Skip to main content

Semi-analytical Methods for Solving the KdV and mKdV Equations

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Book cover Encyclopedia of Complexity and Systems Science

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

Primary Literature

  • Abbasbandy S (2006) The application of homotopy analysis method to nonlinear equations arising in heat transfer. Phys Lett A 360:109–113

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Abdou MA, Soliman AA (2005a) New applications of variational iteration method. Phys D 211:1–8

    Article  MathSciNet  MATH  Google Scholar 

  • Abdou MA, Soliman AA (2005b) Variational iteration method for solving Burger’s and coupled Burger’s equations. J Comput Appl Math 181:245–251

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Adomian G (1988) A review of the decomposition method in applied mathematics. J Math Anal Appl 135:501–544

    Article  MathSciNet  MATH  Google Scholar 

  • Adomian G, Rach R (1992) Noise terms in decomposition solution series. Comput Math Appl 24:61–64

    Article  MathSciNet  MATH  Google Scholar 

  • Adomian G (1994) Solving frontier problems of physics: the decomposition method. Kluwer, Boston

    Book  MATH  Google Scholar 

  • Chowdhury MSH, Hashim I, Abdulaziz O (2009) Comparison of homotopy analysis method and homotopy-perturbation method for purely nonlinear fin-type problems. Commun Nonlinear Sci Numer Simul 14:371–378

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Debtnath L (1997) Nonlinear partial differential equations for scientist and engineers. Birkhauser, Boston

    Book  Google Scholar 

  • Debtnath L (2007) A brief historical introduction to solitons and the inverse scattering transform – a vision of Scott Russell. Int J Math Edu Sci Technol 38:1003–1028

    Article  MATH  Google Scholar 

  • Domairry G, Nadim N (2008) Assessment of homotopy analysis method and homotopy perturbation method in non-linear heat transfer equation. Int Commun Heat Mass Trans 35:93–102

    Article  Google Scholar 

  • Drazin PG, Johnson RS (1989) Solutions: an introduction. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Edmundson DE, Enns RH (1992) Bistable light bullets. Opt Lett 17:586

    Article  ADS  Google Scholar 

  • Fermi E, Pasta J, Ulam S (1974) Studies of nonlinear problems. American Mathematical Society, Providence, pp 143–156

    MATH  Google Scholar 

  • Gardner CS, Greene JM, Kruskal MD, Miura RM (1967) Method for solving the Korteweg-de Vries equation. Phys Rev Lett 19:1095–1097

    Article  ADS  MATH  Google Scholar 

  • Gardner CS, Greene JM, Kruskal MD, Miura RM (1974) Korteweg-de Vries equation and generalizations, VI, methods for exact solution. Commun Pure Appl Math 27:97–133

    Article  MATH  Google Scholar 

  • Geyikli T, Kaya D (2005a) An application for a modified KdV equation by the decomposition method and finite element method. Appl Math Comp 169:971–981

    Article  MathSciNet  MATH  Google Scholar 

  • Geyikli T, Kaya D (2005b) Comparison of the solutions obtained by B-spline FEM and ADM of KdV equation. Appl Math Comput 169:146–156

    MathSciNet  MATH  Google Scholar 

  • Hayat T, Abbas Z, Sajid M (2006) Series solution for the upper-convected Maxwell fluid over a porous stretching plate. Phys Lett A 358:396–403

    Article  ADS  MATH  Google Scholar 

  • Hayat T, Sajid M (2007) On analytic solution of thin film flow of a fourth grade fluid down a vertical cylinder. Phys Lett A 361:316–322

    Article  ADS  MATH  Google Scholar 

  • He JH (1997) A new approach to nonlinear partial differential equations. Commun Nonlinear Sci Numer Simul 2:203–205

    Google Scholar 

  • He JH (1999a) Homotopy perturbation technique. Comput Math Appl Mech Eng 178:257–262

    Article  MathSciNet  MATH  Google Scholar 

  • He JH (1999b) Variation iteration method - a kind of non-linear analytical technique: some examples. Int J Nonlinear Mech 34:699–708

    Article  ADS  MATH  Google Scholar 

  • He JH (2000) A coupling method of homotopy technique and a perturbation technique for nonlinear problems. Int J Nonlinear Mech 35:37–43

    Article  MATH  Google Scholar 

  • He JH (2003) Homotopy perturbation method a new nonlinear analytical technique. Appl Math Comput 135:73–79

    MathSciNet  MATH  Google Scholar 

  • He JH (2006) Some asymptotic methods for strongly nonlinear equations. Int J Mod Phys B 20:1141–1199

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • He JH, Wu XH (2006) Construction of solitary solution and compacton-like solution by variational iteration method. Chaos Solitons Fractals 29:108–113

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Helal MA, Mehanna MS (2007) A comparative study between two different methods for solving the general Korteweg-de Vries equation. Chaos Solitons Fractals 33:725–739

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hirota R (1971) Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys Rev Lett 27:1192–1194

    Article  ADS  MATH  Google Scholar 

  • Hirota R (1973) Exact N-solutions of the wave equation of long waves in shallow water and in nonlinear lattices. J Math Phys 14:810–814

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hirota R (1976) Direct methods of finding exact solutions of nonlinear evolution equations. In: Miura RM (ed) Bäcklund transformations, vol 515, lecture notes in mathematics. Springer, Berlin, pp 40–86

    Google Scholar 

  • Inan IE, Kaya D (2006) Some exact solutions to the potential Kadomtsev-Petviashvili equation. Phys Lett A 355:314–318

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Inan IE, Kaya D (2007) Exact solutions of the some nonlinear partial differential equations. Phys A 381:104–115

    Article  MathSciNet  Google Scholar 

  • Kaya D (2003) A numerical solution of the sine-Gordon equation using the modified decomposition method. Appl Math Comp 143:309–317

    Article  MathSciNet  MATH  Google Scholar 

  • Kaya D (2006) The exact and numerical solitary-wave solutions for generalized modified Boussinesq equation. Phys Lett A 348:244–250

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kaya D (2007) Some methods for the exact and numerical solutions of nonlinear evolution equations. Paper presented at the 2nd international conference on mathematics: trends and developments (ICMTD), Cairo, pp 27–30 (in press)

    Google Scholar 

  • Kaya D, Al-Khaled K (2007) A numerical comparison of a Kawahara equation. Phys Lett A 363:433–439

    Article  ADS  MATH  Google Scholar 

  • Kaya D, El-Sayed SM (2003a) An application of the decomposition method for the generalized KdV and RLW equations. Chaos Solitons Fractals 17:869–877

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kaya D, El-Sayed SM (2003b) Numerical soliton-like solutions of the potential Kadomtsev-Petviashvili equation by the decomposition method. Phys Lett A 320:192–199

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kaya D, El-Sayed SM (2003c) On a generalized fifth order KdV equations. Phys Lett A 310:44–51

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kaya D, Inan IE (2005) A convergence analysis of the ADM and an application. Appl Math Comp 161:1015–1025

    Article  MathSciNet  MATH  Google Scholar 

  • Khater AH, El-Kalaawy OH, Helal MA (1997) Two new classes of exact solutions for the KdV equation via Bäcklund transformations. Chaos Solitons Fractals 8:1901–1909

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Korteweg DJ, de Vries H (1895) On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves. Philos Mag 39:422–443

    Article  MathSciNet  MATH  Google Scholar 

  • Liao SJ (1992) The proposed homotopy analysis technique for the solution of nonlinear problems. Shanghai Jiao Tong University, Ph.D. thesis

    Google Scholar 

  • Liao SJ (1995) An approximate solution technique not depending on small parameters: a special example. Int J Nonlinear Mech 30:371

    Article  MathSciNet  MATH  Google Scholar 

  • Liao SJ (2003) Beyond perturbation: introduction to homotopy analysis method. Chapman & Hall/CRC Press, Boca Raton

    Book  Google Scholar 

  • Liao SJ (2004a) On the homotopy analysis method for nonlinear problems. Appl Math Comp 147:499

    Article  MathSciNet  MATH  Google Scholar 

  • Liao SJ (2004b) On the homotopy analysis method for nonlinear problems. Appl Math Comput 147:499–513

    MathSciNet  MATH  Google Scholar 

  • Liao SJ (2005) Comparison between the homotopy analysis method and homotopy perturbation method. Appl Math Comp 169:1186–1194

    Article  MathSciNet  MATH  Google Scholar 

  • Light Bullet Home Page. http://www.sfu.ca/~renns/lbullets.html

  • Miura RM (1968) Korteweg-de Vries equations and generalizations, I; a remarkable explicit nonlinear transformations. J Math Phys 9:1202–1204

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Miura RM, Gardner CS, Kruskal MD (1968) Korteweg-de Vries equations and generalizations, II; existence of conservation laws and constants of motion. J Math Phys 9:1204–1209

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Momani S, Abuasad S (2006) Application of He’s variational iteration method to Helmholtz equation. Chaos Solitons Fractals 27:1119–1123

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Polat N, Kaya D, Tutalar HI (2006) A analytic and numerical solution to a modified Kawahara equation and a convergence analysis of the method. Appl Math Comp 179:466–472

    Article  MathSciNet  MATH  Google Scholar 

  • Ramos JI (2008) On the variational iteration method and other iterative techniques for nonlinear differential equations. Appl Math Comput 199:39–69

    MathSciNet  MATH  Google Scholar 

  • Rayleigh L (1876) On waves. Lond Edinb Dublin. Philos Mag 5:257

    MATH  Google Scholar 

  • Russell JS (1844) Report on waves. In: Proceedings of the 14th meeting of the British Association for the Advancement of science, BAAS, London

    Google Scholar 

  • Sajid M, Hayat T (2008a) Comparison of HAM and HPM methods in nonlinear heat conduction and convection equations. Nonlinear Analy Real World Appl 9:2296–2301

    Article  MathSciNet  MATH  Google Scholar 

  • Sajid M, Hayat T (2008b) The application of homotopy analysis method for thin film flow of a third order fluid. Chaos Solitons Fractal 38:506–515

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Sajid M, Hayat T, Asghar S (2007) Comparison between HAM and HPM solutions of thin film flows of non-Newtonian fluids on a moving belt. Nonlinear Dyn 50:27–35

    Article  MathSciNet  MATH  Google Scholar 

  • Shawagfeh N, Kaya D (2004) Series solution to the Pochhammer-Chree equation and comparison with exact solutions. Comp Math Appl 47:1915–1920

    Article  MathSciNet  MATH  Google Scholar 

  • Ugurlu Y, Kaya D (2008) Exact and numerical solutions for the Cahn-Hilliard equation. Comp Math Appl 56:2987–3274

    Article  MATH  Google Scholar 

  • Wazwaz AM (1997) Necessary conditions for the appearance of noise terms in decomposition solution series. J Math Anal Appl 5:265–274

    MATH  Google Scholar 

  • Wazwaz AM (2002) Partial differential equations: methods and applications. Balkema, Rotterdam

    MATH  Google Scholar 

  • Wazwaz AM (2007a) Analytic study for fifth-order KdV-type equations with arbitrary power nonlinearities. Commun Nonlinear Sci Numer Simul 12:904–909

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wazwaz AM (2007b) A variable separated ODE method for solving the triple sine-Gordon and the triple sine-Gordon equations. Chaos Solitons Fractals 33:703–710

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wazwaz AM (2007c) The extended tan h method for abundant solitary wave solutions of nonlinear wave equations. App Math Comp 187:1131–1142

    Article  MATH  Google Scholar 

  • Wazwaz AM (2007d) The variational iteration method for solving linear and nonlinear systems of PDEs. Comput Math Appl 54:895–902

    Article  MathSciNet  MATH  Google Scholar 

  • Wazwaz AM, Helal MA (2004) Variants of the generalized fifth-order KdV equation with compact and noncompact structures. Chaos Solitons Fractals 21:579–589

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Whitham GB (1974) Linear and nonlinear waves. Wiley, New York

    MATH  Google Scholar 

  • Zabusky NJ, Kruskal MD (1965) Interactions of solitons in collisionless plasma and the recurrence of initial states. Phys Rev Lett 15:240–243

    Article  ADS  MATH  Google Scholar 

Books and Reviews

  • The following, referenced by the end of the paper, is intended to give some useful for further reading

    Google Scholar 

  • For another obtaining of the KdV equation for water waves, see Kevorkian and Cole (1981); one can see the work of the Johnson (1972) for a different water-wave application with variable depth, for waves on arbitrary shears in the work of Freeman and Johnson (1970) and Johnson (1980) for a review of one and two-dimensional KdV equations. In addition to these; one can see the book of Drazin and Johnson (1989) for some numerical solutions of nonlinear evolution equations. In the work of the Zabusky, Kruskal and Deam (F1965) and Eilbeck (F1981), one can see the motion pictures of soliton interactions. See a comparison of the KdV equation with water wave experiments in Hammack and Segur (1974)

    Google Scholar 

  • For further reading of the classical exact solutions of the nonlinear equations can be seen in the works: the Lax approach is described in Lax (1968); Calogero and Degasperis (1982, A.20), the Hirota’s bilinear approach is developed in Matsuno (1984), the Bäckland transformations are described in Rogers and Shadwick (1982); Lamb (1980, Chap. 8), the Painleve properties is discussed by Ablowitz and Segur (1981, Sect. 3.8), In the book of Dodd, Eilbeck, Gibbon and Morris (1982, Chap. 10) can found review of the many numerical methods to solve nonlinear evolution equations and shown many of their solutions

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doğan Kaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kaya, D. (2018). Semi-analytical Methods for Solving the KdV and mKdV Equations. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_305-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_305-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27737-5

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Semi-analytical Methods for Solving the KdV and mKdV Equations
    Published:
    25 November 2017

    DOI: https://doi.org/10.1007/978-3-642-27737-5_305-3

  2. Original

    Korteweg-de Vries Equation (KdV) and Modified Korteweg-de Vries Equations (mKdV), Semi-analytical Methods for Solving the
    Published:
    25 June 2014

    DOI: https://doi.org/10.1007/978-3-642-27737-5_305-2