Skip to main content

Jerky Motion in Slowly Driven Magnetic and Earthquake Fault Systems, Physics of

Encyclopedia of Complexity and Systems Science
  • 331 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Critical point:

A (phase transition) point in the parameter space of a physical system where the length-scale characteristic of its structure, called the correlation length ξ, becomes infinite and the system displays power law scaling behavior on all available scales. The associated critical power law exponents are universal, i.e., they are independent of the microscopic details of the system.

Earthquake quantities:

The most common form of earthquake data consists of seismic catalogs that list the time, location, and size of earthquakes in a given space-time domain. The size of earthquakes is usually specified by magnitudes associated with spectral amplitudes of seismograms at a given frequency and site-instrument conditions. The seismic potency and moment provide better physical characterizations for the overall size of earthquakes. Additional important quantities are the geometry of faulting (e.g., strike slip), stress drop at the source region, and radiated seismic energy.

Mean field theory:

A theoretical approximation with an interaction field that has constant strength and infinite range. In mean field approximation, every domain interacts equally strongly with every other domain, regardless of their relative distance.

Renormalization group (RG):

A set of mathematical tools and concepts used to describe the change of physics with the observation scale. Renormalization group techniques can be used to identify critical points of a system as fixed points under a coarse graining transformation and to calculate the associated critical power law exponents and the relevant tuning parameters. They can also be used to determine what changes to the system will leave the scaling exponents unchanged and thus to establish the extent of the associated universality class of the critical point.

Seismic moment:

A physical measure of earthquakes given by the rigidity at the source region times the seismic potency.

Seismic potency:

A physical measure for the size of earthquakes given by the integral of slip over the rupture area during a seismic event.

Strike-slip fault:

A style of faulting involving pure horizontal tangential motion, predicted for situations where the maximum and minimum principal stresses are both horizontal. Prominent examples include the San Andreas Fault in California, the Dead Sea Transform in the Levant, and the North Anatolian Fault in Turkey.

Tuning parameters:

Parameters such as disorder, temperature, pressure, driving force, etc., that span phase diagrams. Critical values of the tuning parameters describe critical points of the phase diagrams.

Universality:

Power law scaling exponents and scaling functions near a critical point are the same for a class of systems, referred to as universality class, independent of the microscopic details. Universal aspects typically depend only on a few basic physical attributes, such as symmetries, range of interactions, dimensions, and dynamics.

Bibliography

Primary Literature

  • Aki K, Richards PG (2002) Quantitative seismology, 2nd edn. University Science, Sausalito

    Google Scholar 

  • Ben-Zion Y (1996) Stress slip and earthquakes in models of complex single-fault systems incorporating brittle and creep deformations. J Geophys Res 101:5677–5706

    Article  Google Scholar 

  • Ben-Zion Y (2003) Appendix 2, key formulas in earthquake seismology. In: Lee WHK, Kanamori H, Jennings PC, Kisslinger C (eds) International handbook of earthquake and engineering seismology, Part B. Academic, San Diego, pp 1857–1875

    Chapter  Google Scholar 

  • Ben-Zion Y, Rice JR (1993) Earthquake failure sequences along a cellular fault zone in a three-dimensional elastic solid containing asperity and nonasperity regions. J Geophys Res 98:14109–14131

    Article  Google Scholar 

  • Ben-Zion Y, Rice JR (1995) Slip patterns and earthquake populations along different classes of faults in elastic solids. J Geophys Res 100:12959–12983

    Article  Google Scholar 

  • Ben-Zion Y, Sammis CG (2003) Characterization of fault zones. Pure Appl Geophys 160:677–715

    Article  Google Scholar 

  • Ben-Zion Y, Zhu L (2002) Potency-magnitude scaling relations for southern California earthquakes with 1.0 < ML < 7.0. Geophys J Int 148:F1–F5

    Article  Google Scholar 

  • Ben-Zion Y, Dahmen K, Lyakhovsky V, ErtaÅŸ D, Agnon A (1999) Self driven mode switching of earthquake activity on a fault system. Earth Planet Sci Lett 172(1–2):11–21

    Article  Google Scholar 

  • Bilek SL (2001) Earthquake rupture processes in circum-Pacific subduction zones. Ph.D. thesis, University of California

    Google Scholar 

  • Binney JJ, Dowrick NJ, Fisher AJ, Newman MEJ (1993) The theory of critical phenomena. Oxford University Press, Oxford

    Google Scholar 

  • Carlson JM, Langer JS, Shaw BE (1994) Dynamics of earthquake faults. Rev Mod Phys 66:658–670, and references therein

    Article  Google Scholar 

  • Chen K, Bak P, Obukhov SP (1991) Phys Rev A 43:625

    Article  Google Scholar 

  • Cizeau P, Zapperi S, Durin G, Stanley HE (1997) Phys Rev Lett 79:4669–4672

    Article  Google Scholar 

  • Cowie PA, Vanette C, Sornette D (1993) J Geophys Res 98:21809

    Article  Google Scholar 

  • Dahmen K (1995) Hysteresis, avalanches, and disorder induced critical scaling: a renormalization group approach. Ph.D. Thesis, Cornell University

    Google Scholar 

  • Dahmen K (2005) Nat Phys 1:13–14

    Article  Google Scholar 

  • Dahmen KA, Sethna JP (1996) Hysteresis, avalanches, and disorder induced critical scaling: a renormalization group approach. Phys Rev B 53:14872

    Article  Google Scholar 

  • Dahmen K, ErtaÅŸ D, Ben-Zion Y (1998) Gutenberg-Richter and characteristic earthquake behavior in a simple mean-field model of heterogeneous faults. Phys Rev E 58:1494–1501

    Article  Google Scholar 

  • Dieterich JH (1979) J Geophys Res 84:2161–2168

    Article  Google Scholar 

  • Dieterich JH (1981) Am Geophys Union Monogr 24:103–120

    Google Scholar 

  • Durin G, Zapperi S (2000) Scaling exponents for Barkhausen avalanches in polycrystalline and amorphous ferromagnets. Phys Rev Lett 84:4705–4708

    Article  Google Scholar 

  • Durin G, Zapperi S (2001) J Magn Mat 1085:242–245

    Google Scholar 

  • Durin G, Zapperi S (2002) Low field hysteresis in disordered ferromagnets. Phys Rev B 65:144441

    Article  Google Scholar 

  • ErtaÅŸ D, Kardar M (1994a) Critical dynamics of contact line depinning. Phys Rev E 49:R2532–R2535

    Article  Google Scholar 

  • ErtaÅŸ D, Kardar M (1994b) Phys Rev E 49:R2532, (1994) Phys Rev Lett 73:1703

    Article  Google Scholar 

  • Fisher DS (1998) Phys Rep 301:113

    Article  Google Scholar 

  • Fisher DS, Dahmen K, Ramanathan S, Ben-Zion Y (1997) Phys Rev Lett 78:4885–4888

    Article  Google Scholar 

  • Frohlich C, Davis SD (1993) J Geophys Res 98:631

    Article  Google Scholar 

  • Gutenberg B, Richter CF (1954) Seismicity of earth and associated phenomena. Princeton University Press, Princeton

    Google Scholar 

  • Hillers G, Mai PM, Ben-Zion Y, Ampuero J-P (2007) Statistical properties of seismicity along fault zones at different evolutionary stages. Geophys J Int 169(515):V533. doi:10.1111/j.1365-246X.2006.03275.x

    Google Scholar 

  • Houston H (2001) Influence of depth, focal mechanism, and tectonic setting on the shape and duration of earthquake source time functions. J Geophys Res 106(B6):11137–11150

    Article  Google Scholar 

  • Ji H, Robbins MO (1992) Percolative, self-affine, and faceted domain growth in random three-dimensional magnets. Phys Rev B 46:14519–14527

    Article  Google Scholar 

  • Jiles D (1991) Introduction to magnetism and magnetic materials. Chapman and Hall, London

    Book  Google Scholar 

  • Klein W, Rundle JB, Ferguson CD (1997) Scaling and nucleation in models of earthquake faults. Phys Rev Lett 78:3793–3796

    Article  Google Scholar 

  • Koiller B, Ji H, Robbins MO (1992a) Fluid wetting properties and the invasion of square networks. ibid 45:7762–7767

    Google Scholar 

  • Koiller B, Ji H, Robbins MO (1992b) Effect of disorder and lattice type on domain-wall motion in two dimensions. Phys Rev B 46:5258–5265

    Article  Google Scholar 

  • Kuntz MC, Sethna JP (2000) Phys Rev B 62:11699–11708

    Article  Google Scholar 

  • Langer JS, Carlson JM, Myers CR, Shaw BE (1996) Slip complexity in dynamic models of earthquake faults. Proc Natl Acad Sci 93:3825–3829

    Article  Google Scholar 

  • Laurson L, Alava MJ (2006) 1/f noise and avalanche scaling in plastic deformation. Phys Rev E 74:066106

    Article  Google Scholar 

  • Lomnitz-Adler J (1993) Automaton models of seismic fracture: constraints imposed by the magnitude-frequency relation. J Geophys Res 98:17745–17756

    Article  Google Scholar 

  • Lyakhovsky V, Ben-Zion Y, Agnon A (2001) Earthquake cycle, fault zones, and seismicity patterns in a rheologically layered lithosphere. J Geophys Res 106:4103–4120

    Article  Google Scholar 

  • Marchetti MC, Middleton AA, Prellberg T (2000) Viscoelastic depinning of driven systems: mean-field plastic scallops. Phys Rev Lett 85:1104–1107

    Article  Google Scholar 

  • Martys N, Robbins MO, Cieplak M (1991) Scaling relations for interface motion through disordered media: application to two-dimensional fluid invasion. Phys Rev B 44:12294–12306

    Article  Google Scholar 

  • Mayergoyz ID (1991) Mathematical models of hysteresis. Springer, New York

    Book  Google Scholar 

  • Mehta AP (2005) Ph.D. Thesis, University of Illinois at Urbana Champaign

    Google Scholar 

  • Mehta AP, Mills AC, Dahmen KA, Sethna JP (2002) Phy Rev E 65:46139, 1–6

    Article  Google Scholar 

  • Mehta AP, Dahmen KA, Ben-Zion Y (2006) Universal mean moment rate profiles of earthquake ruptures. Phys Rev E 73:056104

    Article  Google Scholar 

  • Middleton AA (1992) Phys Rev Lett 68:670

    Article  Google Scholar 

  • Miltenberger P, Sornette D, Vanette C (1993) Phys Rev Lett 71:3604

    Article  Google Scholar 

  • Myers CR, Sethna JP (1993a) Collective dynamics in a model of sliding charge-density waves. I. Critical behavior. Phys Rev B 47:11171–11193

    Article  Google Scholar 

  • Myers CR, Sethna JP (1993b) Collective dynamics in a model of sliding charge-density waves. II. Finite-size effects. Phys Rev B 47:11194–11203

    Article  Google Scholar 

  • Narayan O, Fisher DS (1992a) Critical behavior of sliding charge-density waves in 4−∈ dimensions. Phys Rev B 46:11520–11549

    Article  Google Scholar 

  • Narayan O, Fisher DS (1992b) Dynamics of sliding charge-density waves in 4−∈ dimensions. Phys Rev Lett 68:3615–3618

    Article  Google Scholar 

  • Narayan O, Fisher DS (1993) Threshold critical dynamics of driven interfaces in random media. Phys Rev B 48:7030–7042

    Article  Google Scholar 

  • Narayan O, Middleton AA (1994) Avalanches and the renormalization group for pinned charge-density waves. Phys Rev B 49:244

    Article  Google Scholar 

  • Nattermann T (1997) Theory of the random field Ising model. In: Young AP (ed) Spin glasses and random fields. World Scientific, Singapore

    Google Scholar 

  • Omori F (1894) On the aftershocks of earthquakes. J Coll Sci Imp Univ Tokyo 7:111–200

    Google Scholar 

  • Perković O, Dahmen K, Sethna JP (1995) Avalanches, Barkhausen noise, and plain old criticality. Phys Rev Lett 75:4528–4531

    Article  Google Scholar 

  • Perković O, Dahmen K, Sethna JP (1999) Disorder-induced critical phenomena in hysteresis: numerical scaling in three and higher dimensions. Phys Rev B 59:6106–6119

    Article  Google Scholar 

  • Ramanathan S, Fisher DS (1998) Phys Rev B 58:6026

    Article  Google Scholar 

  • Rice JR, Ben-Zion Y (1996) Slip complexity in earthquake fault models. Proc Natl Acad Sci 93:3811–3818

    Article  Google Scholar 

  • Ruff LJ, Miller AD (1994) Pure Appl Geophys 142:101

    Article  Google Scholar 

  • Schwarz JM, Fisher DS (2001) Depinning with dynamic stress overshoots: mean field theory. Phys Rev Lett 87:096107, 1–4

    Article  Google Scholar 

  • Sethna JP (2006) Les Houches Summer School notes. Crackling noise and avalanches: scaling, critical phenomena, and the renormalization group. E-print at http://xxx.lanl.gov/pdf/cond-mat/0612418

  • Sethna JP, Dahmen K, Kartha S, Krumhansl JA, Roberts BW, Shore JD (1993) Hysteresis and hierarchies: dynamics of disorder driven first order phase transformations. Phys Rev Lett 70:3347

    Article  Google Scholar 

  • Sethna JP, Dahmen KA, Myers CR (2001) Nature 410:242–250

    Article  Google Scholar 

  • Spasojevic D, Bukvic S, Milosevic S, Stanley HE (1996) Barkhausen noise: elementary signals. Power laws, and scaling relations. Phys Rev E 54:2531–2546

    Article  Google Scholar 

  • Travesset A, White RA, Dahmen KA (2002) Phys Rev B 66:024430

    Article  Google Scholar 

  • Utsu T (2002) Statistical features of seismology. In: Lee WHK, Kanamori H, Jennings PC, Kisslinger C (eds) International handbook of earthquake and engineering seismology, Part A. Academic, New York, pp 719–732

    Chapter  Google Scholar 

  • Utsu Y, Ogata Y, Matsu’uara RS (1995) The centenary of the Omori Formula for a decay law of aftershock activity. J Phys Earth 43:1–33

    Article  Google Scholar 

  • Vere-Jones D (1976) A branching model for crack propagation. Pure Appl Geophys 114(4):711–726

    Article  Google Scholar 

  • Zapperi S, Cizeau P, Durin G, Stanley HE (1998) Dynamics of a ferromagnetic domain wall: avalanches, depinning transition, and the Barkhausen effect. Phys Rev B 58(10):6353–6366

    Article  Google Scholar 

  • Zapperi S, Castellano C, Calaiori F, Durin G (2005) Signature of effective mass in crackling-noise asymmetry. Nat Phys 1:46–49

    Article  Google Scholar 

  • Zöller G, Holschneider M, Ben-Zion Y (2004) Quasi-static and Quasi-dynamic modeling of earthquake failure at intermediate scales. Pure Appl Geophys 161:2103–2118

    Article  Google Scholar 

  • Zöller G, Holschneider M, Ben-Zion Y (2005) The role of heterogeneities as a tuning parameter of earthquake dynamics. Pure Appl Geophys 162:1027–1049. doi:10.1007/s00024-004-2660-9

    Article  Google Scholar 

  • Zöller G, Hainzl S, Ben-Zion Y, Holschneider M (2009) Critical states of seismicity: from models to practical seismic hazard estimates. In: Encyclopedia of complexity and system science

    Google Scholar 

Download references

Acknowledgments

We thank Daniel S. Fisher, James R. Rice, James P. Sethna, Michael B. Weissman, Deniz Ertas, Matthias Holschneider, Amit Mehta, Gert Zöller, and many others for the very helpful discussions. K.D. acknowledges support from the National Science Foundation, the NSF-funded Materials Computation Center, and IBM. YBZ acknowledges support from the National Science Foundation, the United States Geological Survey, and the Southern California Earthquake Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin A. Dahmen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Dahmen, K.A., Ben-Zion, Y. (2013). Jerky Motion in Slowly Driven Magnetic and Earthquake Fault Systems, Physics of. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_299-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_299-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Physics of Jerky Motion in Slowly Driven Magnetic and Earthquake Fault Systems
    Published:
    21 January 2022

    DOI: https://doi.org/10.1007/978-3-642-27737-5_299-4

  2. Original

    Jerky Motion in Slowly Driven Magnetic and Earthquake Fault Systems, Physics of
    Published:
    12 August 2014

    DOI: https://doi.org/10.1007/978-3-642-27737-5_299-3