Encyclopedia of Complexity and Systems Science

Living Edition
| Editors: Robert A. Meyers

Biochemistry, Chaotic Dynamics, Noise, and Fractal Space in

  • Miguel Antonio Aon
  • Sonia Cortassa
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27737-5_32-2

Definition of the Subject and Its Importance

The description of fractals, noise, and chaotic dynamics is deeply associated with the concepts of scaling and critical phenomena. The discovery of the occurrence of scaling, criticality, and colored noise behavior in mitochondrial networks – at a fundamental level of cellular organization and dynamics as it relates to energetics, life, and death – further emphasizes the role of fractals and chaos in biochemistry.

The concept of fractals introduced by Mandelbrot was initially applied to the geometric description of irregular objects but quickly spread to the field of dynamics where it joined chaos. Initially described by Lorenz in the context of meteorology, chaos extended its influence from fluid dynamics to biology and biochemistry.

Analysis of time series of biological variables with techniques inspired by fractal and chaos theories is providing a more clear understanding of the relationship between the scaling in space and time exhibited...

Keywords

Chaotic Attractor Stochastic Resonance Strange Attractor Colored Noise Mitochondrial Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

Primary Literature

  1. Akar FG, Aon MA, Tomaselli GF, O’Rourke B (2005) The mitochondrial origin of postischemic arrhythmias. J Clin Invest 115:3527–3535CrossRefGoogle Scholar
  2. Alon U (2007) An introduction to systems biology. Design principles of biological circuits. Chapman & Hall/CRC, LondonzbMATHGoogle Scholar
  3. Alon U, Surette MG, Barkai N, Leibler S (1999) Robustness in bacterial chemotaxis. Nature 397:168–171ADSCrossRefGoogle Scholar
  4. Aon MA (2010) From isolated to networked: a paradigmatic shift in mitochondrial physiology. Front Physiol 1. doi: 10.3389/fphys.2010.00020Google Scholar
  5. Aon MA (2013) Complex systems biology of networks: the riddle and the challenge. In: Aon MA, Saks V, Schlattner U (eds) Systems biology of metabolic and signaling networks. Energy, mass and information transfer. Springer, Berlin/Heidelberg/New York/Dordrecht/London, pp 19–35Google Scholar
  6. Aon MA, Cortassa S (1993) An allometric interpretation of the spatio-temporal organization of molecular and cellular processes. Mol Cell Biochem 120:1–13CrossRefGoogle Scholar
  7. Aon MA, Cortassa S (1997) Dynamic biological organization. Fundamentals as applied to cellular systems. Chapman & Hall, LondonCrossRefGoogle Scholar
  8. Aon MA, Cortassa S (2006) Metabolic dynamics in cells viewed as multilayered, distributed, mass-energy-information networks. In: Encyclopedia of genetics, genomics, proteomics and bioinformatics. Wiley Interscience, New YorkGoogle Scholar
  9. Aon MA, Cortassa S (2009) Chaotic dynamics, noise and fractal space in biochemistry. In: Meyers R (ed) Encyclopedia of complexity and systems science. Springer, New YorkGoogle Scholar
  10. Aon MA, Cortassa S (2012) Mitochondrial network energetics in the heart. Wiley Interdiscip Rev Syst Biol Med 4:599–613CrossRefGoogle Scholar
  11. Aon MA, Gomez-Casati DF, Iglesias AA, Cortassa S (2001) Ultrasensitivity in (supra)molecularly organized and crowded environments. Cell Biol Int 25:1091–1099CrossRefGoogle Scholar
  12. Aon MA, Cortassa S, Marban E, O’Rourke B (2003) Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J Biol Chem 278:44735–44744CrossRefGoogle Scholar
  13. Aon MA, Cortassa S, O’Rourke B (2004a) Percolation and criticality in a mitochondrial network. Proc Natl Acad Sci U S A 101:4447–4452ADSCrossRefGoogle Scholar
  14. Aon MA, O’Rourke B, Cortassa S (2004b) The fractal architecture of cytoplasmic organization: scaling, kinetics and emergence in metabolic networks. Mol Cell Biochem 256–257:169–184CrossRefGoogle Scholar
  15. Aon MA, Cortassa S, Akar FG, O’Rourke B (2006a) Mitochondrial criticality: a new concept at the turning point of life or death. Biochim Biophys Acta 1762:232–240CrossRefGoogle Scholar
  16. Aon MA, Cortassa S, O’Rourke B (2006b) The fundamental organization of cardiac mitochondria as a network of coupled oscillators. Biophys J 91:4317–4327CrossRefGoogle Scholar
  17. Aon MA, Cortassa S, Lemar KM, Hayes AJ, Lloyd D (2007a) Single and cell population respiratory oscillations in yeast: a 2-photon scanning laser microscopy study. FEBS Lett 581:8–14ADSCrossRefGoogle Scholar
  18. Aon MA, Cortassa S, Maack C, O’Rourke B (2007b) Sequential opening of mitochondrial ion channels as a function of glutathione redox thiol status. J Biol Chem 282:21889–21900CrossRefGoogle Scholar
  19. Aon MA, Cortassa S, O’Rourke B (2007c) On the network properties of mitochondria, In: Saks V, (ed.) Molecular system bioenergetics: energy for life, Wiley-VCH Verlag GmbH, Weinheim, pp 111–135Google Scholar
  20. Aon MA, Cortassa S, O’Rourke B (2008a) Is there a mitochondrial clock? In: Lloyd D, Rossi EL (eds) Ultradian rhythms from molecules to mind. A new vision of life. Springer, New York, pp 129–144CrossRefGoogle Scholar
  21. Aon MA, Cortassa S, O’Rourke B (2008b) Mitochondrial oscillations in physiology and pathophysiology. Adv Exp Med Biol 641:98–117MathSciNetCrossRefGoogle Scholar
  22. Aon MA, Roussel MR, Cortassa S, O’Rourke B, Murray DB, Beckmann M, Lloyd D (2008c) The scale-free dynamics of eukaryotic cells. PLoS One 3, e3624ADSCrossRefGoogle Scholar
  23. Aon MA, Cortassa S, Lloyd D (2011) Chaos in biochemistry and physiology. In: Encyclopedia of molecular cell biology and molecular medicine. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  24. Arkin AP (2000) Signal processing by biochemical reaction networks. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  25. Barabasi AL (2009) Scale-free networks: a decade and beyond. Science (New York, NY) 325:412–413MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113CrossRefGoogle Scholar
  27. Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387:913–917ADSCrossRefGoogle Scholar
  28. Bassingthwaighte JB, Liebovitch LS, West BJ (1994) Fractal physiology. Oxford University Press for the American Physiological Society, New YorkCrossRefGoogle Scholar
  29. Becskei A, Serrano L (2000) Engineering stability in gene networks by autoregulation. Nature 405:590–593ADSCrossRefGoogle Scholar
  30. Becskei A, Seraphin B, Serrano L (2001) Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J 20:2528–2535CrossRefGoogle Scholar
  31. Berry H (2002) Monte carlo simulations of enzyme reactions in two dimensions: fractal kinetics and spatial segregation. Biophys J 83:1891–1901CrossRefGoogle Scholar
  32. Boccara N (2004) Modeling complex systems. Springer, New YorkzbMATHGoogle Scholar
  33. Brown JH, West GB, Enquist BJ (2000) Scaling in biology. Oxford University Press, New YorkzbMATHGoogle Scholar
  34. Brown DA, Aon MA, Frasier CR, Sloan RC, Maloney AH, Anderson EJ, O’Rourke B (2010) Cardiac arrhythmias induced by glutathione oxidation can be inhibited by preventing mitochondrial depolarization. J Mol Cell Cardiol 48:673–679CrossRefGoogle Scholar
  35. Casolo G, Balli E, Taddei T, Amuhasi J, Gori C (1989) Decreased spontaneous heart rate variability in congestive heart failure. Am J Cardiol 64:1162–1167CrossRefGoogle Scholar
  36. Cortassa S, Aon MA (2013) Dynamics of mitochondrial redox and energy networks: Insights from an experimental-computational synergy. In: Aon MA, Saks V, Schlattner U (eds) Systems biology of metabolic and signaling networks. Energy, mass and information transfer. Springer, Berlin/Heidelberg/New York/Dordrecht/London, pp 115–144Google Scholar
  37. Cortassa S, Aon MA, Winslow RL, O’Rourke B (2004) A mitochondrial oscillator dependent on reactive oxygen species. Biophys J 87:2060–2073CrossRefGoogle Scholar
  38. Cortassa SC, Aon MA, O’Rourke B, Jacques R, Tseng HJ, Marban E, Winslow RL (2006) A computational model integrating electrophysiology, contraction and mitochondrial bioenergetics in the ventricular myocyte. Biophys J 91:1564–1589CrossRefGoogle Scholar
  39. Cortassa S, Aon MA, Iglesias AA, Aon JC, Lloyd D (2012) An introduction to metabolic and cellular engineering, 2nd edn. World Scientific, SingaporeGoogle Scholar
  40. Cvitanovic P (1989) Universality in chaos. Adam Hilger, Bristol/New YorkzbMATHGoogle Scholar
  41. Enquist BJ, West GB, Brown JH (2000) Quarter-power allometric scaling in vascular plants: functional basis and ecological consequences. Oxford University Press, New YorkzbMATHGoogle Scholar
  42. Ewing DJ (1991) Heart rate variability: an important new risk factor in patients following myocardial infarction. Clin Cardiol 14:683–685MathSciNetCrossRefGoogle Scholar
  43. Fakhri N, Wessel AD, Willms C, Pasquali M, Klopfenstein DR, MacKintosh FC, Schmidt CF (2014) High-resolution mapping of intracellular fluctuations using carbon nanotubes. Science (New York, NY) 344:1031–1035Google Scholar
  44. Feigenbaum MJ (1980) Universal behavior in nonlinear systems. Los Alamos Sci 1:4–27MathSciNetGoogle Scholar
  45. Garfinkel A, Spano ML, Ditto WL, Weiss JN (1992) Controlling cardiac chaos. Science (New York, NY) 257:1230–1235Google Scholar
  46. Garfinkel A, Chen PS, Walter DO, Karagueuzian HS, Kogan B, Evans SJ, Karpoukhin M, Hwang C, Uchida T, Gotoh M, Nwasokwa O, Sager P, Weiss JN (1997) Quasiperiodicity and chaos in cardiac fibrillation. J Clin Invest 99:305–314CrossRefGoogle Scholar
  47. Glass L (2009) Introduction to controversial topics in nonlinear science: is the normal heart rate chaotic? Chaos (Woodbury, NY) 19:028501Google Scholar
  48. Gleick J (1988) Chaos: making a new science. Penguin, New YorkzbMATHGoogle Scholar
  49. Goldberger AL, West BJ (1987) Applications of nonlinear dynamics to clinical cardiology. Ann N Y Acad Sci 504:195–213ADSCrossRefGoogle Scholar
  50. Goldberger AL, Bhargava V, West BJ, Mandell AJ (1985) On a mechanism of cardiac electrical stability. The fractal hypothesis. Biophys J 48:525–528CrossRefGoogle Scholar
  51. Goldberger AL, Amaral LA, Hausdorff JM, Ivanov P, Peng CK, Stanley HE (2002) Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci U S A 99(Suppl 1):2466–2472ADSCrossRefGoogle Scholar
  52. Goldbeter A, Koshland DE Jr (1982) Sensitivity amplification in biochemical systems. Q Rev Biophys 15:555–591CrossRefGoogle Scholar
  53. Gomez-Casati DF, Aon MA, Iglesias AA (1999) Ultrasensitive glycogen synthesis in Cyanobacteria. FEBS Lett 446:117–121CrossRefGoogle Scholar
  54. Gomez-Casati DF, Cortassa S, Aon MA, Iglesias AA (2003) Ultrasensitive behavior in the synthesis of storage polysaccharides in Cyanobacteria. Planta 216:969–975Google Scholar
  55. Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Physica D 9:189–208zbMATHMathSciNetADSCrossRefGoogle Scholar
  56. Helms V (2008) Principles of computational cell biology. Wiley-VCH, WeinheimGoogle Scholar
  57. Hiroi N, Lu J, Iba K, Tabira A, Yamashita S, Okada Y, Flamm C, Oka K, Kohler G, Funahashi A (2011) Physiological environment induces quick response – slow exhaustion reactions. Front Physiol 2:50CrossRefGoogle Scholar
  58. Hood L, Tian Q (2012) Systems approaches to biology and disease enable translational systems medicine. Genomics Proteomics Bioinformatics 10:181–185CrossRefGoogle Scholar
  59. Ivanov PC, Amaral LA, Goldberger AL, Havlin S, Rosenblum MG, Struzik ZR, Stanley HE (1999) Multifractality in human heartbeat dynamics. Nature 399:461–465ADSCrossRefGoogle Scholar
  60. Ivanov PC, Nunes Amaral LA, Goldberger AL, Havlin S, Rosenblum MG, Stanley HE, Struzik ZR (2001) From 1/f noise to multifractal cascades in heartbeat dynamics. Chaos (Woodbury, NY) 11:641–652zbMATHADSCrossRefGoogle Scholar
  61. Jin H, Nass RD, Joudrey PJ, Lyon AR, Chemaly ER, Rapti K, Akar FG (2010) Altered spatiotemporal dynamics of the mitochondrial membrane potential in the hypertrophied heart. Biophys J 98:2063–2071CrossRefGoogle Scholar
  62. Kembro JM, Aon MA, Winslow RL, O’Rourke B, Cortassa S (2013) Integrating mitochondrial energetics, redox and ROS metabolic networks: a two-compartment model. Biophys J 104:332–343CrossRefGoogle Scholar
  63. Kembro JM, Cortassa S, Aon MA (2014) Complex oscillatory redox dynamics with signaling potential at the edge between normal and pathological mitochondrial function. Front Physiol 5:257CrossRefGoogle Scholar
  64. Keulers M, Suzuki T, Satroutdinov AD, Kuriyama H (1996) Autonomous metabolic oscillation in continuous culture of Saccharomyces cerevisiae grown on ethanol. FEMS Microbiol Lett 142:253–258CrossRefGoogle Scholar
  65. Klevecz RR, Bolen J, Forrest G, Murray DB (2004) A genomewide oscillation in transcription gates DNA replication and cell cycle. Proc Natl Acad Sci U S A 101:1200–1205ADSCrossRefGoogle Scholar
  66. Kopelman R (1988) Fractal reaction kinetics. Science (New York, NY) 241:1620–1626Google Scholar
  67. Koshland DE Jr, Goldbeter A, Stock JB (1982) Amplification and adaptation in regulatory and sensory systems. Science (New York, NY) 217:220–225Google Scholar
  68. Kosko B (2006) Noise. Viking, New YorkGoogle Scholar
  69. Kurz FT, Aon MA, O’Rourke B, Armoundas AA (2010) Spatio-temporal oscillations of individual mitochondria in cardiac myocytes reveal modulation of synchronized mitochondrial clusters. Proc Natl Acad Sci U S A 107:14315–14320ADSCrossRefGoogle Scholar
  70. Kurz FT, Aon MA, O’Rourke B, Armoundas AA (2014) Cardiac mitochondria exhibit dynamic functional clustering. Front Physiol 5:329CrossRefGoogle Scholar
  71. Lemar KM, Passa O, Aon MA, Cortassa S, Muller CT, Plummer S, O’Rourke B, Lloyd D (2005) Allyl alcohol and garlic (Allium sativum) extract produce oxidative stress in Candida albicans. Microbiology (Reading, England) 151:3257–3265CrossRefGoogle Scholar
  72. Lemar KM, Aon MA, Cortassa S, O’Rourke B, Muller CT, Lloyd D (2007) Diallyl disulphide depletes glutathione in Candida albicans: oxidative stress-mediated cell death studied by two-photon microscopy. Yeast (Chichester, England) 24:695–706CrossRefGoogle Scholar
  73. Liebovitch LS, Todorov AT (1996) Using fractals and nonlinear dynamics to determine the physical properties of ion channel proteins. Crit Rev Neurobiol 10:169–187CrossRefGoogle Scholar
  74. Lloyd D (1992) Intracellular time keeping: epigenetic oscillations reveal the functions of an ultradian clock. In: Lloyd D, Rossi E (ed) Ultradian rhythms in life processes. Springer, London, pp 5–22Google Scholar
  75. Lloyd D (1998) Circadian and ultradian clock-controlled rhythms in unicellular microorganisms. Adv Microb Physiol 39:291–338CrossRefGoogle Scholar
  76. Lloyd D (2006) Hydrogen sulfide: clandestine microbial messenger? Trends Microbiol 14:456–462CrossRefGoogle Scholar
  77. Lloyd D (2008) Advances in experimental medicine and biology 641, 118–140Google Scholar
  78. Lloyd AL, Lloyd D (1993) Hypothesis: the central oscillator of the circadian clock is a controlled chaotic attractor. Biosystems 29:77–85CrossRefGoogle Scholar
  79. Lloyd D, Murray DB (2005) Ultradian metronome: timekeeper for orchestration of cellular coherence. Trends Biochem Sci 30:373–377CrossRefGoogle Scholar
  80. Lloyd D, Murray DB (2006) The temporal architecture of eukaryotic growth. FEBS Lett 580:2830–2835CrossRefGoogle Scholar
  81. Lloyd D, Murray DB (2007) Redox rhythmicity: clocks at the core of temporal coherence. Bioessays 29:465–473CrossRefGoogle Scholar
  82. Lloyd D, Rossi EL (2008) Epilogue: a new vision of life. In: Lloyd D, Rossi EL (eds) Ultradian rhythms from molecules to mind. Springer Science + Business Media B.V, New York, pp 431–439CrossRefGoogle Scholar
  83. Lloyd D, Aon MA, Cortassa S (2001) Why homeodynamics, not homeostasis? Sci World J 1:133–145CrossRefGoogle Scholar
  84. Lloyd D, Salgado LE, Turner MP, Suller MT, Murray D (2002) Cycles of mitochondrial energization driven by the ultradian clock in a continuous culture of Saccharomyces cerevisiae. Microbiology (Reading, England) 148:3715–3724CrossRefGoogle Scholar
  85. Lloyd D, Murray DB, Klevecz RR, Wolf J, Kuriyama H (2008) The ultradian clock (40min) in yeast. In: Lloyd DaR EL (ed) Ultradian rhythms from molecules to mind. Springer Science + Business Media B.V, New York, pp 11–42CrossRefGoogle Scholar
  86. Lloyd D, Cortassa S, O’Rourke B, Aon MA (2012) What yeast and cardiomyocytes share: ultradian oscillatory redox mechanisms of cellular coherence and survival. Integr Biol (Camb) 4:65–74CrossRefGoogle Scholar
  87. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141ADSCrossRefGoogle Scholar
  88. Lyon A, Joudrey PJ, Jin D, Nass RD, Aon MA, O’Rourke B, Akar FG (2010) Optical imaging of mitochondrial function uncovers actively propagating waves of mitochondrial membrane potential collapse across intact heart. J Mol Cell Cardiol 49:565–575Google Scholar
  89. Mainzer K (2005) Symmetry and complexity. The spirit and beauty of nonlinear science. World Scientific, SingaporezbMATHGoogle Scholar
  90. Mandelbrot BB (1983) The fractal geometry of nature. W.H. Freeman, New YorkzbMATHGoogle Scholar
  91. Mandelbrot BB, Hudson RL (2004) The (mis)behavior of markets. A fractal view of risk, ruin, and reward. Basic Books, New YorkzbMATHGoogle Scholar
  92. Meucci R, Labate A, Ciofini C (1998) Experimental techniques for controlling chaos in lasers. Int J Bifurcation Chaos 8, 1759–1768Google Scholar
  93. Moss F (1994) Neurobiology: chaos under control. Nature 370:596–597ADSCrossRefGoogle Scholar
  94. Moss F, Ward LM, Sannita WG (2004) Stochastic resonance and sensory information processing: a tutorial and review of application. Clin Neurophysiol 115:267–281CrossRefGoogle Scholar
  95. Murray DB, Engelen FA, Keulers M, Kuriyama H, Lloyd D (1998) NO+, but not NO., inhibits respiratory oscillations in ethanol-grown chemostat cultures of Saccharomyces cerevisiae. FEBS Lett 431:297–299CrossRefGoogle Scholar
  96. Murray DB, Engelen F, Lloyd D, Kuriyama H (1999) Involvement of glutathione in the regulation of respiratory oscillation during a continuous culture of Saccharomyces cerevisiae. Microbiology (Reading, England) 145(Pt 10):2739–2745CrossRefGoogle Scholar
  97. Murray DB, Klevecz RR, Lloyd D (2003) Generation and maintenance of synchrony in Saccharomyces cerevisiae continuous culture. Exp Cell Res 287:10–15CrossRefGoogle Scholar
  98. Murray DB, Amariel C, Sasidharan K, Machne R, Aon MA, Lloyd D (2013) Temporal partitioning of the yeast cellular network. In: Aon MA, Saks V, Schlattner U (eds) Systems biology of metabolic and signaling networks. Energy, mass and information transfer. Springer, Berlin/Heidelberg/New York/Dordrecht/London, pp 323–349Google Scholar
  99. Nicolis G, Prigogine I (1977) Self-organization in nonequilibrium systems: from dissipative structures to order through fluctuations. Wiley, New YorkzbMATHGoogle Scholar
  100. O’Rourke B, Ramza BM, Marban E (1994) Oscillations of membrane current and excitability driven by metabolic oscillations in heart cells. Science (New York, NY) 265:962–966Google Scholar
  101. O’Rourke B, Cortassa S, Aon MA (2005) Mitochondrial ion channels: gatekeepers of life and death. Physiology (Bethesda) 20:303–315CrossRefGoogle Scholar
  102. Osborne AR, Provenzale A (1989) Finite correlation dimension for stochastic systems with power-law spectra. Physica D 35:357–381zbMATHMathSciNetADSCrossRefGoogle Scholar
  103. Peng CK, Mietus J, Hausdorff JM, Havlin S, Stanley HE, Goldberger AL (1993) Long-range anticorrelations and non-gaussian behavior of the heartbeat. Phys Rev Lett 70:1343–1346ADSCrossRefGoogle Scholar
  104. Rabouille C, Cortassa S, Aon MA (1992) Fractal organisation in biological macromolecular lattices. J Biomol Struct Dyn 9:1013–1024CrossRefGoogle Scholar
  105. Rao CV, Wolf DM, Arkin AP (2002) Control, exploitation and tolerance of intracellular noise. Nature 420:231–237ADSCrossRefGoogle Scholar
  106. Rivas G, Ferrone F, Herzfeld J (2004) Life in a crowded world. EMBO Rep 5:23–27CrossRefGoogle Scholar
  107. Roussel MR, Lloyd D (2007) Observation of a chaotic multioscillatory metabolic attractor by real-time monitoring of a yeast continuous culture. FEBS J 274:1011–1018CrossRefGoogle Scholar
  108. Saks V, Dzeja P, Schlattner U, Vendelin M, Terzic A, Wallimann T (2006) Cardiac system bioenergetics: metabolic basis of the Frank-Starling law. J Physiol 571:253–273CrossRefGoogle Scholar
  109. Sasidharan K, Tomita M, Aon M, Lloyd D, Murray DB (2012) Time-structure of the yeast metabolism in vivo. Adv Exp Med Biol 736:359–379CrossRefGoogle Scholar
  110. Satroutdinov AD, Kuriyama H, Kobayashi H (1992) Oscillatory metabolism of Saccharomyces cerevisiae in continuous culture. FEMS Microbiol Lett 77:261–267CrossRefGoogle Scholar
  111. Savageau MA (1995) Michaelis-Menten mechanism reconsidered: implications of fractal kinetics. J Theor Biol 176:115–124CrossRefGoogle Scholar
  112. Schibler U, Naef F (2005) Cellular oscillators: rhythmic gene expression and metabolism. Curr Opin Cell Biol 17:223–229CrossRefGoogle Scholar
  113. Schneider ED, Sagan D (2005) Into the cool. Energy flow, thermodynamics and life. The University of Chicago Press, ChicagoGoogle Scholar
  114. Schnell S, Turner TE (2004) Reaction kinetics in intracellular environments with macromolecular crowding: simulations and rate laws. Prog Biophys Mol Biol 85:235–260CrossRefGoogle Scholar
  115. Schrodinger E (1944) What is life? The physical aspects of the living cell. Cambridge University Press, CambridgeGoogle Scholar
  116. Schroeder M (1991) Fractals, chaos, power laws. Minutes from an infinite paradise. W.H. Freeman, New YorkzbMATHGoogle Scholar
  117. Shinbrot T, Ditto W, Grebogi C, Ott E, Spano M, Yorke JA (1992) Using the sensitive dependence of chaos (the “butterfly effect”) to direct trajectories in an experimental chaotic system. Phys Rev Lett 68:2863–2866zbMATHMathSciNetADSCrossRefGoogle Scholar
  118. Skinner JE, Pratt CM, Vybiral T (1993) A reduction in the correlation dimension of heartbeat intervals precedes imminent ventricular fibrillation in human subjects. Am Heart J 125:731–743CrossRefGoogle Scholar
  119. Slodzinski MK, Aon MA, O’Rourke B (2008) Glutathione oxidation as a trigger of mitochondrial depolarization and oscillation in intact hearts. J Mol Cell Cardiol 45:650–660CrossRefGoogle Scholar
  120. Smith TGJ, Lange GD (1996) Fractal studies of neuronal and glial cellular morphology. CRC Press, Boca RatonGoogle Scholar
  121. Sornette D (2000) Critical phenomena in natural sciences. Chaos, fractals, selforganization and disorder: concepts and tools. Springer, Berlin/HeidelbergGoogle Scholar
  122. Thattai M, van Oudenaarden A (2002) Attenuation of noise in ultrasensitive signaling cascades. Biophys J 82:2943–2950CrossRefGoogle Scholar
  123. Tu BP, Kudlicki A, Rowicka M, McKnight SL (2005) Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science (New York, NY) 310:1152–1158Google Scholar
  124. van Beek JHGM, Roger SA, Bassingthwaighte JB (1989) Regional myocardial flow heterogeneity explained with fractal networks. Am J Physiol 257:H1670–H1680Google Scholar
  125. Varela F, Maturana H, Uribe R (1974) Autopoiesis: the organization of living systems, its characterization and a model. Biosystems 5:187–196CrossRefGoogle Scholar
  126. Verrier RL, Nearing BD, Lovett EG (1997) Complex oscillatory heart rhythm: a dance macabre. J Clin Invest 99:156–157CrossRefGoogle Scholar
  127. Vicsek T (2001) Fluctuations and scaling in biology. Oxford University Press, New YorkGoogle Scholar
  128. Vilar JM, Kueh HY, Barkai N, Leibler S (2002) Mechanisms of noise-resistance in genetic oscillators. Proc Natl Acad Sci U S A 99:5988–5992ADSCrossRefGoogle Scholar
  129. Wagner A, Fell DA (2001) The small world inside large metabolic networks. Proc Biol Sci 268:1803–1810CrossRefGoogle Scholar
  130. West BJ (1990) Fractal physiology and chaos in medicine. World Scientific, SingaporezbMATHCrossRefGoogle Scholar
  131. West BJ (1999) Physiology, promiscuity and prophecy at The Millennium: a tale of tails. World Scientific, SingaporezbMATHCrossRefGoogle Scholar
  132. West BJ, Grigolini P (2011) Complex webs. Anticipating the improbable. Cambridge University Press, Cambridge UKzbMATHGoogle Scholar
  133. Williams GP (2003) Chaos theory tamed. Joseph Henry Press, Washington, DCzbMATHGoogle Scholar
  134. Wilson KG (1979) Problems in physics with many scales of length. Sci Am 241:158–179CrossRefGoogle Scholar
  135. Yamamoto Y, Hughson RL (1994) On the fractal nature of heart rate variability in humans: effects of data length and beta-adrenergic blockade. Am J Physiol 266:R40–R49Google Scholar
  136. Yates FE (1992) Fractal applications in biology: scaling time in biochemical networks. Methods Enzymol 210:636–675CrossRefGoogle Scholar
  137. Yates FE (1993) Self-organizing systems. In: Boyd CAR, Noble D (eds) The logic of life. The challenge of integrative physiology. Oxford University Press, New York, pp 189–218Google Scholar
  138. Zhou L, Cortassa S, Wei AC, Aon MA, Winslow RL, O’Rourke B (2009) Modeling cardiac action potential shortening driven by oxidative stress-induced mitochondrial oscillations in guinea pig cardiomyocytes. Biophys J 97:1843–1852CrossRefGoogle Scholar

Books and Reviews

  1. Bak P (1996) How nature works: the science of self-organized criticality. Copernicus, New YorkzbMATHCrossRefGoogle Scholar
  2. Barabasi AL (2003) Linked. Plume, New YorkGoogle Scholar
  3. Capra F (1996) The web of life. Anchor Books Doubleday, New YorkGoogle Scholar
  4. Dewey GT (1997) Fractals in molecular biophysics. Oxford University Press, New YorkzbMATHGoogle Scholar
  5. Feder J (1988) Fractals. Plenum Press, New YorkzbMATHCrossRefGoogle Scholar
  6. Glass L, Mackey MC (1988) From clocks to chaos. The rhythms of life. Princeton University Press, PrincetonzbMATHGoogle Scholar
  7. Haken H (1978) Synergetics. Springer, HeidelbergzbMATHCrossRefGoogle Scholar
  8. Jantsch E (1989) The self-organizing universe. Scientific and human implications of the emerging paradigm of evolution. Pergamon Press, OxfordGoogle Scholar
  9. Kauffman SA (1993) Origins of order: self-organization and selection in evolution. Oxford University Press, New YorkGoogle Scholar
  10. Lane N (2005) Power, sex, suicide. Mitochondria and the meaning of life. Oxford University Press, OxfordGoogle Scholar
  11. Noble D (2006) The music of life. Oxford University Press, New YorkGoogle Scholar
  12. Sornette D (2003) Why stock markets crash. Critical events in complex financial systems. Princeton University Press, PrincetonzbMATHGoogle Scholar
  13. Varela FJ (1989) Autonomie et connaissance. Seuil, ParisGoogle Scholar
  14. West BJ, Deering B (1995) The lure of modern science. Fractal thinking, vol 3. World Scientific, SingaporeGoogle Scholar
  15. Yates EF (1987) Self-organizing systems. The emergence of order. Plenum Press, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of MedicineThe Johns Hopkins UniversityBaltimoreUSA