Encyclopedia of Complexity and Systems Science

Living Edition
| Editors: Robert A. Meyers

Elastic Percolation Networks

  • Phillip M. Duxbury
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27737-5_170-3

Definition of the Subject

Materials or structures with sufficiently low connectivity are floppy and have very low elastic moduli, while at high connectivity, they are rigid and have relatively high elastic moduli. Elastic percolation networks describe the transition from floppy to rigid that occurs as the network connectivity increases. The percolative geometry and elastic behavior near percolation are of particular interest. Conventional percolative geometries describe some experimental systems however the elastic critical behavior falls into several different universality classes. Moreover, distinct percolative geometries occur in systems with only central forces or which have soft torsional forces, and in these cases, both the geometry and elastic behavior may be distinct from conventional percolation. Granular media manifest a further distinct elastic percolation network, with the concept of an isostatic network underlying elastic behavior near jamming. This rich fundamental...


Percolation Threshold Granular Medium Triangular Lattice Chalcogenide Glass Bethe Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Alava MJ, Niskanen KJ (2006) The physics of paper. Rep Prog Phys 69:669–724ADSCrossRefGoogle Scholar
  2. Alexander S (1998) Amorphous materials: their structure, lattice dynamics and elasticity. Phys Rep 296:65–236ADSCrossRefGoogle Scholar
  3. Angell CA (2004) Boson peaks and floppy modes: some relations between constraint and excitions phenomenology, and interpretation, of glasses and glass transition. J Phys Condens Matter 16:S5153–S5164ADSCrossRefGoogle Scholar
  4. Axelos MAV, Kolb M (1990) Crosslinked biopolymers: experimental evidence for scalar percolation theory. Phys Rev Lett 64:1457–1460ADSCrossRefGoogle Scholar
  5. Barsky SJ, Plischke M (1996) Order and localization in randomly cross-linked polymer networks. Phys Rev E 53:871–876ADSCrossRefGoogle Scholar
  6. Bausch AR, Kroy K (2006) A bottom-up approach to cell mechanics. Nat Phys 2:231–238CrossRefGoogle Scholar
  7. Benguigui L (1984) Experimental study of the elastic properties of a percolating system. Phys Rev Lett 53:2028–2030ADSCrossRefGoogle Scholar
  8. Bergman DJ (2003) Exact relations between critical exponents for elastic stiffness and electrical conductivity of percolating networks. Physica B 338:240–246MathSciNetADSCrossRefGoogle Scholar
  9. Boolchand P, Georgiev DG, Goodman B (2001) Discovery of the intermediate phase in chalcogenide glasses. J Optoelectron Adv Mater 3:703–720Google Scholar
  10. Boolchand P, Lucovsky G, Phillips JC, Thorpe MF (2005) Self-organization and the physics of glassy networks. Philos Mag 85:3823–3838ADSCrossRefGoogle Scholar
  11. Bresser W, Boolchand P, Suranyi P (1986) Rigidity percolation and molecular clustering in network glasses. Phys Rev Lett 56:2493–2496ADSCrossRefGoogle Scholar
  12. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S et al (2004) Charmm: a program for macromolecular energy, minimization and dynamics calculations. J Comput Chem 4:187–217CrossRefGoogle Scholar
  13. Cai Y (1989) Floppy modes in network glasses. Phys Rev B 40:10535–10542ADSCrossRefGoogle Scholar
  14. Chalupa J, Leath PL, Reich GR (1979) Bootstrap percolation on a bethe lattice. J Phys C 12:L31–L35ADSCrossRefGoogle Scholar
  15. Chubynsky MV, Thorpe MV (2007) Algorithms for 3d-rigidity analysis and a first-order percolation transition. Phys Rev E 76:41135ADSCrossRefGoogle Scholar
  16. Day AR, Tremblay RR, Tremblay AMS (1986) Rigid backbone: a new geometry for percolation. Phys Rev Lett 56:2501–2504ADSCrossRefGoogle Scholar
  17. de Gennes PG (1976) On the relation between percolation theory and the elasticity of gels. J Phys 37:L1–L2Google Scholar
  18. de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, New YorkGoogle Scholar
  19. Deptuck D, Harrison JP, Zawadzki P (1985) Measurement of elasticity and conductivity of a three-dimensional percolation system. Phys Rev Lett 54:913–916ADSCrossRefGoogle Scholar
  20. Dohler GH, Dandoloff R, Bilz H (1980) A topological-dynamical model of amorphycity. J Non-Cryst Solids 42:87–95ADSCrossRefGoogle Scholar
  21. Donev A, Torquato S, Stillinger FH (2005) Pair correlation function characteristics of nearly jammed disordered and ordered hard-sphere packings. Phys Rev E 71:11105MathSciNetADSCrossRefGoogle Scholar
  22. Duxbury PM, Jacobs DJ, Thorpe MF, Moukarzel C (1999) Floppy modes and the free energy: rigidity and connectivity percolation on bethe lattices. Phys Rev E 59:2084–2092ADSCrossRefGoogle Scholar
  23. Feng S, Sen PN (1984) Percolation on elastic networks: new exponent and threshold. Phys Rev Lett 52:216–219ADSCrossRefGoogle Scholar
  24. Feng S, Thorpe MF, Garboczi E (1985) Effective-medium theory of percolation on central-force networks. Phys Rev B 31:276–280ADSCrossRefGoogle Scholar
  25. Feng S, Halperin B, Sen PN (1987) Transport properties of continuum systems near the percolation threshold. Phys Rev B 35:197–214ADSCrossRefGoogle Scholar
  26. Feng X, Bresser WJ, Boolchand P (1997) Direct evidence for stiffness threshold in chalcogenide glasses. Phys Rev Lett 78:4422–4425ADSCrossRefGoogle Scholar
  27. Fisher ME, Essam JW (1961) Some cluster size and percolation problems. J Math Phys 2:609–619zbMATHMathSciNetADSCrossRefGoogle Scholar
  28. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, New YorkGoogle Scholar
  29. Grant MC, Russell WB (1993) Volume fraction dependence of elastic moduli and transition temperatures for colloidal silica gels. Phys Rev E 47:2606–2614ADSCrossRefGoogle Scholar
  30. Guyon E, Roux S, Hansen A, Bideau D, Troadec JP et al (1990) Non-local and non-linear problems in the mechanics of disordered systems: application to granular media and rigidity problems. Rep Prog Phys 53:373–419ADSCrossRefGoogle Scholar
  31. Hansen A, Roux S (1989) Universality class of central-force percolation. Phys Rev B 40:749–752ADSCrossRefGoogle Scholar
  32. He H, Thorpe MF (1985) Elastic properties of glasses. Phys Rev Lett 54:2107–2110ADSCrossRefGoogle Scholar
  33. Head DA, Levine AJ, MacKintosh FC (2003) Distinct regimes of elastic response and deformation modes of crosslinked cytoskeletal and semiflexible polymer networks. Phys Rev E 68:61907ADSCrossRefGoogle Scholar
  34. Hendrickson B (1992) Conditions for unique graph realizations. SIAM J Comput 21:65–84zbMATHMathSciNetCrossRefGoogle Scholar
  35. Heussinger C, Frey E (2006) Stiff polymers, foams and fiber networks. Phys Rev Lett 96:1–4CrossRefGoogle Scholar
  36. Jacobs DJ (1998) Generic rigidity in three-dimensional bond-bending networks. J Phys A Math Gen 31:6653–6668zbMATHMathSciNetADSCrossRefGoogle Scholar
  37. Jacobs DJ, Hendrickson B (1997) An algorithm for two-dimensional rigidity percolation: the pebble game. J Comput Phys 137:346–365zbMATHMathSciNetADSCrossRefGoogle Scholar
  38. Jacobs DJ, Thorpe MF (1995) Generic rigidity percolation: the pebble game. Phys Rev Lett 75:4051–4054ADSCrossRefGoogle Scholar
  39. Jacobs DJ, Thorpe MF (1996) Generic rigidity percolation in two dimensions. Phys Rev E 53:3682–3693ADSCrossRefGoogle Scholar
  40. Kamitakahara WA, Cappelletti RL, Boolchand P, Halfpap B, Gompf F et al (1991) Vibrational densities of states and network rigidity in chalcogenide glasses. Phys Rev B 44:94–100ADSCrossRefGoogle Scholar
  41. Kantor Y, Webman I (1984) Elastic properties of random percolating systems. Phys Rev Lett 52:1891–1894ADSCrossRefGoogle Scholar
  42. Kasza KE, Rowat AC, Liu J, Angelini RE, Brangwynne CP et al (2007) The cell as a material. Curr Opin Cell Biol 19:101–107CrossRefGoogle Scholar
  43. Laman G (1970) On graphs and rigidity of plane skeletal structures. J Eng Math 4:331–340zbMATHMathSciNetCrossRefGoogle Scholar
  44. LatvaKokko M, Timonen J (2001) Rigidity of random networks of stiff fibers in the low density limit. Phys Rev E 64:66117ADSCrossRefGoogle Scholar
  45. LatvaKokko M, Makinen J, Timonen J (2001) Rigidity transition in two-dimensional random fiber networks. Phys Rev E 63:46113ADSCrossRefGoogle Scholar
  46. Majmudar TS, Sperl M, Luding S, Behinger RP (2007) Jamming transition in granular systems. Phys Rev Lett 98:58001ADSCrossRefGoogle Scholar
  47. Martin JE, Adolf D, Wilcox JP (1988) Viscoelasticity of near-critical gels. Phys Rev Lett 61:2620–2623ADSCrossRefGoogle Scholar
  48. Maxwell JC (1864) On the calculation of the equilibrium stiffness of frames. Philos Mag 27:294–301Google Scholar
  49. Mayo SL, Olafson BD, Goddard WA (1990) Dreiding: a generic force field for molecular simulations. J Phys Chem 94:8897–8909CrossRefGoogle Scholar
  50. Moukarzel C (1996) An efficient algorithm for testing the generic rigidity of graphs in the plane. J Phys A Math Gen 29:8079–8098zbMATHMathSciNetADSCrossRefGoogle Scholar
  51. Moukarzel CF (1998) Isostatic phase transition and instability in stiff granular materials. Phys Rev Lett 81:1634–1637ADSCrossRefGoogle Scholar
  52. Moukarzel C, Duxbury PM (1990) Comparison of rigidity and connectivity percolation in two dimensions. Phys Rev E 59:2614–2622ADSCrossRefGoogle Scholar
  53. Moukarzel C, Duxbury PM (1995) Stressed backbone and elasticity of random central-force system. Phys Rev Lett 75:4055–4058ADSCrossRefGoogle Scholar
  54. Moukarzel C, Duxbury PM, Leath PL (1997a) First-order rigidity on Cayley trees. Phys Rev E 55:5800–5811ADSCrossRefGoogle Scholar
  55. Moukarzel C, Duxbury PM, Leath PL (1997b) Infinite-cluster geometry in central-force networks. Phys Rev Lett 78:1480–1483ADSCrossRefGoogle Scholar
  56. Obukhov SP (1995) First order rigidity transition in random rod networks. Phys Rev Lett 74:4472–4475ADSCrossRefGoogle Scholar
  57. Ohern CS, Silbert LE, Liu AJ, Nagel SR (2003) Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys Rev E 68:11306ADSCrossRefGoogle Scholar
  58. Parisi G (2003) On the origin of the boson peak. J Phys Condens Matter 15:S765–S774ADSCrossRefGoogle Scholar
  59. Phillips JC (1979) Topology of covalent non-crystalline solids i: short-range order in chalcogenide alloys. J Non-Cryst Solids 34:153–181ADSCrossRefGoogle Scholar
  60. Plischke M (2006) Critical behavior of entropic shear rigidity. Phys Rev E 73:61406ADSCrossRefGoogle Scholar
  61. Plischke M, Joos B (1998) Entropic elasticity of diluted central force networks. Phys Rev Lett 80:4907–4910ADSCrossRefGoogle Scholar
  62. Plischke M, Vernon DC, Joos B, Zhou Z (1998) Entropic elasticity of diluted central force networks. Phys Rev E 60:3129–3135ADSCrossRefGoogle Scholar
  63. Rader AJ, Hespenheide BM, Kuhn LA, Thorpe MF (2002) Protein unfolding: rigidity lost. PNAS 99:3540–3545ADSCrossRefGoogle Scholar
  64. Rivoire O, Barré J (2006) Exactly solvable models of adaptive networks. Phys Rev Lett 97:148701ADSCrossRefGoogle Scholar
  65. Ross-Murphy SB (2007) Biopolymer gelation-exponents and critical exponents. Polym Bull 58:119–126CrossRefGoogle Scholar
  66. Rueb CJ, Zukoski CF (1997) Viscoelastic properties of colloidal gels. J Rheol 41:197–218ADSCrossRefGoogle Scholar
  67. Sahimi M (1998) Non-linear and non-local transport processes in heterogeneous media: from long-range correlated percolation to fracture and materials breakdown. Phys Rep 306:214–395MathSciNetADSCrossRefGoogle Scholar
  68. Sahimi M, Arbabi S (1993a) Mechanics of disordered solids. i. percolation on elastic networks with central forces. Phys Rev B 47:695–702ADSCrossRefGoogle Scholar
  69. Sahimi M, Arbabi S (1993b) Mechanics of disordered solids. ii. percolation on elastic networks with bond-bending forces. Phys Rev B 47:703–712ADSCrossRefGoogle Scholar
  70. Schwartz LM, Feng S, Thorpe MF, Sen PN (1985) Behavior of depleted elastic networks: comparison of effective medium theory and numerical simulations. Phys Rev B 32:4607–4617ADSCrossRefGoogle Scholar
  71. Schwarz JH, Liu AJ, Chayes LQ (2006) The onset of jamming as the sudden emergence of an infinite k-core cluster. Europhys Lett 73:560–566ADSCrossRefGoogle Scholar
  72. Serrano D, Peyrelasse J, Boned C, Harran D, Monge P (1990) Application of the percolation model to gelation of an epoxy resin. J Appl Polym Sci 39:670–693CrossRefGoogle Scholar
  73. Stauffer D, Coniglio A, Adam M (1982) Gelation and critical phenomena. Adv Polym Sci 44:103–158CrossRefGoogle Scholar
  74. Tang W, Thorpe MF (1988) Percolation of elastic networks under tension. Phys Rev B 37:5539–5551ADSCrossRefGoogle Scholar
  75. Tay TS (1984) Rigidity of multi-graphs. i. linking rigid bodies in n-space. J Comb Theory B 36:95–112zbMATHMathSciNetCrossRefGoogle Scholar
  76. Tay TS, Whiteley W (1985) Generating isostatic frameworks. Struct Topol 11:21–68zbMATHMathSciNetGoogle Scholar
  77. Tharmann R, Claessens MMAE, Bausch AR (2007) Viscoelasticity of isotropically crosslinked actin networks. Phys Rev Lett 98:88103ADSCrossRefGoogle Scholar
  78. Thorpe MF (1983) Continuous deformations in random networks. J Non-Cryst Solids 57:355–370ADSCrossRefGoogle Scholar
  79. Thorpe MF, Duxbury PM (eds) (1999) Rigidity theory and applications. Plenum, New YorkGoogle Scholar
  80. Thorpe MF, Jacobs DJ, Chubynsky MV, Phillips JC (2000) Self-organization in network glasses. J Non-Cryst Solids 266–269:859–866CrossRefGoogle Scholar
  81. Uebbing B, Sievers AJ (1996) Role of network topology on the vibrational lifetime of an H 2 O molecule in the ge-as-se glass series. Phys Rev Lett 76:932–935ADSCrossRefGoogle Scholar
  82. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174CrossRefGoogle Scholar
  83. Whiteley W (2005) Counting out to the flexibility of molecules. Phys Biol 2:S116–S126ADSCrossRefGoogle Scholar
  84. Winter HH, Mours M (1997) Rheology of polymers near the liquid-solid transition. Adv Polym Sci 134:165–234CrossRefGoogle Scholar
  85. Wyart M (2005) On the rigidity of amorphous solids. Ann Phys Fr 30:1–96CrossRefGoogle Scholar
  86. Wyart M, Nagel SR, Witten TA (2005) Geometric origin of excess low-frequency vibrational modes in weakly connected amorphous solids. Europhys Lett 72:486–492ADSCrossRefGoogle Scholar
  87. Wyss HM, Tervoort EV, Gauckler LJ (2005) Mechanics and microstructures of concentrated particle gels. J Am Ceram Soc 88:2337–2348CrossRefGoogle Scholar
  88. Xing X, Mukhopadhyay S, Goldbart PM (2004) Scaling of entropic shear rigidity. Phys Rev Lett 93:225701ADSCrossRefGoogle Scholar
  89. Xu J, Bohnsack DA, Mackay ME, Wooley KL (2007) Unusual mechanical performance of amphiphilic crosslinked polymer networks. J Am Chem Soc Commun 129:506–507CrossRefGoogle Scholar
  90. Zabolitzky JG, Bergman DJ, Stauffer D (1985) Precision calculation of elasticity for percolation. J Stat Phys 54:913–916Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Michigan State UniversityEast LansingUSA