Encyclopedia of Complexity and Systems Science

Living Edition
| Editors: Robert A. Meyers

Identification of Cellular Automata

  • Andrew AdamatzkyEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27737-5_280-6


Cellular automaton

is an array of finite automata connected locally, which update their states in discrete time and at the same moments; every automaton updates its next state depending on the states of its closest neighbors.

Decision tree

is a mapping from a classified set of observations about an event to the conclusion about its outcome.

Deterministic automaton

has only one next state for each pair of internal and input states.

Finite automaton

is an abstract machine which takes a finite number of states and transitions between the states; the machine changes its states depending on the input states.


replicates principles of information processing by immune networks to perform computation.

Learning automaton

modifies its transition rules depending on its past experience.

Learning classifier system

is a rule-based system, a population of rules, which are processed, selected, and updated using reinforcement learning techniques.

Machine learning

is a subfield...

This is a preview of subscription content, log in to check access.


Primary Literature

  1. Adamatzky A (1990) Identification of probabilistic cellular automata. Izv AN SSSR Ser Tekhnicheskaya Kibern 3:95–100 (in Russian). Translated in Soviet (1990) J Comput Syst Sci 30:118–123Google Scholar
  2. Adamatzky A (1991) Identification of fuzzy cellular automata. Autom Comput 6:75–80Google Scholar
  3. Adamatzky A (1992a) Complexity of cellular automata identification. Avtom Telemeh 9:72–86 (in Russian). Translated (1992) Complexity of identification of cellular automata. Autom Remote Control 53(9/2):1449–1458Google Scholar
  4. Adamatzky A (1992b) Identification of nonstationary cellular automata. J Comp Sci Tech 7:379–382MathSciNetCrossRefzbMATHGoogle Scholar
  5. Adamatzky A (1992c) On complexity of identification of nonstationary cellular automata. Izv AN SSSR Ser Tekhnicheskaya Kibern 3:74–79. (in Russian)Google Scholar
  6. Adamatzky A (1993a) Implantation of cellular automata. Appl Math Comput 55:49–71MathSciNetzbMATHGoogle Scholar
  7. Adamatzky A (1993b) Identification of distributed intelligence. Izv AN SSSR Ser Tekhnicheskaya Kibern 6:359–369 (in Russian). Translated (1995) Recognition of distributed intelligence. J Comp Syst Sci Int 33:160–169Google Scholar
  8. Adamatzky A (1994a) Hierarchy of fuzzy cellular automata. J Fuzzy Sets Syst 62:167–174MathSciNetCrossRefGoogle Scholar
  9. Adamatzky A (1994b) On complexity of serial simulation of cellular-automata mappings. Avtom Telemeh 3 (in Russian). Translated (1994) Complexity of sequential realisation of cellular-automata maps. Autom Remote Control 55(2/2):271–280Google Scholar
  10. Adamatzky A (1994c) Identification of cellular automata. Taylor and Francis, LondonzbMATHGoogle Scholar
  11. Adamatzky A (1997) Automatic programming of cellular automata: identification approach. Kybernetes 26:126–135CrossRefGoogle Scholar
  12. Adamatzky A, Bronnikov V (1989) Identification of additive cellular automata. Izv AN SSSR Ser Tekhnicheskaya Kibern 3:200–205 (in Russian). Translated in Soviet (1990) J Comput Syst Sci 28:47–51Google Scholar
  13. Adamatzky A, Tolmachiev D (1997) Chemical processor for computation of skeleton of planar shape. Adv Mater Opt Electron 7:535–539Google Scholar
  14. Andre D, Bennett FH III, Koza JR (1996) Discovery by genetic programming of a cellular automata rule that is better than any known rule for the majority classification problem. In: Koza JR (ed) Genetic programming 1996. Proceedings of the 1st annual conference. MIT Press, CambridgeGoogle Scholar
  15. Brauer W (1984) Automaton-theorie. Teubner BG, StuttgartGoogle Scholar
  16. Bull L (2005) Two simple learning classifier systems. In: Bull L, Kovacs T (eds) Foundations of learning classifier systems. Springer, New York, pp 63–90CrossRefGoogle Scholar
  17. Bull L, Adamatzky A (2007) A learning classifier system approach to the identification of cellular automata. J Cell Autom 2(1):21–38MathSciNetzbMATHGoogle Scholar
  18. Bull L, Adamatzky A, De Lacy Costello B (2003) The automatic identification of spatially extended reaction-diffusion systems. EPSRC Proposal GR/S68798/01, University of the West of EnglandGoogle Scholar
  19. Das R, Crutchfield J, Mitchell M, Hanson J (1995) Evolving globally synchronized cellular automata. In: Eshelman L (ed) Proc 6th Int Conf on genetic algorithms. Morgan Kaufmann, New York, pp 336–343Google Scholar
  20. El Yacoubi S, Jacewicz P (2007) A genetic programming approach to structural identification of cellular automata. J Cell Autom 2(1):67–76MathSciNetzbMATHGoogle Scholar
  21. Heijmans HJAM (1990) Iteration of morphological transformations. CWI Q 9:19–36zbMATHGoogle Scholar
  22. Jacewicz P, El Yacoubi S (1999) A genetic programming approach to structural identification of cellular automata. In: Proc of 3th International Conference on Parallel Processing and Applied Mathematics, Kazimierz Dolny, Poland, 1999, pp 148–157Google Scholar
  23. Kleene SC (1956) Representation of events in nerve nets. In: Shannon CE, McCarthy J (eds) Automata Studies. Princeton University Press, Princeton, pp 3–41Google Scholar
  24. Koza JR (1994) Genetic programming II: automatic discovery of reusable programs. MIT Press, CambridgezbMATHGoogle Scholar
  25. Koza J, Bennett FH III, Andre D, Keane M (1999) Genetic programming III: Darwinian invention and problem solving. Morgan Kaufmann, New YorkzbMATHGoogle Scholar
  26. Kudrjavtzev VB, Podkolzin AS, Bolotov AA (1990) The foundations of the theory of homogeneous structures. Nauka Publishers, MoscowGoogle Scholar
  27. Maeda K, Sakama C (2003) Discovery of cellular automata rules using cases. In: Proceedings of the 6th international conference on discovery science, Lecture notes in artificial intelligence, vol 2843. Springer, Heidelberg, pp 357–364Google Scholar
  28. Maeda K, Sakama C (2007) Identifying cellular automata rules. J Cell Autom 2:1–20MathSciNetzbMATHGoogle Scholar
  29. Mitchell M, Hraber PT, Crutchfield JP (1993) Revisiting the edge of chaos: evolving cellular automata to perform computations. Complex Syst 7:89–130zbMATHGoogle Scholar
  30. Mitchell M, Crutchfield J, Hraber P (1994) Evolving cellular automata to perform computations: mechanisms and impediments. Phys D 75:361–391CrossRefzbMATHGoogle Scholar
  31. Moore EF (1956) Gedanken-experiments on sequential machines. In: Shannon CE, McCarthy J (eds) Automata studies. Princeton University Press, Princeton, pp 129–153Google Scholar
  32. Murphy KP (1996) Passively learning finite automata. Technical Report 96-04-017, Santa-Fe Institute, Santa FeGoogle Scholar
  33. Ronse C (1985) Definition of convexity and convex hulls in digital images. Bull Soc Math Belg Ser B 37:71–85MathSciNetzbMATHGoogle Scholar
  34. Tarakanov A, Prokaev A (2007) Identification of cellular automata by immunocomputing. J Cell Autom 2(1):39–45MathSciNetzbMATHGoogle Scholar
  35. Tarakanov A, Skormin V, Sokolova S (2003) Immunocomputing: principles and applications. Springer, New YorkCrossRefzbMATHGoogle Scholar
  36. Tolmachiev D, Adamatzky A (1996) Chemical processor for computation of Voronoi diagram. Adv Mater Opt Electron 6:191–196CrossRefGoogle Scholar
  37. Trakhtenbrot BA (1957) On operators, realizable in logical nets. DAN SSSR. Proceedings of the USSR Academy of Sciences 112:1005–1007. (in Russian)Google Scholar
  38. Trakhtenbrot BA, Bardzin YAM (1970) Finite automata (behaviour and synthesis). Nauka Publishers, MoscowGoogle Scholar
  39. Von Neumann J (1990) Theory of self-reproducing automata. University of Illinois, UrbanaGoogle Scholar
  40. Voorhees B (1996) Computational analysis of one-dimensional cellular automata. World Scientific, SingaporezbMATHGoogle Scholar
  41. Wolfram S (1994) Cellular automata and complexity: collected papers. Addison-Wesley, ReadingzbMATHGoogle Scholar
  42. Wuensche A, Lesser M (1992) The global dynamics of cellular automata. Addison-Wesley, ReadingzbMATHGoogle Scholar
  43. Yang YX, Billings SA (2003a) Identification of probabilistic cellular automata. IEEE Trans Syst Man Cybern B 33:225–236Google Scholar
  44. Yang YX, Billings SA (2003b) Identification of the neighbourhood and CA rules from spatio-temporal CA patterns. IEEE Trans Syst Man Cybern B 30:332–339Google Scholar
  45. Zhao Y, Billings SA (2006) Neighborhood detection using mutual information for the identification of cellular automata. IEEE Trans Syst Man Cybern B 36:473–479CrossRefGoogle Scholar
  46. Zhao Y, Billings SA (2007) The identification of cellular automata. J Cell Autom 2(1):21–38MathSciNetzbMATHGoogle Scholar
  47. Zhao Y, Billings SA, Routh A (2005) Identification of excitable media using cellular automata. Int J Bifur Chaos 17:153–168CrossRefzbMATHGoogle Scholar

Additional Reading

  1. Adamatzky A (2001) Computation in nonlinear media and automata collectives. IoP Publishing, BristolCrossRefzbMATHGoogle Scholar
  2. Brauer W (1984) Automaton-theorie. Teubner, LondonGoogle Scholar
  3. Chopard B, Droz M (1998) Cellular automata modeling of physical systems. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  4. Crutchfield JP, Hanson JE (1999) Computational mechanics of cellular processes. Princeton University Press, PrincetonGoogle Scholar
  5. Narendra K, Thathachar MAL (1989) Learning automata. Prentice-Hall, Upper Saddle RiverzbMATHGoogle Scholar
  6. Prokaev A, Sokolova L, Tarakanov A (2007) Using immunocomputing to forecast hydrophysical fields in the ocean. In: Int Workshop on Information Fusion and GIS (IF GIS 07), St. Petersburg (accepted for publication in LNCS)Google Scholar
  7. Sipper M (1997) Evolution of parallel cellular machines. In: The cellular programming approach, Lecture notes in computer science, vol 1194. Springer, BerlinGoogle Scholar
  8. Tarakanov A, Adamatzky A (2002) Virtual clothing in hybrid cellular automata. Kybernetes (Int J Syst Cybernetics) 31:394–405zbMATHGoogle Scholar
  9. Tarakanov A, Goncharova L, Tarakanov O (2005) A cytokine formal immune network, Lecture Notes in Artificial Intelligence, vol 3630, pp 510–519Google Scholar
  10. Tarakanov A, Prokaev A, Varnaskikh E (2007) Immunocomputing of hydroacoustic fields. Int J Unconv Comput 3:123–133Google Scholar
  11. Tarakanov A, Skormin V, Sokolova S (2003) Immunocomputing: principles and applications. Springer, New YorkCrossRefzbMATHGoogle Scholar
  12. Toffoli T, Margolus N (1987) Cellular automata machines. A new environment for modeling, MIT press series in scientific computation. MIT Press, CambridgezbMATHGoogle Scholar
  13. Weimar J (1998) Simulation with cellular automata. Logos, BerlinGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Unconventional Computing CentreUniversity of the West of EnglandBristolUK