Skip to main content

Drug Design, Molecular Descriptors in

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Complexity and Systems Science

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ADMET:

Absorption, distribution, metabolism, excretion, and toxicity, five factors which determine whether a compound with favorable features resulting from a computer-assisted drug design will also be a useful medicinal drug.

Local vertex invariant (LOVI):

A number associated with a vertex of a molecular graph. It does not depend on the arbitrary numerical labeling of vertices.

Molecular descriptor:

A mathematical entity (either a number or a set of numbers characterizing substituents or molecular fragments) associated with a chemical structure, allowing quantitative manipulations of such structures (correlations with properties, clustering, ordering or partial ordering, determination of similarity or dissimilarity). Constitutional isomerism is associated with topological indices or other two-dimensional descriptors, whereas stereoisomerism requires three-dimensional descriptors.

Molecular graph:

Constitutional chemical formula representing atoms by points (vertices) and covalent bonds by lines (edges). Hydrogen atoms are usually omitted (in hydrogen-depleted graphs) and carbon atoms are not shown explicitly, but other atoms are assigned weights according to the nature of the heteroatom. Multiple bonds are shown explicitly in multigraphs.

Pharmacophore:

A set of chemical features that determine the biological activity.

Quantitative structure–activity relationship (QSAR):

Mathematical correlation (e.g., a mono- or multiparametric equation) between a physical or a chemical property and molecular descriptor(s).

Quantitative structure–property relationship (QSPR):

Mathematical correlation (e.g., a mono- or multi-parametric equation) between a biological property and molecular descriptor(s).

Quantitative structure–toxicity relationship (QSTR):

Mathematical correlation (e.g., a mono- or multi-parametric equation) between toxicologic properties and molecular descriptor(s).

Receptor:

Physiological macromolecule (usually a protein, but sometimes DNA or RNA), also called target, to which a drug (ligand) binds.

Topological index (TI):

A number characterizing a molecular constitutional graph, resulting from mathematical operations on the LOVIs, or edges/vertices of the graph.

Bibliography

  • Balaban AT (ed) (1976) Chemical applications of graph theory. Academic, London

    Google Scholar 

  • Balaban AT (1979) Theor Chim Acta 5:239

    MATH  Google Scholar 

  • Balaban AT (1982) Chem Phys Lett 89:399

    ADS  MathSciNet  Google Scholar 

  • Balaban AT (1983) Pure Appl Chem 55:199

    Google Scholar 

  • Balaban AT (1986) MATCH Commun Math Comput Chem 21:115

    MathSciNet  Google Scholar 

  • Balaban AT (1995) J Chem Inf Comput Sci 35:339 (1994 Herman Skolnik Award Lecture)

    Google Scholar 

  • Balaban AT (ed) (1997a) From chemical topology to three-dimensional geometry. Plenum, New York

    Google Scholar 

  • Balaban AT (1997b) J Chem Inf Comput Sci 37:645

    Google Scholar 

  • Balaban AT (2000) Quantitative structure-activity relationships and computational methods in drug discovery. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, p 7288

    Google Scholar 

  • Balaban AT (2002a) In: Rouvray DH, King RB (eds) Topology in chemistry: discrete mathematics of molecules. Horwood, Chichester, p 89

    Google Scholar 

  • Balaban AT (2002b) MATCH Commun Math Comput Chem 45:5

    Google Scholar 

  • Balaban AT (2005) J Comput Aided Mol Des 19:651

    ADS  Google Scholar 

  • Balaban AT, Balaban TS (1991) J Math Chem 8:383

    MathSciNet  Google Scholar 

  • Balaban AT, Catana C (1994) SAR QSAR Environ Res 2:1

    Google Scholar 

  • Balaban AT, Diudea MV (1993) J Chem Inf Comput Sci 33:421

    Google Scholar 

  • Balaban AT, Pompe M (2007) J Phys Chem 111:2448; erratum, ibid. 4871

    Google Scholar 

  • Balaban AT, Quintas LV (1983) MATCH Commun Math Comput Chem 14:213

    MATH  MathSciNet  Google Scholar 

  • Balaban AT, Ionescu-Pallas N, Balaban TS (1985) MATCH Commun Math Comput Chem 17:121

    MATH  MathSciNet  Google Scholar 

  • Balaban AT, Bertelsen S, Basak SC (1994) MATCH Commun Math Comput Chem 30:55

    Google Scholar 

  • Balaban AT, Beteringhe A, Constantinescu T, Filip PA, Ivanciuc O (2007) J Chem Inf Model 47:716

    Google Scholar 

  • Baron R (ed) (2011) Computational drug discovery and design: methods and protocols, Methods in molecular biology. Springer, Berlin

    Google Scholar 

  • Basak SC (1999) In: Devillers J, Balaban AT (eds) Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach, Amsterdam, p 563

    Google Scholar 

  • Basak SC, Gute BD (2001) J Mol Graphics Model 20:95

    Google Scholar 

  • Basak SC, Balaban AT, Grunwald G, Gute BD (2000) J Chem Inf Comput Sci 40:891

    Google Scholar 

  • Basak SC, Mills D, Balaban AT, Gute BD (2001) J Chem Inf Comput Sci 41:671

    Google Scholar 

  • Basak SC, Mills D, Mumtaz MM, Balasubramanian K (2003) Indian J Chem 42A:1385

    Google Scholar 

  • Basak SC, Gute BD, Balaban AT (2004) Croat Chem Acta 77:331

    Google Scholar 

  • Basak SC, Gute BD, Mills D (2006) Arkivoc ix:157

    Google Scholar 

  • Bertz SH (1988) Discret Appl Math 19:65

    MATH  MathSciNet  Google Scholar 

  • Bodor N, Buchwald P (2012) Retrometabolic drug design and targeting. Wiley, Hoboken

    Google Scholar 

  • Bögel H, Dettman J, Randić M (1997) Croat Chem Acta 70:827

    Google Scholar 

  • Bohacek RS, McMartin C, Guida WC (1996) Med Res Revs 16:3

    Google Scholar 

  • Böhm M, Klebe G (2002) J Med Chem 45:1585

    Google Scholar 

  • Bologa C, Allu TK, Olah M, Kappler MA, Oprea TI (2005) J Comput Aided Mol Des 19:625

    ADS  Google Scholar 

  • Bonchev D (1983) Information theoretic indices for characterization of chemical structure. Wiley, Chichester

    Google Scholar 

  • Bonchev D (1989) Theochem 185:155

    Google Scholar 

  • Bonchev D (2001) J Mol Graphics Model 20:65

    Google Scholar 

  • Bonchev D, Buck GA (2007) J Chem Inf Model 47:909

    Google Scholar 

  • Bonchev D, Rouvray DH (eds) (2005) Complexity in chemistry, biology, and ecology. Springer, New York

    MATH  Google Scholar 

  • Bonchev D, Trinajstić N (1977) J Chem Phys 67:4517

    ADS  Google Scholar 

  • Bonchev D, Balaban AT, Mekenyan O (1980) J Chem Inf Comput Sci 20:106

    Google Scholar 

  • Bonchev D, Mekenyan O, Balaban AT (1989) J Chem Inf Comput Sci 29:91

    Google Scholar 

  • Burden FR (1989) J Chem Inf Comput Sci 29:225

    Google Scholar 

  • Carbo-Dorca R, Mezey PG (eds) (1998) Advances in molecular similarity, vol 2. JAI Press, Stamford

    Google Scholar 

  • Carbo-Dorca R, Robert D, Amat L, Girones X (2013) Molecular Quantum Similarity in QSAR and Drug Design (Lecture Notes in Chemistry No. 73). Springer, Berlin

    Google Scholar 

  • Charton M (2003) J Comput-Aided Mol Des 17:197

    ADS  Google Scholar 

  • Charton M, Charton B (2003) J Comput-Aided Mol Des 17:211

    ADS  Google Scholar 

  • Clark T, Byler KG, de Groot MJ (2006) In: Molecular interactions – bringing chemistry to life (Proc Internat Beilstein Workshop), Logos Verlag, Berlin, pp 129–146

    Google Scholar 

  • Clement OO, Güner OF (2005) J Comput Aided Mol Des 19:731

    ADS  Google Scholar 

  • Consonni V, Todeschini R (2012) In: Dehmer M, Varmuza K, Bonchev D (eds) Statistical modeling of molecular descriptors in QSAR/QSPR. Wiley-Blackwell, Weinheim, pp 111–147

    Google Scholar 

  • Cramer K, Clark T (2012) In: Dehmer M, Varmuza K, Bonchev D (eds) Statistical modeling of molecular descriptors in QSAR/QSPR. Wiley-Blackwell, Weinheim, pp 293–305

    Google Scholar 

  • Cramer RD III, Patterson DE, Bunce JD (1988) J Am Chem Soc 110:5959

    Google Scholar 

  • Cramer RD III, Patterson DE, Bunce JD (1989) In: Fauchère JL (ed) Quantitative structure-activity relationships in drug design. Alan R Liss, New York, p 161

    Google Scholar 

  • Cramer RD III, DePriest SA, Patterson DE, Hecht P (1993) In: Kubinyi H (ed) 3D QSAR in drug design: theory, methods and applications. ESCOM, Leiden, p 583

    Google Scholar 

  • Devillers J (1996a) Neural networks in QSAR and drug design. Academic, London

    Google Scholar 

  • Devillers J (1996b) Genetic algorithms in molecular modeling. Academic, London

    Google Scholar 

  • Devillers J, Balaban AT (eds) (1999) Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach, Amsterdam

    Google Scholar 

  • Diudea MV (1997a) J Chem Inf Comput Sci 37:292–300

    Google Scholar 

  • Diudea MV (1997b) MATCH Commun Math Comput Chem 35:163

    MathSciNet  Google Scholar 

  • Diudea MV (ed) (2000) QSPR/QSAR studies by molecular descriptors. Nova Science, New York

    Google Scholar 

  • Diudea MV, Minailiuc O, Balaban AT (1991) J Comput Chem 12:527

    MathSciNet  Google Scholar 

  • Diudea MV, Florescu MS, Khadikar PV (2006) Molecular topology and its applications. Eficon, Bucharest

    Google Scholar 

  • Diudea MV, Vizitiu AE, Janežič D (2007) J Chem Inf Model 47:864

    Google Scholar 

  • Doucet JP, Panaye A (2010) Three Dimensional QSAR: Applications in Pharmacology and Toxicology. CRC Press, Boca Raton

    Google Scholar 

  • Estrada E (1999) Chem Phys Lett 312:556

    ADS  Google Scholar 

  • Estrada E (2000) SAR QSAR Environ Des 11:55

    Google Scholar 

  • Estrada E (2001) Chem Phys Lett 336:248

    ADS  Google Scholar 

  • Estrada E (2003) J Phys Chem A 107:7482

    Google Scholar 

  • Estrada E (2004) J Phys Chem A 108:5468

    Google Scholar 

  • Estrada E, Gutierrez Y (2001) MATCH Commun Math Comput Chem 44:155

    MATH  MathSciNet  Google Scholar 

  • Estrada E, Matamala AR (2007) J Chem Inf Comput Sci 47:794

    Google Scholar 

  • Estrada E, Uriarte E (2001) Curr Med Chem 8:1573

    Google Scholar 

  • Estrada E, Pena A, Garcia-Domenech R (1998) J Comput-Aided Mol Des 12:583

    ADS  Google Scholar 

  • Estrada E, Gutierrez Y, Gonzales H (2000) J Chem Inf Comput Sci 40:1386

    Google Scholar 

  • Estrada E, Quincoces JA, Patlewicz G (2004) Mol Divers 8:21

    Google Scholar 

  • Faulon J-L, Brown WM, Martin S (2005) J Comput Aided Mol Des 19:637

    ADS  Google Scholar 

  • Ferguson AM, Heritage T, Jonathon P, Pack SE, Phillips L, Rogan J, Snaith PJ (1997) J Comp-Aided Mol Des 11:143

    Google Scholar 

  • Filimonov D, Poroikov V (2005) J Comput Aided Mol Des 19:705

    ADS  Google Scholar 

  • Filip PA, Balaban TS, Balaban AT (1987) J Math Chem 1:61

    MathSciNet  Google Scholar 

  • Fink T, Bruggesser H, Reymond J-L (2005) Angew Chem Int Ed Engl 44:1504

    Google Scholar 

  • Fontaine F, Pastor M, Sanz F (2004) J Med Chem 47:2805

    Google Scholar 

  • Fujita T, Iwasa J, Hansch C (1964) J Am Chem Soc 86:5175

    Google Scholar 

  • Gálvez J, Garcia R, Salabert MT, Soler R (1994) J Chem Inf Comput Sci 34:520

    Google Scholar 

  • Gálvez J, de Julian-Ortiz JV, Garcia-Domenech R (2001) J Mol Graph Model 20:84

    Google Scholar 

  • Garcìa GC, Luque-Ruiz I, Gómez MA, Doncel AC, Plaza AG (2005) J Chem Inf Model 45:231

    Google Scholar 

  • Gola J, Obrezanova O, Champness E, Segall M (2006) QSAR Comb Sci 25:1172

    Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Gordeeva EV, Molchanova MS, Zefirov NS (1990) Tetrahdron Comput Meth 3:389

    Google Scholar 

  • Gordon M, Scantlebury GR (1967) J Chem Soc B, 1

    Google Scholar 

  • Gorse A-D (2006) Curr Top Med Chem 6:3

    Google Scholar 

  • Gorse D, Lahana R (2000) Curr Opin Chem Biol 4:287

    Google Scholar 

  • Gorse D, Rees A, Kaczorek M, Lahana R (1999) Drug Disc Today 4:257

    Google Scholar 

  • Gramatica P, Consonni V, Todeschini R (1999) Chemosphere 38:1371

    Google Scholar 

  • Gramatica P, Corradi M, Consonni V (2000) Chemosphere 41:763

    Google Scholar 

  • Grassy G, Calas B, Yasri A, Lahana R, Woo J, Iyer S, Kaczorek M, Floc’h R, Buelow R (1998) Nat Biotechnol 16:748

    Google Scholar 

  • Grassy G, Kaczorek M, Lahana R, Yasri A (2006) US Patent 7,024,311

    Google Scholar 

  • Gutman I, Pyka A (1997) J Serb Chem Soc 62:261

    Google Scholar 

  • Gutman I, Ruscić B, Trinajstić N, Wilcox CF (1975) J Chem Phys 62:3399

    ADS  Google Scholar 

  • Hammett LP (1935) Chem Rev 17:125

    Google Scholar 

  • Hammett LP (1940) Physical organic chemistry, 2nd edn, 1970. McGraw Hill, New York

    Google Scholar 

  • Hansch C (1969) Acc Chem Res 2:232

    Google Scholar 

  • Hansch C, Fujita T (1964) J Am Chem Soc 86:1616

    Google Scholar 

  • Hansch C, Leo A (1979) Substituent constants for correlation analysis in chemistry and biology. Wiley/Interscience, New York

    Google Scholar 

  • Hansch C, Leo A (1995) Exploring QSAR: fundamentals and applications in chemistry and biology. American Chemical Society, Washington, DC

    Google Scholar 

  • Hansch C, Maloney PP, Fujita T, Muir RM (1962) Nature 194:258

    Google Scholar 

  • Hansch C, Leo A, Hoekman D (1995) Exploring QSAR, hydrophobic, electronic and steric constants. American Chemical Society, Washington, DC

    Google Scholar 

  • Hansch C, Hoekman D, Gao H (1996) Chem Rev 96:1045

    Google Scholar 

  • Hansch C, Gao H, Hoekman D (1998) In: Devillers J (ed) Comparative QSAR. Taylor and Francis, Washington, DC, p 285

    Google Scholar 

  • Holtje HD, Sippl W (eds) (2001) Rational approach to drug design. Prous Sci, Barcelona

    Google Scholar 

  • Hong H et al (2012) In: Dehmer M, Varmuza K, Bonchev D (eds) Statistical modeling of molecular descriptors in QSAR/QSPR. Wiley-Blackwell, Weinheim, pp 65–109

    Google Scholar 

  • Horvath D, Mao B (2003) QSAR Comb Sci 22:498

    Google Scholar 

  • Hosoya H (1971) Bull Chem Soc Jpn 44:2332

    Google Scholar 

  • Hosoya H, Gotoh M, Murajami M, Ikeda S (1999) J Chem Inf Comput Sci 39:192

    Google Scholar 

  • Ilies MA, Seitz WA, Hohnson BH, Ezell EL, Miller AL, Thompson EB, Balaban AT (2006) J Med Chem 49:3872

    Google Scholar 

  • Ivanciuc O, Balaban AT (1998) Graph theory in chemistry. In: Schleyer PVR et al (eds) Encyclopedia of computational chemistry. Wiley, Chichester, p 1169

    Google Scholar 

  • Ivanciuc O, Ivanciuc T (1999) In: Devillers J, Balaban AT (eds) Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach, Amsterdam

    Google Scholar 

  • Ivanciuc O, Balaban TS, Balaban AT (1993) J Math Chem 12:309

    MathSciNet  Google Scholar 

  • Ivanciuc O, Ivanciuc T, Diudea MV (1997) SAR QSAR Environ Res 7:63

    Google Scholar 

  • Ivanciuc O, Ivanciuc T, Balaban AT (1998) J Chem Inf Comput Sci 38:395

    Google Scholar 

  • Ivanciuc O, Ivamciuc T, Cabrol-Bass D, Cabrol-Bass D, Balaban AT (2000) MATCH Commun Math Comput Chem 42:155

    Google Scholar 

  • Iyer S, Lahana R, Buelow R (2002) Curr Pharm Des 8:2217

    Google Scholar 

  • Janežič D, Miličević A, Nikolić S, Trinajstić N (2007) In: Gutman I (ed) Graph theoretical matrices in chemistry. University of Kragujevac, Serbia

    Google Scholar 

  • Johnson M, Maggiora GM (eds) (1990) Concepts and applications of molecular similarity. Wiley, New York

    Google Scholar 

  • Jorissen RN, Gilson MK (2005) J Chem Inf Model 45:549

    Google Scholar 

  • Jurs PC (1996) Computer software applications in chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  • Karelson M (2000) Molecular descriptors in QSAR/QSPR. Wiley, New York

    Google Scholar 

  • Karelson M, Lobanov VS, Katritzky AR (1996) Chem Rev 96:1027

    Google Scholar 

  • Karelson M, Maran U, Wang Y, Katritzky AR (2000) Coll Czech Chem Commun 64:1551

    Google Scholar 

  • Katritzky AR, Lobanov VS, Karelson M (1995) Chem Soc Rev 24:279

    Google Scholar 

  • Katritzky AR, Kuanar M, Slavov S, Dobchev DA, Fara DC, Karelson M, Acree WE, Solov’ev VP, Varnek A (2006) Bioorg Med Chem 14:4888

    Google Scholar 

  • Khadikar PV, Deshpande NV, Kale PP, Dobrynin AA, Gutman I, Dömötör G (1995) J Chem Inf Comput Sci 35:547

    Google Scholar 

  • Kier LB (1989) Quant Struct-Act Relat 8:221

    Google Scholar 

  • Kier LB, Hall LH (1976a) Molecular connectivity in chemistry and drug research. Academic, New York

    Google Scholar 

  • Kier LB, Hall LH (1976b) J Pharm Sci 65:1806

    Google Scholar 

  • Kier LB, Hall LB (1977) Eur J Med Chem Chim Ther 12:307

    Google Scholar 

  • Kier LB, Hall LH (1986) Molecular connectivity in structure-activity analysis. Research Studies Press, Letchworth

    Google Scholar 

  • Kier LB, Hall LH (1999a) Molecular structure description: the electrotopological state. Academic, San Diego

    Google Scholar 

  • Kier LH, Hall LB (1999) In: Devillers J, Balaban AT (eds) Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach, Amsterdam, pp 307, 455, 491

    Google Scholar 

  • Krein M et al (2012) In: Dehmer M, Varmuza K, Bonchev D (eds) Statistical modeling of molecular descriptors in QSAR/QSPR. Wiley-Blackwell, Weinheim, pp 33–64

    Google Scholar 

  • Krogsgaard-Larsen P, Madsen U, Stromgaard K (2009) Textbook of drug design and discovery, 4th edn. CRC, Boca Raton

    Google Scholar 

  • Kubinyi H (1993) QSAR: Hansch analysis and related approaches. VCH Publishers, Weinheim

    Google Scholar 

  • Kubinyi H (1998) Quantitative structure-activity relationships in drug design. In: Schleyer PVR et al (eds) Encyclopedia of computational chemistry. Wiley, Chichester, p 2309

    Google Scholar 

  • Kubinyi H (2002) Drug design course (free download from his home page www.kubinyi.de, See also “Why drugs fail” Herman Skolnik Award Lecture, ACS Meeting, San Francisco, September 2006 on that web page)

  • Kubinyi H (2006) In: Sener EA, Yalcin I (eds) QSAR and molecular modeling in rational design of bioactive molecules. CADD Society, Ankara, p 30

    Google Scholar 

  • Kubinyi H, Folkers G, Martin YC (eds) (1998a) 3D QSAR in drug design: Ligand-protein interactions and molecular similarity, vol 9–11. Kluwer, Dordrecht

    Google Scholar 

  • Kubinyi H, Folkers G, Martin YC (eds) (1998b) 3D QSAR in drug design: recent advances, vol 12–14. Kluwer, Dordrecht

    Google Scholar 

  • Labanowski JK, Motoc I, Dammkoehler RA (1991) Comput Chem 15:47

    Google Scholar 

  • Li H, Yap CW, Ung CY, Xue Y, Cao ZW, Chen YZ (2005) J Chem Inf Model 45:1376

    Google Scholar 

  • Liu R, So SS (2001) J Chem Inf Comput Sci 41:1633

    Google Scholar 

  • Lovasz L, Pelikan J (1973) Periodica Math Hung 3:175

    MATH  MathSciNet  Google Scholar 

  • Maggiora GM (2006) J Chem Inf Model 46:1535

    Google Scholar 

  • Maggiora GM, Shanmungasundaram V (2004) Methods Mol Biol 275:1

    Google Scholar 

  • Mannhold R, Kubinyi H, Timmermann H (eds) (1997) Molecular modeling. In: Methods and principles in medicinal chemistry, vol 5. VCH, Weinheim

    Google Scholar 

  • Martin YC, Kim KH, Lin CT (1996) In: Charton M (ed) Advances in quantitative structure-activity relationships. JAI Press, Greenwich

    Google Scholar 

  • Matamala AR, Estrada E (2005a) J Phys Chem A 109:9890

    Google Scholar 

  • Matamala AR, Estrada E (2005b) Chem Phys Lett 410:343

    ADS  Google Scholar 

  • Medeleanu M, Balaban AT (1998) J Chem Inf Comput Sci 38:1038

    Google Scholar 

  • Mekenyan O, Bonchev D, Balaban AT (1988) J Math Chem 2:347

    MathSciNet  Google Scholar 

  • Mekenyan O, Pavlov T, Grancharov V, Todorov M, Schmieder P, Veith G (2005) J Chem Inf Model 45:283

    Google Scholar 

  • Mezey PG (1993) Shape in chemistry. An introduction to molecular shape and topology. Wiley, New York

    Google Scholar 

  • Ooms F (2000) Curr Med Chem 7:141

    Google Scholar 

  • Perun TJ, Propst CL (1989) Computer-aided drug design. Methods and applications. Marcel Dekker, New York

    Google Scholar 

  • Platt JR (1947) J Chem Phys 15:419

    ADS  Google Scholar 

  • Platt JR (1952) J Phys Chem 56:151

    Google Scholar 

  • Plavsić D, Nikolić S, Trinajstić N, Mihalić Z (1993) J Math Chem 12:235

    MathSciNet  Google Scholar 

  • Pogliani L (2000) Chem Rev 100:3827

    Google Scholar 

  • Pompe M, Randić M (2006) J Chem Inf Comput Sci 46:2

    Google Scholar 

  • Pyka A (1993) J Planar Chromatog Mod TLC 6:282

    Google Scholar 

  • Pyka A (1997) J Serb Chem Soc 62:251; Gutman I, Pyka A, ibid. 261

    Google Scholar 

  • Pyka A (1999) J Liq Chromatog Relat Technol 22:41

    Google Scholar 

  • Randić M (1975) J Am Chem Soc 97:6609

    Google Scholar 

  • Randić M (1991a) J Math Chem 7:155

    ADS  Google Scholar 

  • Randić M (1991b) J Chem Inf Comput Sci 31:311

    Google Scholar 

  • Randić M (1991c) New J Chem 15:517

    ADS  Google Scholar 

  • Randić M (1998) Topological indices. In: Schleyer PVR et al (eds) Encyclopedia of computational chemistry. Wiley, Chichester, p 3018

    Google Scholar 

  • Randić M (2001) J Mol Graphics Model 20:19

    Google Scholar 

  • Randić M, Pompe M (2001) J Chem Inf Comput Sci 41:573

    Google Scholar 

  • Randic M, Pompe M (2007) Acta Chim Slov 54:605

    Google Scholar 

  • Randić M, Zupan J (2001) J Chem Inf Comput Sci 41:550

    Google Scholar 

  • Randić M, Vračko M, Novič M (2001a) In: Diudea MV (ed) QSPR/QSAR studies by molecular descriptors. Nova Science, Huntington, p 147

    Google Scholar 

  • Randić M, Balaban AT, Basak SC (2001b) J Chem Inf Comput Sci 41:593

    Google Scholar 

  • Raychaudhury C, Ray SK, Ghosh JJ, Roy AB, Basak SC (1984) J Comput Chem 5:581

    Google Scholar 

  • Ray S (2012) Theoretical aspects of rational drug design (RDD): An overview: Role of QSAR in drug design Lap Lambert Academic Publishers

    Google Scholar 

  • Rouvray DH, Balaban AT (1979) In: Wilson RJ, Beineke LW (eds) Applications of graph theory. Academic, London, p 177

    Google Scholar 

  • Roy K, Toropov AA, Raska I Jr (2007) QSAR & Comp Sci 26:460

    Google Scholar 

  • Rücker G, Rücker C (1993) J Chem Inf Comput Sci 33:683

    Google Scholar 

  • Rücker G, Rücker C (1994) J Chem Inf Comput Sci 34:534

    Google Scholar 

  • Rücker G, Rücker C (1999) J Chem Inf Comput Sci 39:788

    Google Scholar 

  • Schultz HP, Schultz TP (1998) J Chem Inf Comput Sci 38:853

    Google Scholar 

  • Schultz HP, Schultz EB, Schultz TP (1995) J Chem Inf Comput Sci 35:864

    Google Scholar 

  • Silverman RB (2004) The organic chemistry of drug design and drug action, 2nd edn. Academic, Waltham

    Google Scholar 

  • Skvortseva MI, Baskin II, Slovokhovotova OL, Palyulin VA, Zefirov NS (1993) J Chem Inf Comput Sci 33:630

    Google Scholar 

  • Skvortsova MI, Fedyaev KS, Palyulin VA, Zefirov NS (2003) Internet Electron J Mol Des 2:70

    Google Scholar 

  • Snyder JP, Snyder FD (2000) In: Gundertofte K, Jørgensen FS (eds) Molecular modeling: prediction of bioactivity. Kluwer, New York

    Google Scholar 

  • Stankevich IV, Skvortsova MI, Zefirov NS (1995) Theochem 342:173

    Google Scholar 

  • Tari LW (2012) Structure-based drug discovery, Methods in molecular biology. Humana Press, New York

    Google Scholar 

  • Templeton NS, Lasic DD (eds) (2000) Gene therapy. therapeutical mechanisms and strategies. Marcel Dekker, New York

    Google Scholar 

  • Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley, Weinheim

    Google Scholar 

  • Todeschini R, Consonni V (2009) Molecular descriptors for chemoinformatics, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  • Todeschini R, Gramatica P (1997a) Quant Struct-Act Relat 16:113, 120

    Google Scholar 

  • Todeschini R, Gramatica P (1997b) SAR QSAR Environ Res 7:89

    Google Scholar 

  • Todeschini R, Lasagni M, Marengo E (1994) J Chemom 8:263

    Google Scholar 

  • Todeschini R, Gramatica P, Marengo E, Provenzani R (1995) Chemom Intell Lab Syst 27:221

    Google Scholar 

  • Todeschini R, Vighi M, Provenzani R, Finizio A, Gramatica P (1996) Chemosphere 32:1527

    Google Scholar 

  • Toropov AA, Benfenati E (2007a) Comput Biol Chem 31:57

    MATH  Google Scholar 

  • Toropov AA, Benfenati E (2007b) Eur J Med Chem 42:606

    Google Scholar 

  • Toropov AA, Toropova AP, Mukhamedzhnova DV, Gutman I (2005) Indian J Chem 44A:1545

    Google Scholar 

  • Trinajstić N (1992) Chemical graph theory, 2nd edn. CRC, Boca Raton

    Google Scholar 

  • van de Waterbeemd H (1995) Chemometric methods in drug design. VCH, Weinheim

    Google Scholar 

  • Varnek A, Fourches D, Hoonakker F, Solov’ev VP (2005) J Comput Aided Mol Des 19:693

    ADS  Google Scholar 

  • Verloop A (1976) In: Ariëns EJ (ed) Drug design, vol 3. Academic, New York, p 133

    Google Scholar 

  • Verloop A, Tipker J (1977a) In: Buisman JAK (ed) Biological activity and chemical structure. Elsevier, Amsterdam, p 63

    Google Scholar 

  • Verloop A, Tipker J (1977b) In: Jerman-Blazić D (ed) QSAR in drug design and toxicology, Hadzi D21-23. Elsevier, Amsterdam, p 97

    Google Scholar 

  • Vukičević D, Beteringe A, Constantinescu T, Pompe M, Balaban AT (2008) Chem Phys Lett 464:155

    ADS  Google Scholar 

  • Wiener H (1947) J Am Chem Soc 69(17):2636

    Google Scholar 

  • Yee LC, Wei YC (2012) In: Dehmer M, Varmuza K, Bonchev D (eds) Statistical modeling of molecular descriptors in QSAR/QSPR. Wiley-Blackwell, Weinheim, pp 1–31

    Google Scholar 

  • Zupan J, Gasteiger J (1999) Neural networks in chemistry and drug design. Wiley, Weinheim

    Google Scholar 

  • Zyrianov Y (2005) J Chem Inf Model 45:657

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru T. Balaban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Balaban, A.T. (2014). Drug Design, Molecular Descriptors in. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-3-642-27737-5_136-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_136-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics