Encyclopedia of Complexity and Systems Science

Living Edition
| Editors: Robert A. Meyers

Jerky Motion in Slowly Driven Magnetic and Earthquake Fault Systems, Physics of

Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27737-5_299-3

Definition of the Subject

Observations indicate that earthquakes and avalanches in magnetic systems (Barkhausen noise) exhibit broad regimes of power law size distributions and related scale-invariant quantities. We review results of simple models for earthquakes in heterogeneous fault zones and avalanches in magnets that belong to the same universality class and hence have many similarities. The studies highlight the roles of tuning parameters, associated with dynamic effects and property disorder, and the existence of several general dynamic regimes. The models suggest that changes in the values of the tuning parameters can modify the frequency size event statistics from a broad power law regime to a distribution of small events combined with characteristic system-size events (characteristic distribution). In a certain parameter range, the earthquake model exhibits mode switching between both distributions. The properties of individual events undergo corresponding changes in...

Keywords

Mode Switching Stress Pulse Moment Rate Earthquake Model Failure Threshold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access

Notes

Acknowledgments

We thank Daniel S. Fisher, James R. Rice, James P. Sethna, Michael B. Weissman, Deniz Ertas, Matthias Holschneider, Amit Mehta, Gert Zöller, and many others for the very helpful discussions. K.D. acknowledges support from the National Science Foundation, the NSF-funded Materials Computation Center, and IBM. YBZ acknowledges support from the National Science Foundation, the United States Geological Survey, and the Southern California Earthquake Center.

Bibliography

Primary Literature

  1. Aki K, Richards PG (2002) Quantitative seismology, 2nd edn. University Science, SausalitoGoogle Scholar
  2. Ben-Zion Y (1996) Stress slip and earthquakes in models of complex single-fault systems incorporating brittle and creep deformations. J Geophys Res 101:5677–5706CrossRefGoogle Scholar
  3. Ben-Zion Y (2003) Appendix 2, key formulas in earthquake seismology. In: Lee WHK, Kanamori H, Jennings PC, Kisslinger C (eds) International handbook of earthquake and engineering seismology, Part B. Academic, San Diego, pp 1857–1875CrossRefGoogle Scholar
  4. Ben-Zion Y, Rice JR (1993) Earthquake failure sequences along a cellular fault zone in a three-dimensional elastic solid containing asperity and nonasperity regions. J Geophys Res 98:14109–14131CrossRefGoogle Scholar
  5. Ben-Zion Y, Rice JR (1995) Slip patterns and earthquake populations along different classes of faults in elastic solids. J Geophys Res 100:12959–12983CrossRefGoogle Scholar
  6. Ben-Zion Y, Sammis CG (2003) Characterization of fault zones. Pure Appl Geophys 160:677–715CrossRefGoogle Scholar
  7. Ben-Zion Y, Zhu L (2002) Potency-magnitude scaling relations for southern California earthquakes with 1.0 < ML < 7.0. Geophys J Int 148:F1–F5CrossRefGoogle Scholar
  8. Ben-Zion Y, Dahmen K, Lyakhovsky V, Ertaş D, Agnon A (1999) Self driven mode switching of earthquake activity on a fault system. Earth Planet Sci Lett 172(1–2):11–21CrossRefGoogle Scholar
  9. Bilek SL (2001) Earthquake rupture processes in circum-Pacific subduction zones. Ph.D. thesis, University of CaliforniaGoogle Scholar
  10. Binney JJ, Dowrick NJ, Fisher AJ, Newman MEJ (1993) The theory of critical phenomena. Oxford University Press, OxfordGoogle Scholar
  11. Carlson JM, Langer JS, Shaw BE (1994) Dynamics of earthquake faults. Rev Mod Phys 66:658–670, and references thereinCrossRefGoogle Scholar
  12. Chen K, Bak P, Obukhov SP (1991) Phys Rev A 43:625CrossRefGoogle Scholar
  13. Cizeau P, Zapperi S, Durin G, Stanley HE (1997) Phys Rev Lett 79:4669–4672CrossRefGoogle Scholar
  14. Cowie PA, Vanette C, Sornette D (1993) J Geophys Res 98:21809CrossRefGoogle Scholar
  15. Dahmen K (1995) Hysteresis, avalanches, and disorder induced critical scaling: a renormalization group approach. Ph.D. Thesis, Cornell UniversityGoogle Scholar
  16. Dahmen K (2005) Nat Phys 1:13–14CrossRefGoogle Scholar
  17. Dahmen KA, Sethna JP (1996) Hysteresis, avalanches, and disorder induced critical scaling: a renormalization group approach. Phys Rev B 53:14872CrossRefGoogle Scholar
  18. Dahmen K, Ertaş D, Ben-Zion Y (1998) Gutenberg-Richter and characteristic earthquake behavior in a simple mean-field model of heterogeneous faults. Phys Rev E 58:1494–1501CrossRefGoogle Scholar
  19. Dieterich JH (1979) J Geophys Res 84:2161–2168CrossRefGoogle Scholar
  20. Dieterich JH (1981) Am Geophys Union Monogr 24:103–120Google Scholar
  21. Durin G, Zapperi S (2000) Scaling exponents for Barkhausen avalanches in polycrystalline and amorphous ferromagnets. Phys Rev Lett 84:4705–4708CrossRefGoogle Scholar
  22. Durin G, Zapperi S (2001) J Magn Mat 1085:242–245Google Scholar
  23. Durin G, Zapperi S (2002) Low field hysteresis in disordered ferromagnets. Phys Rev B 65:144441CrossRefGoogle Scholar
  24. Ertaş D, Kardar M (1994a) Critical dynamics of contact line depinning. Phys Rev E 49:R2532–R2535CrossRefGoogle Scholar
  25. Ertaş D, Kardar M (1994b) Phys Rev E 49:R2532, (1994) Phys Rev Lett 73:1703CrossRefGoogle Scholar
  26. Fisher DS (1998) Phys Rep 301:113CrossRefGoogle Scholar
  27. Fisher DS, Dahmen K, Ramanathan S, Ben-Zion Y (1997) Phys Rev Lett 78:4885–4888CrossRefGoogle Scholar
  28. Frohlich C, Davis SD (1993) J Geophys Res 98:631CrossRefGoogle Scholar
  29. Gutenberg B, Richter CF (1954) Seismicity of earth and associated phenomena. Princeton University Press, PrincetonGoogle Scholar
  30. Hillers G, Mai PM, Ben-Zion Y, Ampuero J-P (2007) Statistical properties of seismicity along fault zones at different evolutionary stages. Geophys J Int 169(515):V533. doi:10.1111/j.1365-246X.2006.03275.xGoogle Scholar
  31. Houston H (2001) Influence of depth, focal mechanism, and tectonic setting on the shape and duration of earthquake source time functions. J Geophys Res 106(B6):11137–11150CrossRefGoogle Scholar
  32. Ji H, Robbins MO (1992) Percolative, self-affine, and faceted domain growth in random three-dimensional magnets. Phys Rev B 46:14519–14527CrossRefGoogle Scholar
  33. Jiles D (1991) Introduction to magnetism and magnetic materials. Chapman and Hall, LondonCrossRefGoogle Scholar
  34. Klein W, Rundle JB, Ferguson CD (1997) Scaling and nucleation in models of earthquake faults. Phys Rev Lett 78:3793–3796CrossRefGoogle Scholar
  35. Koiller B, Ji H, Robbins MO (1992a) Fluid wetting properties and the invasion of square networks. ibid 45:7762–7767Google Scholar
  36. Koiller B, Ji H, Robbins MO (1992b) Effect of disorder and lattice type on domain-wall motion in two dimensions. Phys Rev B 46:5258–5265CrossRefGoogle Scholar
  37. Kuntz MC, Sethna JP (2000) Phys Rev B 62:11699–11708CrossRefGoogle Scholar
  38. Langer JS, Carlson JM, Myers CR, Shaw BE (1996) Slip complexity in dynamic models of earthquake faults. Proc Natl Acad Sci 93:3825–3829CrossRefGoogle Scholar
  39. Laurson L, Alava MJ (2006) 1/f noise and avalanche scaling in plastic deformation. Phys Rev E 74:066106CrossRefGoogle Scholar
  40. Lomnitz-Adler J (1993) Automaton models of seismic fracture: constraints imposed by the magnitude-frequency relation. J Geophys Res 98:17745–17756CrossRefGoogle Scholar
  41. Lyakhovsky V, Ben-Zion Y, Agnon A (2001) Earthquake cycle, fault zones, and seismicity patterns in a rheologically layered lithosphere. J Geophys Res 106:4103–4120CrossRefGoogle Scholar
  42. Marchetti MC, Middleton AA, Prellberg T (2000) Viscoelastic depinning of driven systems: mean-field plastic scallops. Phys Rev Lett 85:1104–1107CrossRefGoogle Scholar
  43. Martys N, Robbins MO, Cieplak M (1991) Scaling relations for interface motion through disordered media: application to two-dimensional fluid invasion. Phys Rev B 44:12294–12306CrossRefGoogle Scholar
  44. Mayergoyz ID (1991) Mathematical models of hysteresis. Springer, New YorkCrossRefGoogle Scholar
  45. Mehta AP (2005) Ph.D. Thesis, University of Illinois at Urbana ChampaignGoogle Scholar
  46. Mehta AP, Mills AC, Dahmen KA, Sethna JP (2002) Phy Rev E 65:46139, 1–6CrossRefGoogle Scholar
  47. Mehta AP, Dahmen KA, Ben-Zion Y (2006) Universal mean moment rate profiles of earthquake ruptures. Phys Rev E 73:056104CrossRefGoogle Scholar
  48. Middleton AA (1992) Phys Rev Lett 68:670CrossRefGoogle Scholar
  49. Miltenberger P, Sornette D, Vanette C (1993) Phys Rev Lett 71:3604CrossRefGoogle Scholar
  50. Myers CR, Sethna JP (1993a) Collective dynamics in a model of sliding charge-density waves. I. Critical behavior. Phys Rev B 47:11171–11193CrossRefGoogle Scholar
  51. Myers CR, Sethna JP (1993b) Collective dynamics in a model of sliding charge-density waves. II. Finite-size effects. Phys Rev B 47:11194–11203CrossRefGoogle Scholar
  52. Narayan O, Fisher DS (1992a) Critical behavior of sliding charge-density waves in 4−∈ dimensions. Phys Rev B 46:11520–11549CrossRefGoogle Scholar
  53. Narayan O, Fisher DS (1992b) Dynamics of sliding charge-density waves in 4−∈ dimensions. Phys Rev Lett 68:3615–3618CrossRefGoogle Scholar
  54. Narayan O, Fisher DS (1993) Threshold critical dynamics of driven interfaces in random media. Phys Rev B 48:7030–7042CrossRefGoogle Scholar
  55. Narayan O, Middleton AA (1994) Avalanches and the renormalization group for pinned charge-density waves. Phys Rev B 49:244CrossRefGoogle Scholar
  56. Nattermann T (1997) Theory of the random field Ising model. In: Young AP (ed) Spin glasses and random fields. World Scientific, SingaporeGoogle Scholar
  57. Omori F (1894) On the aftershocks of earthquakes. J Coll Sci Imp Univ Tokyo 7:111–200Google Scholar
  58. Perković O, Dahmen K, Sethna JP (1995) Avalanches, Barkhausen noise, and plain old criticality. Phys Rev Lett 75:4528–4531CrossRefGoogle Scholar
  59. Perković O, Dahmen K, Sethna JP (1999) Disorder-induced critical phenomena in hysteresis: numerical scaling in three and higher dimensions. Phys Rev B 59:6106–6119CrossRefGoogle Scholar
  60. Ramanathan S, Fisher DS (1998) Phys Rev B 58:6026CrossRefGoogle Scholar
  61. Rice JR, Ben-Zion Y (1996) Slip complexity in earthquake fault models. Proc Natl Acad Sci 93:3811–3818CrossRefGoogle Scholar
  62. Ruff LJ, Miller AD (1994) Pure Appl Geophys 142:101CrossRefGoogle Scholar
  63. Schwarz JM, Fisher DS (2001) Depinning with dynamic stress overshoots: mean field theory. Phys Rev Lett 87:096107, 1–4CrossRefGoogle Scholar
  64. Sethna JP (2006) Les Houches Summer School notes. Crackling noise and avalanches: scaling, critical phenomena, and the renormalization group. E-print at http://xxx.lanl.gov/pdf/cond-mat/0612418
  65. Sethna JP, Dahmen K, Kartha S, Krumhansl JA, Roberts BW, Shore JD (1993) Hysteresis and hierarchies: dynamics of disorder driven first order phase transformations. Phys Rev Lett 70:3347CrossRefGoogle Scholar
  66. Sethna JP, Dahmen KA, Myers CR (2001) Nature 410:242–250CrossRefGoogle Scholar
  67. Spasojevic D, Bukvic S, Milosevic S, Stanley HE (1996) Barkhausen noise: elementary signals. Power laws, and scaling relations. Phys Rev E 54:2531–2546CrossRefGoogle Scholar
  68. Travesset A, White RA, Dahmen KA (2002) Phys Rev B 66:024430CrossRefGoogle Scholar
  69. Utsu T (2002) Statistical features of seismology. In: Lee WHK, Kanamori H, Jennings PC, Kisslinger C (eds) International handbook of earthquake and engineering seismology, Part A. Academic, New York, pp 719–732CrossRefGoogle Scholar
  70. Utsu Y, Ogata Y, Matsu’uara RS (1995) The centenary of the Omori Formula for a decay law of aftershock activity. J Phys Earth 43:1–33CrossRefGoogle Scholar
  71. Vere-Jones D (1976) A branching model for crack propagation. Pure Appl Geophys 114(4):711–726CrossRefGoogle Scholar
  72. Zapperi S, Cizeau P, Durin G, Stanley HE (1998) Dynamics of a ferromagnetic domain wall: avalanches, depinning transition, and the Barkhausen effect. Phys Rev B 58(10):6353–6366CrossRefGoogle Scholar
  73. Zapperi S, Castellano C, Calaiori F, Durin G (2005) Signature of effective mass in crackling-noise asymmetry. Nat Phys 1:46–49CrossRefGoogle Scholar
  74. Zöller G, Holschneider M, Ben-Zion Y (2004) Quasi-static and Quasi-dynamic modeling of earthquake failure at intermediate scales. Pure Appl Geophys 161:2103–2118CrossRefGoogle Scholar
  75. Zöller G, Holschneider M, Ben-Zion Y (2005) The role of heterogeneities as a tuning parameter of earthquake dynamics. Pure Appl Geophys 162:1027–1049. doi:10.1007/s00024-004-2660-9CrossRefGoogle Scholar
  76. Zöller G, Hainzl S, Ben-Zion Y, Holschneider M (2009) Critical states of seismicity: from models to practical seismic hazard estimates. In: Encyclopedia of complexity and system scienceGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Earth SciencesUniversity of Southern CaliforniaLos AngelesUSA