, LaBean TH, Reif JH, Seeman NC (2000) Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407:493–495ADSCrossRefGoogle Scholar
  74. Martin E (1992) The calculating machines. The MIT Press, Cambridge, MAGoogle Scholar
  75. Miller D (1916) The Henrici harmonic analyzer and devices for extending and facilitating its use. J Franklin Inst 181:51–81 and 182:285–322CrossRefGoogle Scholar
  76. Moore C (1990) Undecidability and unpredictability in dynamical systems. Phys Rev Lett 64:2354–2357ADSMathSciNetzbMATHCrossRefGoogle Scholar
  77. Moore C (1991) Generalized shifts: undecidability and unpredictability in dynamical systems. Nonlinearity 4:199–230ADSMathSciNetzbMATHCrossRefGoogle Scholar
  78. de Morin H (1913) Les appareils d’intégration: intégrateurs simples et composés; planimètres; intégromètres; intégraphes et courbes intégrales; analyse harmonique et analyseurs. Gauthier-Villars Publishers, PariszbMATHGoogle Scholar
  79. Munakata T, Sinha S, Ditto WL (2002) Chaos computing: implementation of fundamental logical gates by chaotic elements. IEEE Trans Circ Syst-I Fundam Theory Appl 49(11):1629–1633MathSciNetCrossRefGoogle Scholar
  80. Muntean O, Oltean M (2009) Deciding whether a linear diophantine equation has solutions by using a light-based device. J Optoelectron Adv Mater 11(11):1728–1734Google Scholar
  81. Napier J (1614) Mirifici logarithmorum canonis descriptio (the description of the wonderful canon of logarithms). Hart, EdinburghGoogle Scholar
  82. Nielsen M, Chuang I (2000) Quantum computation and quantum information. Cambridge University Press, CambridgezbMATHGoogle Scholar
  83. Norman JM (ed) (2002) The origins of cyberspace: from Gutenberg to the internet: a sourcebook on the history of information technology. Norman Publishing, NovatoGoogle Scholar
  84. Oltean M (2008) Solving the Hamiltonian path problem with a light-based computer. Nat Comput 6(1):57–70MathSciNetzbMATHCrossRefGoogle Scholar
  85. Oltean M, Muntean O (2008) Exact cover with light. New Gener Comput 26(4):329–346zbMATHCrossRefGoogle Scholar
  86. Oltean M, Muntean O (2009) Solving the subset-sum problem with a light-based device. Nat Comput 8(2):321–331MathSciNetzbMATHCrossRefGoogle Scholar
  87. Oughtred W (1632) Circles of proportion and the horizontal instrument. Translated and Published by William Forster, LondonGoogle Scholar
  88. Pascal E (1645) Lettre dédicatoire à Monseigneur le Chancelier sur le sujet de la machine nouvellement inventée par le sieur B. P pour faire toutes sortes d’opérations d’arithmétique par un mouvement réglé sans plume ni jetons, suivie d’un avis nécessaire à ceux qui auront curiosité de voir ladite machine et de s’en servirGoogle Scholar
  89. Plummer D, Dalton LJ, Peter F (1999) The recodable locking device. Commun ACM 42(7):83–87CrossRefGoogle Scholar
  90. Reif JH (1979) Complexity of the mover’s problem and generalizations. In: 20th Annual IEEE symposium on foundations of computer science, San Juan, Puerto Rico, pp 421–427. Also appearing in Chapter 11 in Planning, geometry and complexity of robot motion. Schwartz J (ed) Ablex Pub, Norwood, pp 267–281 (1987)Google Scholar
  91. Reif JH (2009a) Quantum information processing: algorithms, technologies and challenges, invited chapter. In: Eshaghian-Wilner MM (ed) Nano-scale and bio-inspired computing. Wiley, HobokenGoogle Scholar
  92. Reif JH (2009b) Mechanical computation: it’s computational complexity and technologies, invited chapter. In: Meyers RA (ed) Encyclopedia of complexity and system science. Unconventional Computing (Section Editor: Andrew Adamatzky). Springer, New York, ISBN: 978-0-387-75888-6Google Scholar
  93. Reif JH, LaBean TH (2007) Autonomous programmable biomolecular devices using self-assembled DNA nanostructures, communications of the ACM (CACM), Special Section entitled “New Computing Paradigms (edited by Toshinori Munakata)Google Scholar
  94. Reif JH, LaBean TH (2009) Nanostructures and autonomous devices assembled from DNA. Invited chapter. In: Eshaghian-Wilner MM (ed) Nano-scale and bio-inspired computing. Wiley, HobokenGoogle Scholar
  95. Reif JH, Sahu S (2008) Autonomous programmable DNA nanorobotic devices using DNAzymes, 13th international meeting on DNA computing (DNA 13), Memphis, June 4–8, 2007. In: Garzon M, Yan H (eds) DNA computing: DNA13, Springer-Verlag lecture notes for computer science (LNCS), vol 4848. Springer, Berlin, pp 66–78. Published in Special Journal Issue on Self-Assembly, Theoretical Computer Science (TCS) 410(15):1428–1439 (2009)CrossRefGoogle Scholar
  96. Reif JH, Sharir M (1985) Motion planning in the presence of moving obstacles. In: 26th annual IEEE symposium on foundations of computer science, Portland, pp 144–154. Published in Journal of the ACM (JACM) 41:4, pp 764–790 (1994)Google Scholar
  97. Reif JH, Sun Z (1998) The computational power of frictional mechanical systems. In: Third international workshop on algorithmic foundations of robotics, (WAFR98), Pub. by A. K. Peters Ltd, Houston, pp 223–236. Published as On frictional mechanical systems and their computational power, SIAM Journal of Computing(SICOMP) 32(6):1449–1474 (2003)Google Scholar
  98. Reif JH, Wang H (1998) The complexity of the two dimensional curvature-constrained shortest-path problem. In: Third international workshop on algorithmic foundations of robotics (WAFR98), Pub. by A. K. Peters Ltd, Houston, pp 49–57Google Scholar
  99. Reif JH, Tygar D, Yoshida A (1990) The computability and complexity of optical beam tracing. 31st annual IEEE symposium on foundations of computer science, St. Louis, pp 106–114. Published as The computability and complexity of ray tracing in discrete & computational geometry 11:265–287 (1994)Google Scholar
  100. Reif J, Chandran H, Gopalkrishnan N, LaBean T (2012) Self-assembled DNA nanostructures and DNA devices. Invited chapter 14. In: Cabrini S, Kawata S (eds) Nanofabrication handbook. CRC Press, Taylor and Francis Group, New York, pp 299–328. isbn13:9781420090529, isbn10: 1420090526CrossRefGoogle Scholar
  101. Rothemund PWK (2000) Using lateral capillary forces to compute by self-assembly. Proc Natl Acad Sci USA 97:984–989ADSCrossRefGoogle Scholar
  102. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302ADSCrossRefGoogle Scholar
  103. Rothemund PWK, Papadakis N, Winfree E (2004) Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol 2(12): electronic pub. e424. doi: 10.1371/journal.pbio.0020424
  104. Schwartz JT, Sharir M (1983) On the piano movers’ problem: I. The case of a two-dimensional rigid polygonal body moving amidst polygonal barriers. Commun Pure Appl Math 36:345–398MathSciNetzbMATHCrossRefGoogle Scholar
  105. Seeman NC (2004) Nanotechnology and the double helix. Sci Am 290(6):64–75CrossRefGoogle Scholar
  106. Senum P, Riedel M (2011) Rate-independent constructs for chemical computation. PLoS One 6(6):e21414ADSCrossRefGoogle Scholar
  107. Shamir A (1999) Factoring large numbers with the TWINKLE device, cryptographic hardware and embedded systems (CHES) 1999, LNCS 1717, 2-12. Springer, HeidelbergGoogle Scholar
  108. Shamir A (n.d.) Method and apparatus for factoring large numbers with optoelectronic devices, patent 475920, filed 12/30/1999 and awarded 08/05/2003Google Scholar
  109. Shannon C (1938) A symbolic analysis of relay and switching circuits. Trans Am Inst Electr Eng 57:713–719CrossRefGoogle Scholar
  110. Shapiro E (1999) A mechanical turing machine: blueprint for a biomolecular computer. In: Fifth international meeting on DNA-based computers at the Massachusetts Institute of Technology, Proc. DNA Based Computers V: CambridgeGoogle Scholar
  111. Sinha S, Ditto W (1999) Computing with distributed chaos. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top 60(1):363–377Google Scholar
  112. Soloveichik D, Cook M, Winfree E, Bruck J (2008) Computation with finite stochastic chemical reaction networks. Nat Comput 7(4):615–633MathSciNetzbMATHCrossRefGoogle Scholar
  113. Soloveichik D, Seelig G, Winfree E (2010) DNA as a universal substrate for chemical kinetics. Proc Natl Acad Sci 107:5393–5398ADSCrossRefGoogle Scholar
  114. Soroka WA (1954) Analog methods in computation and simulation. McGraw-Hill, New YorkzbMATHGoogle Scholar
  115. Squier R, Steiglitz K (1994) Programmable parallel arithmetic in cellular automata using a particle model. Complex Syst 8:311–323MathSciNetzbMATHGoogle Scholar
  116. Svoboda A (1948) Computing mechanisms and linkages. McGraw-Hill, New YorkGoogle Scholar
  117. Swade D (1991) Charles Babbage and his calculating engines. Michigan State University Press, East LansingGoogle Scholar
  118. Tate SR, Reif JH (1993) The complexity of N-body simulation. In: Proceedings of the 20th annual colloquium on automata, languages and programming (ICALP’93), Lund, pp 162–176Google Scholar
  119. Thomson W (later known as Lord Kelvin) (1878) Harmonic analyzer. Proc R Soc Lond 27:371–373Google Scholar
  120. Turck JAV (1921) Origin of modern calculating machines. The Western Society of Engineers, ChicagoGoogle Scholar
  121. Turing A (1937) On computable numbers, with an application to the Entscheidungs problem. In: Proceedings of the London mathematical society, second series, vol 42, London, pp 230–265. Erratum in vol 43, pp 544–546Google Scholar
  122. da Vinci L (1493) Codex Madrid IGoogle Scholar
  123. Wang H (1963) Dominoes and the AEA case of the decision problem. In: Fox J (ed) Mathematical theory of automata. Polytechnic Press, Brooklyn, pp 23–55Google Scholar
  124. Winfree E, Yang X, Seeman NC (1996) Universal computation via self-assembly of DNA: some theory and experiments, DNA based computers II, volume 44 of DIMACS. American Mathematical Society, Providence, pp 191–213zbMATHGoogle Scholar
  125. Winfree E, Liu F, Wenzler LA, Seeman NC (1998) Design and self-assembly of two-dimensional DNA crystals. Nature 394:539–544ADSCrossRefGoogle Scholar
  126. Wolfram S (1984) Universality and complexity in cellular automata. Physica D10:1–35ADSMathSciNetzbMATHGoogle Scholar
  127. Woods D, Naughton TJ (2009) Optical computing. Appl Math Comput 215(4):1417–1430MathSciNetzbMATHGoogle Scholar
  128. Xia Y, Whitesides GM (1998) Soft lithography. Ann Rev Mater Sci 28:153–184ADSCrossRefGoogle Scholar
  129. Yan H, LaBean TH, Feng L, Reif JH (2003a) Directed nucleation assembly of barcode patterned DNA lattices. Proc Natl Acad Sci U S A 100(14):8103–8108ADSCrossRefGoogle Scholar
  130. Yan H, Feng L, LaBean TH, Reif J (2003b) DNA nanotubes, parallel molecular computations of pairwise exclusive-or (XOR) using DNA “string tile” self-assembly. J Am Chem Soc (JACS) 125(47):14246–14247CrossRefGoogle Scholar
  131. Yin P, Yan H, Daniel XG, Turberfield AJ, Reif JH (2004) A unidirectional DNA walker moving autonomously along a linear track. Angew Chem Int Ed 43(37):4906–4911CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceDuke UniversityDurhamUSA