Encyclopedia of Complexity and Systems Science

Living Edition
| Editors: Robert A. Meyers

Extreme Value Statistics

  • Mario Nicodemi
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27737-5_197-3

Definition of the Subject

Extreme value theory is concerned with the statistical properties of the extreme events related to a random variable (see Fig. 1), and the understanding and applications of their probability distributions. The methods and the practical use of such a theory have been developed in the last 60 years; though, many complex real-life problems have only recently been tackled. Many disciplines use the tools of extreme value theory including meteorology, hydrology, ocean wave modeling, and finance to name just a few.

Keywords

Extreme Event Gumbel Distribution Flood Frequency Analysis Random Energy Model Burger Turbulence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

  1. Antal T, Droz M, Gyrgyi G, Racz Z (2001) Phys Rev Lett 87:240601CrossRefADSGoogle Scholar
  2. Berman SM (1964) Ann Math Stat 35:502CrossRefGoogle Scholar
  3. Bouchaud J-P, Mézard M (1997) J Phys A 30:7997CrossRefADSGoogle Scholar
  4. Bramwell ST, Holdsworth PCW, Pinton J-F (1998) Nature (London) 396:552CrossRefADSGoogle Scholar
  5. Bramwell ST, Christensen K, Fortin J-Y, Holdsworth PCW, Jensen HJ, Lise S, Lopez JM, Nicodemi M, Pinton J-F, Sellitto M (2000) Phys Rev Lett 84:3744CrossRefADSGoogle Scholar
  6. Bunde A, Kropp J, Schellnhuber H-J (eds) (2002) The science of disasters-climate disruptions, heart attacks, and market crashes. Springer, BerlinGoogle Scholar
  7. Castellana M, Decelle A, Zarinelli E (2011) Extreme value statistics distributions in spin glasses. Phys Rev Lett 107:275701CrossRefADSGoogle Scholar
  8. Comtet A, Leboeuf P, Majumdar SN (2007) Phys Rev Lett 98:070404CrossRefADSGoogle Scholar
  9. Dahlstedt K, Jensen HJ (2001) J Phys A 34:11193; [Inspec] [ISI]Google Scholar
  10. Dean DS, Majumdar SN (2001) Phys Rev E 64:046121CrossRefADSGoogle Scholar
  11. Eichner JF, Kantelhardt JW, Bunde A, Havlin S (2006) Phys Rev E 73:016130CrossRefADSGoogle Scholar
  12. Embrechts P, Klüppelberg C, Mikosch T, Karatzas I, Yor M (eds) (1997) Modelling extremal events. Springer, BerlinzbMATHGoogle Scholar
  13. Finkenstadt B, Rootzen H (2004) Extreme values in finance, telecommunications, and the environment. Chapman and Hall/CRC Press, LondonzbMATHGoogle Scholar
  14. Galambos J (1978) The asymptotic theory of extreme order statistics. Wiley, New YorkzbMATHGoogle Scholar
  15. Galambos J, Lechner J, Simin E (eds) (1994) Extreme value theory and applications. Kluwer, DordrechtzbMATHGoogle Scholar
  16. Gnedenko BV (1998) Theory of probability. CRC, Boca RatonzbMATHGoogle Scholar
  17. Guclu H, Korniss G (2004) Phys Rev E 69:065104(R)Google Scholar
  18. Gumbel EJ (1958) Statistics of extremes. Columbia University Press, New YorkzbMATHGoogle Scholar
  19. Leadbetter MR, Lindgren G, Rootzen H (1983) Extremes and related properties of random sequences and processes. Springer, New YorkCrossRefzbMATHGoogle Scholar
  20. Majumdar SN, Comtet A (2004) Phys Rev Lett 92:225501; (2005) J Stat Phys 119:777CrossRefADSGoogle Scholar
  21. Raychaudhuri S, Cranston M, Przybyla C, Shapir Y (2001) Phys Rev Lett 87:136101CrossRefADSGoogle Scholar
  22. Reiss RD, Thomas M (2001) Statistical analysis of extreme values: with applications to insurance, finance, hydrology, and other fields. Birkhäuser, BaselzbMATHGoogle Scholar
  23. Smith RL (2003) Statistics of extremes, with applications in environment, insurance and finance, chap 1. In: Statistical analysis of extreme values: with applications to insurance, finance, hydrology, and other fields. Birkhäuser, BaselGoogle Scholar
  24. Smith RL, Tawn JA, Yuen HK (1990) Statistics of multivariate extremes. Int Stat Rev 58:47CrossRefzbMATHGoogle Scholar
  25. von Storch H, Zwiers FW (2001) Statistical analysis in climate research. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Naples “Federico II”NaplesItaly