Encyclopedia of Complexity and Systems Science

Living Edition
| Editors: Robert A. Meyers

Anisotropic Networks, Elastomers, and Gels

  • Eugene M. Terentjev
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27737-5_20-2

Definition of the Subject

Anisotropic (liquid crystalline) elastomers and gels bring together, as nowhere else, three important ideas: orientational order in amorphous soft materials, responsive molecular shape, and quenched topological constraints. Acting together, they create many new physical phenomena that are briefly reviewed in this article. Classical liquid crystals are typically fluids of relatively stiff rod molecules with long-range orientational order. Long polymer chains, with incorporated rigid anisotropic units, can also form orientationally ordered liquid crystalline phases. By contrast with free rigid rods, these flexible chains change their average molecular shape, from isotropic spherical to ellipsoidal, when their component rods align. Linking the polymer chains together into a network fixes their relative topology, and the polymer melt (or solution) becomes an elastic solid – an elastomer (or gel). Radically new properties arise from the ability to change average...

Keywords

Trace Formula Stripe Domain Deformation Gradient Tensor Nematic Order Selective Reflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

  1. Abramchuk SS, Khokhlov AR (1987) Molecular theory of high elasticity of the polymer networks with orientational ordering of links. Dokl Akad Nauk 297:385Google Scholar
  2. Adams JM, Warner M (2005a) Elasticity of smectic-A elastomers. Phys Rev E 71:021708CrossRefADSGoogle Scholar
  3. Adams JM, Warner M (2005b) Soft elasticity in smectic elastomers. Phys Rev E 72:011703CrossRefADSGoogle Scholar
  4. Annaka M, Tanaka T (1992) Multiple phases of polymer gels. Nature 355:430CrossRefADSGoogle Scholar
  5. Bhattacharya K (2003) Microstructure of martensite. Oxford University Press, OxfordzbMATHGoogle Scholar
  6. Bladon P, Terentjev EM, Warner M (1994) Deformation-induced orientational transitions in liquid crystal elastomers. J Phys II 4:75Google Scholar
  7. Brehmer M, Zentel R, Giesselmann F, Germer R, Zugemaier P (1996) Coupling of liquid crystalline and polymer network properties in LC-elastomers. Liq Cryst 21:589CrossRefGoogle Scholar
  8. Broer DJ, Lub J, Mol GN (1995) Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient. Nature 378:467CrossRefADSGoogle Scholar
  9. Camacho-Lopez M, Finkelmann H, Palffy-Muhoray P, Shelley M (2004) Fast liquid-crystal elastomer swims into the dark. Nat Mater 3:307CrossRefADSGoogle Scholar
  10. Chang C-C, Chien L-C, Meyer RB (1997a) Electro-optical study of nematic elastomer gels. Phys Rev E 56:595CrossRefADSGoogle Scholar
  11. Chang C-C, Chien L-C, Meyer RB (1997b) Piezoelectric effects in cholesteric elastomer gels. Phys Rev E 55:534CrossRefADSGoogle Scholar
  12. Cicuta P, Tajbakhsh AR, Terentjev EM (2002) Evolution of photonic structure on deformation of cholesteric elastomers. Phys Rev E 65:051704CrossRefADSGoogle Scholar
  13. Cicuta P, Tajbakhsh AR, Terentjev EM (2004) Photonic bandgaps and optical activity in cholesteric elastomers. Phys Rev E 70:011703CrossRefADSGoogle Scholar
  14. Clarke SM, Terentjev EM (1998) Slow stress relaxation in randomly disordered nematic elastomers and gels. Phys Rev Lett 81:4436CrossRefADSGoogle Scholar
  15. Clarke SM, Tajbakhsh AR, Terentjev EM, Remillat C, Tomlinson GR, House JR (2001a) Soft elasticity and mechanical damping in liquid crystalline elastomers. J Appl Phys 89:6530CrossRefADSGoogle Scholar
  16. Clarke SM, Tajbakhsh AR, Terentjev EM, Warner M (2001b) Anomalous viscoelastic response of nematic elastomers. Phys Rev Lett 86:4044CrossRefADSGoogle Scholar
  17. Courty S, Tajbakhsh AR, Terentjev EM (2003a) Phase chirality and stereo-selective swelling of cholesteric elastomers. Eur Phys J E 12:617CrossRefGoogle Scholar
  18. Courty S, Tajbakhsh AR, Terentjev EM (2003b) Stereo-selective swelling of imprinted cholesterics networks. Phys Rev Lett 91:085503CrossRefADSGoogle Scholar
  19. Cviklinski J, Tajbakhsh AR, Terentjev EM (2002) UV-isomerisation in nematic elastomers as a route to photo-mechanical transducer. Eur Phys J E 9:427CrossRefGoogle Scholar
  20. Finkelmann H, Benne I, Semmler K (1995) Smectic liquid single-crystal elastomers. Macromol Symp 96:169CrossRefGoogle Scholar
  21. Finkelmann H, Kim ST, Munoz A, Palffy-Muhoray P, Taheri B (2001a) Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Adv Mater 13:1069CrossRefGoogle Scholar
  22. Finkelmann H, Nishikawa E, Pereira GG, Warner M (2001b) A new opto-mechanical effect in solids. Phys Rev Lett 87:015501CrossRefADSGoogle Scholar
  23. Gebhard E, Zentel R (1998) Freestanding ferroelectric elastomer films. Macromol Rapid Comm 19:341CrossRefGoogle Scholar
  24. Golubović L, Lubensky TC (1989) Nonlinear elasticity of amorphous solids. Phys Rev Lett 63:1082CrossRefADSGoogle Scholar
  25. Hikmet RAM, Kemperman H (1998) Electrically switchable mirrors and optical components made from liquid-crystal gels. Nature 392:476CrossRefADSGoogle Scholar
  26. Hogan PM, Tajbakhsh AR, Terentjev EM (2002) UV-manipulation of order and macroscopic shape in nematic elastomers. Phys Rev E 65:041720CrossRefADSGoogle Scholar
  27. Ilmain F, Tanaka T, Kokufuta E (1991) Volume transition in a gel driven by hydrogen-bonding. Nature 349:400CrossRefADSGoogle Scholar
  28. Kim ST, Finkelmann H (2001) Cholesteric liquid single-crystal elastomers (LSCE) obtained by the anisotropic deswelling method. Macromol Rapid Commun 22:429CrossRefGoogle Scholar
  29. Kishi R, Shishido M, Tazuke S (1990) Liquid-crystalline polymer gels: anisotropic swelling of poly(gamma-benzyl L-glutamate) gel crosslinked under a magnetic field. Macromolecules 23:3868CrossRefADSGoogle Scholar
  30. Kishi R, Suzuki Y, Ichijo H, Hirasa H (1997) Electrical deformation of thermotropic liquid-crystalline polymer gels. Mol Cryst Liq Cryst 294:411Google Scholar
  31. Kundler I, Finkelmann H (1995) Strain-induced director reorientation in nematic liquid single-crystal elastomers. Macromol Rapid Commun 16:679CrossRefGoogle Scholar
  32. Kundler I, Finkelmann H (1998) Director reorientation via stripe-domains in nematic elastomers. Macromol Chem Phys 199:677CrossRefGoogle Scholar
  33. Küpfer J, Finkelmann H (1991) Nematic liquid single-crystal elastomers. Macromol Rapid Commun 12:717CrossRefGoogle Scholar
  34. Kutter S, Terentjev EM (2001) Tube model for the elasticity of entangled nematic rubbers. Eur Phys J E 6:221CrossRefGoogle Scholar
  35. Legge CH, Davis FJ, Mitchell GR (1991) Memory effects in liquid-crystal elastomers. J Phys II 1:1253Google Scholar
  36. Lehmann W, Gattinger P, Keck M, Kremer F, Stein P, Eckert T, Finkelmann H (1998) The inverse electromechanical effect in mechanically oriented SmC*-elastomers. Ferroelectrics 208:373CrossRefGoogle Scholar
  37. Li MH, Keller P, Li B, Wang XG, Brunet M (2003) Light-driven side-on nematic elastomer actuators. Adv Mater 15:569CrossRefGoogle Scholar
  38. Lubensky TC, Terentjev EM, Warner M (1994) Layer-network coupling in smectic elastomers. J Phys II 4:1457Google Scholar
  39. Mao Y, Warner M (2000) Theory of chiral imprinting. Phys Rev Lett 84:5335CrossRefADSGoogle Scholar
  40. Matsui T, Ozaki R, Funamoto K, Ozaki M, Yoshino K (2002) Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal. Appl Phys Lett 81:3741CrossRefADSGoogle Scholar
  41. Matsuyama A, Kato T (2002) Nematic ordering-induced volume phase transitions of liquid crystalline gels. J Chem Phys 116:8175CrossRefADSGoogle Scholar
  42. Meier W, Finkelmann H (1990) Piezoelectricity of cholesteric elastomers. Macromol Chem Rapid Commun 11:599CrossRefGoogle Scholar
  43. Mitchell GR, Davis FJ, Guo W (1993) Strain-induced transitions in liquid-crystal elastomers. Phys Rev Lett 71:2947CrossRefADSGoogle Scholar
  44. Olmsted PD (1994) Rotational invariance and goldstone modes in nematic elastomers and gels. J Phys II 4:2215Google Scholar
  45. Pelcovits RA, Meyer RB (1995) Piezoelectricity of cholesteric elastomers. J Phys II 5:877Google Scholar
  46. Roberts PMS, Mitchell GR, Davis FJ (1997) A single director switching mode for monodomain liquid crystal elastomers. J Phys II 7:1337Google Scholar
  47. Schmidtke J, Stille W, Finkelmann H (2003) Defect mode emission of a dye doped cholesteric polymer network. Phys Rev Lett 90:083902CrossRefADSGoogle Scholar
  48. Schönstein M, Stille W, Strobl G (2001) Effect of the network on the director fluctuations in a nematic side-group elastomer analysed by static and dynamic light scattering. Eur Phys J E 5:511CrossRefGoogle Scholar
  49. Shibayama M, Tanaka T (1993) Volume phase-transition and related phenomena of polymer gels. Adv Polym Sci 109:1CrossRefGoogle Scholar
  50. Stenull O, Lubensky TC (2004) Anomalous elasticity of nematic and critically soft elastomers. Phys Rev E 69:021807CrossRefADSMathSciNetGoogle Scholar
  51. Stenull O, Lubensky TC (2005) Phase transitions and soft elasticity of smectic elastomers. Phys Rev Lett 94:018304CrossRefADSGoogle Scholar
  52. Stenull O, Lubensky TC (2006) Soft elasticity in biaxial smectic and smectic-C elastomers. Phys Rev E 74:051709CrossRefADSGoogle Scholar
  53. Tabiryan N, Serak S, Dai X-M, Bunning T (2005) Polymer film with optically controlled form and actuation. Opt Express 13:7442CrossRefADSGoogle Scholar
  54. Tajbakhsh AR, Terentjev EM (2001) Spontaneous thermal expansion of nematic elastomers. Eur Phys J E 6:181CrossRefGoogle Scholar
  55. Tanaka T (1978) Collapse of gels and critical endpoint. Phys Rev Lett 40:820CrossRefADSGoogle Scholar
  56. Terentjev EM (1993) Phenomenological theory of non-uniform nematic elastomers: free energy of deformations and electric field effects. Europhys Lett 23:27CrossRefADSGoogle Scholar
  57. Terentjev EM (1995) Density functional model of anchoring energy at a liquid crystalline polymersolid interface. J Phys II 5:159Google Scholar
  58. Terentjev EM, Warner M (1999) Piezoelectricity of chiral nematic elastomers. Eur Phys J B 8:595CrossRefADSGoogle Scholar
  59. Terentjev EM, Warner M, Bladon P (1994) Orientation of liquid crystal elastomers and gels by an electric field. J Phys II 4:667Google Scholar
  60. Thomsen DL, Keller P, Naciri J, Pink R, Jeon H, Shenoy D, Ratna BR (2001) Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules 34:5868CrossRefADSGoogle Scholar
  61. Urayama K, Okuno Y, Nakao T, Kohjiya S (2003) Volume transition of nematic gels in nematogenic solvents. J Chem Phys 118:2903CrossRefADSGoogle Scholar
  62. Urayama K, Arai YO, Takigawa T (2005a) Volume phase transition of monodomain nematic polymer networks in isotropic solvents. Macromolecules 38:3469CrossRefADSGoogle Scholar
  63. Urayama K, Kondo H, Arai YO, Takigawa T (2005b) Electrically driven deformations of nematic gels. Phys Rev E 71:051713CrossRefADSGoogle Scholar
  64. Vallerien SU, Kremer F, Fischer EW, Kapitza H, Zentel R, Poths H (1990) Experimental proof of piezoelectricity in cholesteric and chiral smectic C* phases of LC-elastomers. Macromol Chem Rapid Comm 11:593CrossRefGoogle Scholar
  65. Verwey GC, Warner M (1997) Compositional fluctuations and semisoftness in nematic elastomers. Macromolecules 30:4189CrossRefADSGoogle Scholar
  66. Verwey GC, Warner M, Terentjev EM (1996) Elastic instability and stripe domains in liquid crystalline elastomers. J Phys II 6:1273Google Scholar
  67. Warner M, Terentjev EM (2007) Liquid crystal elastomers, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  68. Warner M, Gelling KP, Vilgis TA (1988) Theory of nematic networks. J Chem Phys 88:4008CrossRefADSGoogle Scholar
  69. Warner M, Bladon P, Terentjev EM (1994) ‘Soft Elasticity’ - Deformations without resistance in liquid crystal elastomers. J Phys II 4:93Google Scholar
  70. Warner M, Terentjev EM, Meyer RB, Mao Y (2000) Untwisting of a cholesteric elastomer by a mechanical field. Phys Rev Lett 85:2320CrossRefADSGoogle Scholar
  71. Yu Y, Nakano M, Ikeda T (2003) Directed bending of a polymer film by light - miniaturizing a simple photomechanical system. Nature 425:145CrossRefADSGoogle Scholar
  72. Yusuf Y, Ono Y, Sumisaki Y, Cladis PE, Brand HR, Finkelmann H, Kai S (2004) Swelling dynamics of liquid crystal elastomers swollen with low molecular weight liquid crystals. Phys Rev E 69:021710CrossRefADSGoogle Scholar
  73. Zubarev ER, Talroze RV, Yuranova TI, Vasilets VN, Plate NA (1996) Influence of crosslinking conditions on the phase behavior of a polyacrylate-based liquid-crystalline elastomer. Macromol Rapid Commun 17:43CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Cavendish LaboratoryUniversity of CambridgeCambridgeUK