Advertisement

Posterior Pituitary Hormones

  • Jürgen Sandow
Living reference work entry

Abstract

Several authors, such as Dale and Laidlaw (1912), Fromherz (1926), Glaubach and Molitor (1932), Lipschitz and Klar (1933), and Simon (1933), used the isolated uterus of virgin guinea pigs as a sensitive test for determination of oxytocin activity. The isolated uterus of the rat (Holton 1948) is less sensitive, but, in contrast to the guinea pig, the rat uterus shows no spontaneous contractions in solutions with low calcium and glucose concentrations. Historically, the method has been adopted by several pharmacopoeias, e.g., by the British Pharmacopoeia (1988). The United States Pharmacopeia 23 (1995) uses the isolated guinea pig uterus for determination of oxytocin activity in vasopressin preparations. Physicochemical assays are now used for standardizing drug content, instead of the biological responses.

Keywords

Diabetes Insipidus United States Pharmacopeia Oxytocin Receptor Vasopressin Receptor British Pharmacopoeia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

Isolated Uterus

  1. Berde B, Doepfner W, Konzett H (1957) Some pharmacological actions or four synthetic analogues of oxytocin. Br J Pharmacol 12:209–214Google Scholar
  2. Berde B, Cerletti A, Konzett H (1959) The biological activity of a series of peptides related to oxytocin. In: Caldeyro-Barcia R, Heller H (eds) Oxytocin: intern sympos montevideo. Pergamon, LondonGoogle Scholar
  3. Boissonnas RA (1960) The chemistry of oxytocin and vasopressin. In: Schachter M (ed) Polypeptides which affect smooth muscles and blood vessels. Pergamon, London, pp 7–19Google Scholar
  4. Boissonnas RA, Guttmann S, Berde B, Konzett H (1961) Relationships between the chemical structures and the biological properties of the posterior pituitary hormones and their synthetic analogues. Experientia 1:377–390CrossRefGoogle Scholar
  5. British Pharmacopoeia, vol II (1988) Biological assay of oxytocin. Appendix XIV C: A171. HMSO, LondonGoogle Scholar
  6. Burn HJ, Finney DJ, Goodwin LG (1952) Biological standardization, 2nd edn, 2nd impression. Oxford University Press, OxfordGoogle Scholar
  7. Dale H, Laidlaw J (1912) A method for standardising pituitary (infundibular) extracts. J Pharmacol Exp Ther 4:73–95Google Scholar
  8. Fromherz K (1926) Bemerkungen zur Auswertung von Hypophysenextrakt am Meerschweinchenuterus. Naunyn-Schmiedebergs Arch Exp Pathol Pharmakol 113:113–123CrossRefGoogle Scholar
  9. Glaubach S, Molitor H (1932) Vergleich der Auswertungsmethoden von Gesamtextrakten des Hypophysenhinterlappens am isolierten Meerrschweinchenuterus und an der Diuresehemmung von Hunden, Ratten und Mäusen. Naunyn-Schmiedebergs Arch Exp Pathol Pharmakol 166:243–264CrossRefGoogle Scholar
  10. Guissani DA, Jenkins SL, Mecenas CA, Owiny JR, Wentwort RA, Winter JA, Derks JB, Honnebier MBOM, Nathanielz PW (1995) The oxytocin (OT) antagonist Atosiban (ATO) prolongs gestation in the rhesus monkey. J Soc Gynecol Investig 2:265CrossRefGoogle Scholar
  11. Holton P (1948) A modification of the method of Dale and Laidlaw for the standardization of posterior pituitary extract. Br J Pharmacol 3:328–334Google Scholar
  12. Kruse J (1986) Oxytocin: pharmacology and clinical application. J Fam Pract 23:473–479PubMedGoogle Scholar
  13. Liebmann C, Nawrath S, Ludwig B, Paegelow I (1993) Pharmacological and molecular actions of the bradykinin B2 receptor antagonist, Hoe 140 in the rat uterus. Eur J Pharmacol 235:183–188CrossRefPubMedGoogle Scholar
  14. Lipschitz W, Klar F (1933) Die Abhängigkeit der Wirkung uteruserregender Mittel (Histamin und Ergotamin) von Konzentration und Reaktionstemperatur. Naunyn-Schmiedebergs Arch Exp Path Pharmakol 174:223–244CrossRefGoogle Scholar
  15. Munsick RA, Sawyer WH, van Dyke HB (1960) Avian neurohyophyseal hormones: pharmacological properties and tentative identification. Endocrinology 66:860–871Google Scholar
  16. Murray WJ, Miller JW (1960) Oxytocin-induced “cramping” in the rat. J Pharmacol Exp Ther 128:372–379PubMedGoogle Scholar
  17. Pettibone DJ, Guidotti MT, Harrell CM, Jasper JR, Lis EV, O’Brien JA, Reiss DR, Woyden CJ, Bock MG, Evans BE, Freidinger RM, Williams DP, Murphy MG (1996) Progress in the development of oxytocin antagonists for use in preterm labor. Adv Exp Biol Med 395:601–612Google Scholar
  18. Schaumann W (1937) Wirkstoffe des Hinterlappens der Hypophyse. In: Handbuch exper Pharmakol, vol 3. Springer, Berlin/Heidelberg/New York, pp 61–150Google Scholar
  19. Schübel K, Gehlen W (1933) Eine neue, zuverlässige Methode zur Standardisierung von Hypophysen-Hinterlappenextrakten. Naunyn-Schmiedebergs Arch Exp Pathol Pharmakol 173:633–641CrossRefGoogle Scholar
  20. Simon A (1933) The secretion of the posterior lobe of the hypophysis after the administration of drugs. J Pharmacol 49:375–386Google Scholar
  21. Thorp RH (1962) Posterior pituitary hormones. In: Dorfman RI (ed) Methods in hormone research, vol II. Academic, New York, pp 495–516Google Scholar
  22. Thorp RH (1969) Posterior pituitary hormones. In: Dorfman RI (ed) Methods in hormone research, vol IIA. Academic, New York, pp 457–480Google Scholar
  23. United States Pharmacopeia 23 (1995) Vasopressin injection. The United States Pharmacopeia 23. United States Pharmacopoeial Convention, Rockville, pp 1622–1623Google Scholar
  24. Van Dyke HB, Adamsons K, Engel SL (1955) I. Pituitary hormones. Aspects of the biochemistry and physiology of the neurohyophyseal hormones. Recent Prog Horm Res 11:1–41Google Scholar
  25. Vogel G, Hergott J (1963) Pharmakologische Untersuchungen über O-Methyl-tyrosin2-lysin8-Vasopressin. Arzneimittelforschung 13:415–421Google Scholar

Chicken Blood Pressure

  1. British Pharmacopoeia, vol II (1988) Biological assay of oxytocin. Appendix XIV C:A171. HMSO, LondonGoogle Scholar
  2. Coon JM (1939) A new method for the assay of posterior pituitary extracts. Arch Int Pharmacodyn Ther 62:79–99Google Scholar
  3. DuVigneaud V, Fitt PS, Bodanszky M, O’Connell M (1960) Synthesis and some pharmacological properties of a peptide derivative of oxytocin: glycyloxytocin. Proc Soc Exp Biol Med 104:653–656Google Scholar
  4. Munsick RA, Sawyer WH, van Dyke HB (1960) Avian neurohyophyseal hormones: pharmacological properties and tentative identification. Endocrinology 66:860–871Google Scholar
  5. Thorp RH (1962) Posterior pituitary hormones. In: Dorfman RI (ed) Methods in hormone research, vol II. Academic, New York, pp 495–516Google Scholar
  6. Thorp RH (1969) Posterior pituitary hormones. In: Dorfman RI (ed) Methods in hormone research, vol IIA. Academic, New York, pp 457–480Google Scholar
  7. United States Pharmacopeia 23 (1995a) Design and analysis of biological assays. The United States Pharmacopeial Convention, Rockville, pp 1705–1715Google Scholar
  8. United States Pharmacopeia 23 (1995b) Oxytocin injection. The United States Pharmacopeial Convention, Rockville, pp 1148–1149Google Scholar
  9. Van Dyke HB, Adamsons K, Engel SL (1955) I. Pituitary hormones. Aspects of the biochemistry and physiology of the neurohyophyseal hormones. Recent Prog Horm Res 11:1–41Google Scholar

Milk Ejection in the Lactating Rabbit or Rat

  1. Berde B, Cerletti A (1957) Démonstration expérimentale de l’action de l’ocytocine sur la glande mammaire. Gynaecologia 144:275–278PubMedGoogle Scholar
  2. British Pharmacopoeia, vol II (1988) Biological assay of oxytocin. Appendix XIV C:A171. HMSO, LondonGoogle Scholar
  3. Munsick RA, Sawyer WH, van Dyke HB (1960) Avian neurohyophyseal hormones: pharmacological properties and tentative identification. Endocrinology 66:860–871Google Scholar
  4. Thorp RH (1962) Posterior pituitary hormones. In: Dorfman RI (ed) Methods in hormone research, vol II. Academic, New York, pp 495–516Google Scholar
  5. Thorp RH (1969) Posterior pituitary hormones. In: Dorfman RI (ed) Methods in hormone research, vol IIA. Academic, New York, pp 457–480Google Scholar
  6. Tindal JS, Yokoyama A (1962) Assay of oxytocin by the milk-ejection response in the anesthetized lactating guinea pig. Endocrinology 71:196–202CrossRefPubMedGoogle Scholar
  7. van Dyke HB (1959) Some features of the pharmacology of oxytocin. In: Caldeyro-Barcia R, Heller H (eds) Oxytocin: Intern Sympos Montevideo. Pergamon, London, pp 48–67Google Scholar
  8. Van Dyke HB, Adamsons K, Engel SL (1955) I. Pituitary hormones. Aspects of the biochemistry and physiology of the neurohyophyseal hormones. Recent Prog Horm Res 11:1–41Google Scholar

Oxytocin Receptor Determination

  1. Chan WY, Wo NC, Cheng LL, Manning M (1996) Isosteric substitution of Asn5 in antagonists of oxytocin and vasopressin leads to highly selective and potent oxytocin and V1a receptor antagonists: new approaches for the design of potential tocolytics for preterm labor. J Pharmacol Exp Ther 277:999–1003PubMedGoogle Scholar
  2. Elands J, Barberis C, Jard S, Tribollet E, Dreifuss JJ, Bankowski K, Manning M, Sawyer WH (1987) 125I-labelled d(CH2)5[Tyr(Me)2, Thr4, Tyr-NH29]OTV. A selective oxytocin receptor ligand. Eur J Pharmacol 147:197–207CrossRefGoogle Scholar
  3. Evans BE, Lundell GF, Gilbert KF, Bock MG, Rittle KE, Carroll LA, Williams PD, Pawluczyk JM, Leighton JL, Young MB, Erb JM, Hobbs DW, Gould NP, DiPardo RM, Hoffman JB, Perlow DS, Whitter WL, Veber DF, Pettibone DJ, Clineschmidt BV, Anderson PS, Freidinger RM (1993) Nanomolar-affinity, non-peptide oxytocin receptor antagonists. J Med Chem 36:3993–4005CrossRefPubMedGoogle Scholar
  4. Freidinger RM, Pettibone DJ (1997) Small molecule ligands for oxytocin and vasopressin receptors. Med Res Rev 17:1–7CrossRefPubMedGoogle Scholar
  5. Jeng YJ, Lolait SJ, Strakova Z, Chen C, Copland JA, Mellman D, Hellmich MR, Soloff MS (1996) Molecular cloning and functional characterization of the oxytocin receptor from a rat pancreatic cell line (RINm5F). Neuropeptides 30:557–565CrossRefPubMedGoogle Scholar
  6. Klein U, Jurzak M, Gerstberger R, Fahrenholz F (1995) A new tritiated oxytocin receptor radioligand – synthesis and application for localization of central oxytocin receptors. Peptides 16:851–857CrossRefPubMedGoogle Scholar
  7. Maggi M, Fantoni G, Baldi E, Cioni A, Rossi S, Vanelli GB, Melin P, Åkerlund M, Serio M (1994) Antagonists for the human oxytocin receptor: an in vitro study. J Reprod Fertil 101:345–352CrossRefPubMedGoogle Scholar
  8. Manning M, Cheng LL, Klis A, Stoev S, Przybylski J, Bankowski K, Sawyer WH, Barberis C, Chan WY (1995) Advances in the design of selective antagonists, potential tocolytics and radioiodinated ligands for oxytocin receptors. In: Ivell R, Russell J (eds) Oxytocin. Plenum, New York, pp 559–584Google Scholar
  9. McPherson GA (1985a) KINETIC, EBDA, LIGAND, LOWRY: a collection of radioligand binding analysis programs. Elsevier, AmsterdamGoogle Scholar
  10. McPherson GA (1985b) Analysis of radioligand binding experiments. A collection of computer programs for the IBM PC. J Pharmacol Meth 14:213–228CrossRefGoogle Scholar
  11. Pak SC, Bertoncini D, Meyer W, Scaunas D, Flouret G, Wilson R Jr (1994) Comparison of binding affinity of oxytocin antagonists to human and rat oxytocin receptors their correlation to the rat oxytocic bioassay. Biol Reprod 51:1140–1144CrossRefPubMedGoogle Scholar
  12. Peter J, Burbach H, Adan RA, Lolait SJ, van Leeuwen FW, Mezey E, Palkovits M, Barberis C (1995) Molecular neurobiology and pharmacology of the vasopressin/oxytocin receptor family. Cell Mol Neurobiol 15(5):573–595CrossRefPubMedGoogle Scholar
  13. Pettibone DJ, Freidinger RM (1997) Discovery and development of non-peptide antagonists of peptide hormone receptors. Biochem Soc Trans 25:1051–1057PubMedGoogle Scholar
  14. Pettibone DJ, Woyden CJ, Totaro JA (1990) Identification of functional oxytocin receptors in lactating rat mammary gland in vitro. Eur J Pharmacol 188:235–242CrossRefPubMedGoogle Scholar
  15. Pettibone DJ, Clineschmidt BV, Lis EV, Reiss DR, Totaro JA, Woyden CJ, Bock MG, Freidinger RM, Tung RD, Veber DF, Williams DP, Lowensohn RI (1991) In vitro pharmacological profile of a novel structural class of oxytocin antagonists. J Pharmacol Exp Ther 256:304–308PubMedGoogle Scholar
  16. Pettibone DJ, Clineschmidt BV, Guidotti MT, Lis EV, Reiss DR, Woyden CJ, Bock MG, Evans BE, Freidinger RM, Hobbs DW, Veber DF, Williams PD, Chiu SHL, Thompson KL, Schorn TW, Siegl PKS, Kaufman MJ, Cukierski MA, Haluska GJ, Cook MJ, Novy MJ (1993a) L-368,899, a potent orally active oxytocin antagonist for potential use in preterm labor. Drug Dev Res 30:129–142CrossRefGoogle Scholar
  17. Pettibone DJ, Clineschmidt BV, Kishel MT, Lis EV, Reiss DR, Woyden CJ, Evans BE, Freidinger RM, Veber DF, Cook MJ, Haluska GJ, Novy MJ, Lowensohn RI (1993b) Identification of an orally active, nonpeptidyl oxytocin antagonist. J Pharmacol Exp Ther 264:308–314PubMedGoogle Scholar
  18. Pettibone DJ, Guidotti MT, Harrell CM, Jasper JR, Lis EV, O’Brien JA, Reiss DR, Woyden CJ, Bock MG, Evans BE, Freidinger RM, Williams DP, Murphy MG (1996) Progress in the development of oxytocin antagonists for use in preterm labor. Adv Exp Biol Med 395:601–612Google Scholar
  19. Salvatore CA, Woyden CJ, Guidotti MT, Pettibone DJ, Jacobson MA (1998) Cloning and expression of the rhesus monkey oxytocin receptor. J Recept Signal Transduct Res 18:15–24CrossRefPubMedGoogle Scholar
  20. Thibonnier M, Conarty DM, Preston JA, Wilkins PL, Berti-Mattera R (1998) Molecular pharmacology of human vasopressin receptors. Adv Exp Biol 449:251–276Google Scholar
  21. Young LJ, Hout B, Nilsen R, Wang Z, Insel TR (1996) Species differences in central oxytocin receptor expression: comparative analyses of promoter sequences. J Neuroendocrinol 8:777–783CrossRefPubMedGoogle Scholar

Vasopressin

  1. Grant FD (2000) Genetic models of vasopressin deficiency. Exp Physiol 85:203S–209SCrossRefPubMedGoogle Scholar
  2. Herman JP, Sladek CD, Hansen CT, Gash DM (1986) Characterization of a new rodent model of diabetes insipidus: the Roman high avoidance rat homozygous for diabetes insipidus. Neuroendocrinology 43(3):340–347CrossRefPubMedGoogle Scholar
  3. Laycock JF, Chatterji U, Seckl JR, Gartside IB (1994) The abnormal quinine drinking aversion in the Brattleboro rat with diabetes insipidus is reversed by the vasopressin agonist DDAVP: a possible role for vasopressin in the motivation to drink. Physiol Behav 55:407–412CrossRefPubMedGoogle Scholar
  4. Lloyd DJ, Hall FW, Tarantino LM, Gekakis N (2005) Diabetes insipidus in mice with a mutation in aquaporin-2. PLoS Genet 1(2):e20CrossRefPubMedCentralPubMedGoogle Scholar
  5. McCabe JT, Almasan K, Lehmann E, Hänze J, Lang RE, Pfaff DW, Ganten D (1988) Vasopressin gene expression in hypertensive, normotensive, and diabetes insipidus rats. Clin Exp Hypertens A A10(Suppl 1):131–142CrossRefGoogle Scholar
  6. Nyunt-Wai V, Laycock JF (1990) The pressor response to vasopressin is not attenuated by hypertonic NaCl in the anaesthetized Brattleboro rat. J Physiol 430:35PGoogle Scholar
  7. Petersen MB (2006) The effect of vasopressin and related compounds at V1a and V2 receptors in animal models relevant to human disease. Basic Clin Pharmacol Toxicol 99(2):96–103CrossRefPubMedGoogle Scholar
  8. Schmale H, Richter D (1984) Single base deletion in the vasopressin gene is the cause of diabetes insipidus in Brattleboro rats. Nature 308:705–709CrossRefPubMedGoogle Scholar
  9. Schmale H, Ivell R, Breindl M, Darmer D, Richter D (1984) The mutant vasopressin gene from diabetes insipidus (Brattleboro) rats is transcribed but the message is not efficiently translated. EMBO J 3:3289–3293PubMedCentralPubMedGoogle Scholar
  10. Sokol HW, Valtin H (eds) (1982) The Brattleboro rat. Ann N Y Acad Sci 394Google Scholar
  11. Szot P, Dorsa DM (1992) Cytoplasmic and nuclear vasopressin RNA in hypothalamic and extrahypothalamic neurons of the Brattleboro rat: an in situ hybridization study. Mol Cell Neurosci 3:224–236CrossRefPubMedGoogle Scholar
  12. Valtin H, Sawyer WH, Sokol HW (1965) Neurohypophyseal principles in rats homozygous and heterozygous for hypothalamic diabetes insipidus (Brattleboro strain). Endocrinology 77:701–706CrossRefPubMedGoogle Scholar

Vasopressor Activity

  1. Altura BM, Altura BT (1984) Actions of vasopressin, oxytocin, and synthetic analogs on vascular smooth muscle. Fed Proc 43:80–86PubMedGoogle Scholar
  2. British Pharmacopoeia, vol II (1988) Biological assay of argipressin. Appendix XIV C:A172–A173. HMSO, LondonGoogle Scholar
  3. Dekansky J (1952) The quantitative assay of vasopressin. Br J Pharmacol 7:567–572Google Scholar
  4. DuVigneaud V, Fitt PS, Bodanszky M, O’Connell M (1960) Synthesis and some pharmacological properties of a peptide derivative of oxytocin: glycyloxytocin. Proc Soc Exp Biol Med 104:653–656Google Scholar
  5. Hamilton HC (1912) The pharmacological assay of pituitary preparations. J Am Pharm Assoc Am Pharm Assoc 1:1117–1119CrossRefGoogle Scholar
  6. Knape JTA, van Zwieten PA (1988) Vasoconstrictor activity of vasopressin in the pithed rat. Arch Int Pharmacodyn Ther 291:142–152PubMedGoogle Scholar
  7. Sawyer WH (1961) Neurohypophyseal hormones. Pharmacol Rev 13:225–277PubMedGoogle Scholar
  8. Thorp RH (1969) Posterior pituitary hormones. In: Dorfman RI (ed) Methods in hormone research, vol IIA. Academic, New York, pp 457–480Google Scholar
  9. USP 23 (1995a) Design and analysis of biological assays. The United States Pharmacopeial Convention, Rockville, pp 1705–1715Google Scholar
  10. USP 23 (1995b) Vasopressin injection. The United States Pharmacopeial Convention, Rockville, pp 1622–1623Google Scholar
  11. Van Dyke HB, Adamsons K, Engel SL (1955) I. Pituitary hormones. Aspects of the biochemistry and physiology of the neurohyophyseal hormones. Recent Prog Horm Res 11:1–41Google Scholar
  12. Vogel G, Hergott J (1963) Pharmakologische Untersuchungen über O-Methyl-tyrosin2-lysin8-Vasopressin. Arzneimittelforschung 13:415–421Google Scholar

Antidiuretic Activity in the Conscious Rat

  1. British Pharmacopoeia, vol II (1988) Biological assay of desmopressin. Appendix XIV D:A173. HMSO, LondonGoogle Scholar
  2. Burn JH (1931) Estimation of the antidiuretic potency of pituitary (posterior lobe) extract. Q J Pharm 4:517–529Google Scholar
  3. Schaumann W (1937) Wirkstoffe des Hinterlappens der Hypophyse. In: Handbuch exper Pharmakol, vol 3. Springer, Berlin/Heidelberg/New York, pp 61–150Google Scholar
  4. Thorp RH (1962) Posterior pituitary hormones. In: Dorfman RI (ed) Methods in hormone research, vol II. Academic, New York, pp 495–516Google Scholar
  5. Thorp RH (1969) Posterior pituitary hormones. In: Dorfman RI (ed) Methods in hormone research, vol IIA. Academic, New York, pp 457–480Google Scholar
  6. Van Dyke HB, Adamsons K, Engel SL (1955) I. Pituitary hormones. Aspects of the biochemistry and physiology of the neurohyophyseal hormones. Recent Prog Horm Res 11:1–41Google Scholar
  7. Vogel G, Hergott J (1963) Pharmakologische Untersuchungen über O-Methyl-tyrosin2-lysin8-Vasopressin. Arzneimittelforschung 13:415–421Google Scholar

Antidiuretic Activity in the Rat in Ethanol Anesthesia

  1. Berde B, Cerletti A (1961) Über die antidiuretische Wirkung von synthetischem Lysin-Vasopressin. Helv Physiol Acta 19:135–150Google Scholar
  2. Dettelbach HR (1958) A method for assaying small amounts of antidiuretic substances with notes on some properties of vasopressin. Am J Physiol 192:379–386PubMedGoogle Scholar
  3. Dicker SE (1953) A method for the assay of very small amounts of antidiuretic activity with a note on the antidiuretic titer of rats’ blood. J Physiol (Lond) 122:149–157CrossRefGoogle Scholar
  4. Munsick RA, Sawyer WH, van Dyke HB (1960) Avian neurohyophyseal hormones: pharmacological properties and tentative identification. Endocrinology 66:860–871Google Scholar
  5. van Dyke HB, Ames RG (1951) Alcohol diuresis. Acta Endocrinol 7:110–121Google Scholar

Spasmogenic Activity of Vasopressin

  1. Schaumann W (1937) Wirkstoffe des Hinterlappens der Hypophyse. In: Handbuch exper Pharmakol, vol 3. Springer, Berlin/Heidelberg/New York, pp 61–150Google Scholar
  2. Simon A (1933) The secretion of the posterior lobe of the hypophysis after the administration of drugs. J Pharmacol 49:375–386Google Scholar
  3. Vogel G, Hergott J (1963) Pharmakologische Untersuchungen über O-Methyl-tyrosin2-lysin8-Vasopressin. Arzneimittelforschung 13:415–421Google Scholar

Vasopressin Receptor Determination

  1. Ala Y, Morin D, Mahé E, Cotte N, Mouillac B, Jard S, Barberis C, Tribollet E, Dreifuss JJ, Sawyer WH, Wo NC, Chan WY, Kolodziejczyk AS, Chen LL, Manning M (1997) Properties of a new radioiodinated antagonist for human vasopressin V2 and V1a receptors. Eur J Pharmacol 331:285–293CrossRefPubMedGoogle Scholar
  2. Albright JD, Chan PS (1997) Recent advances in the discovery of vasopressin antagonists: peptide and nonpeptide V1a and V2 receptor antagonists. Curr Pharm Des 3:615–632Google Scholar
  3. Barberis C, Ballestre MN, Jard S, Tribollet E, Arsenijevic Y, Dreifuss JJ, Bankowski K, Manning M, Chan WY, Schlosser SS, Holsboer F, Elands J (1995) Characterization of a novel linear radioiodinated vasopressin antagonist: an excellent radioligand for vasopressin V1a receptors. Neuroendocrinology 62:135–146CrossRefGoogle Scholar
  4. Carnazzi E, Aumelas A, Phalipou S, Mouillac B, Guillon G, Barberis C, Seyer R (1997) Efficient photoaffinity labeling of the rat V1a vasopressin receptor using a linear azidopeptidic antagonist. Eur J Biochem 247:906–913CrossRefPubMedGoogle Scholar
  5. Elands J, Barberis C, Jard S, Lammek B, Manning M, Sawyer WH, de Kloet ER (1988) 125I-d(CH2)5[Tyr(Me)2, Tyr(NH2)9]AVP: iodination and binding characteristics of a vasopressin receptor ligand. FEBS Lett 229:251–255CrossRefPubMedGoogle Scholar
  6. Gaillard RC, Schoeneberg P, Favrod-Coune CA, Muller AF, Marie J, Bockaert J, Jard S (1984) Properties of rat anterior pituitary vasopressin receptors: relation to adenylate cyclase and the effect of corticotropin-releasing factor. Proc Natl Acad Sci U S A 81:2907–2911CrossRefPubMedCentralPubMedGoogle Scholar
  7. Gal S-L, Raufaste D, Marty E, Garcia C, Maffrand JP, Le Fur G (1994a) Binding of [3H]SR49059, a potent non-peptide vasopressin antagonist, to rat and human liver membranes. Biochem Biophys Res Commun 199:353–369CrossRefGoogle Scholar
  8. Gal S-L, Bourrié B, Raufaste D, Carayon P, Garcia C, Maffrand JP, Le Fur G, Casellas P (1994b) Effect of a new, potent, non-peptide vasopressin V1a vasopressin antagonist, SR 49059, on the binding and the mitogenic activity of vasopressin on Swiss 3 T3 cells. Biochem Pharmacol 47:633–641CrossRefGoogle Scholar
  9. Gopalakrishnan V, Triggle CR, Sulakhe PV, McNeill JR (1986) Characterization of a specific, high affinity [3H]arginine8 vasopressin-binding site in liver microsomes from different strains of rats and the role of magnesium. Endocrinology 118:990–997CrossRefPubMedGoogle Scholar
  10. Howl J, Wheatley M (1995) Molecular pharmacology of V1a vasopressin receptors. Gen Pharmacol 26:1143–1152CrossRefPubMedGoogle Scholar
  11. Kelly JM, Abrahams JM, Phillips PA, Mendelsohn FAO, Grzonka Z, Johnston CI (1989) [125 J]-[d(CH2)5, Sar7]AVP: a selective ligand for V1 vasopressin receptors. J Recept Res 9:27–41PubMedGoogle Scholar
  12. Munson PV, Rodbard D (1980) Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem 107:220–239CrossRefPubMedGoogle Scholar
  13. Nitschke R, Fröbe U, Greger R (1991) Antidiuretic hormone acts via V1 receptors on intracellular calcium in the isolated perfused rabbit cortical thick ascending limb. Pflugers Arch 417:622–632CrossRefPubMedGoogle Scholar
  14. Ogawa H, Yamashita H, Kondo K, Yamamura Y, Miyamoto H, Kan K, Kitano K, Tanaka M, Nakaya K, Nakamura S, Mori T, Tominaga M, Yabuuchi Y (1996) Orally active, nonpeptide vasopressin V2 receptor antagonists: a novel series of 1-[4-(benzoylamino)benzoyl]-2,3,4,5-tetrahydro-1H-benzazepines and related compounds. J Med Chem 39:3547–3555CrossRefPubMedGoogle Scholar
  15. Pávó I, Kojro E, Fahrenholz F (1993) Synthesis and binding characteristics of two sulfhydryl-reactive probes for vasopressin receptors. FEBS Lett 316:59–62CrossRefPubMedGoogle Scholar
  16. Pearlmutter AF, Szkrybalo M, Pettibone G (1985) Specific arginine vasopressin binding in particulate membranes from rat aorta. Peptides 6:427–431CrossRefPubMedGoogle Scholar
  17. Phalipou S, Cotte N, Carnazzi E, Seyer R, Mahe E, Jard S, Barberis C, Mouillac B (1997) Mapping peptide-binding domains of the human V1a vasopressin receptor with a photoactivatable linear peptide antagonist. J Biol Chem 272:26936–26944CrossRefGoogle Scholar
  18. Saito M, Tahara A, Sugimoto T (1997) 1-Desamino-8-d-arginine vasopressin (DDAVP) as an agonist on V1b vasopressin receptor. Biochem Pharmacol 53:1711–1717CrossRefPubMedGoogle Scholar
  19. Serradeil-Le Gal C, Wagnon J, Garcia C, Laccour C, Guiraudou P, Christophe B, Villanova G, Nisato D, Maffrand JP, Le Fur G, Guillon G, Cantau B, Barberis C, Trueba M, Ala Y, Jard S (1993) Biochemical and pharmacological properties of SR 49059, a new, potent, nonpeptide antagonist of rat and human vasopressin V1a receptors. J Clin Invest 92:224–231CrossRefPubMedCentralPubMedGoogle Scholar
  20. Tahara A, Tomura Y, Wada KI, Kusayama T, Tsukada J, Takanashi M, Yatsu T, Uchida W, Tanaka A (1997a) Pharmacological profile of YM087, a novel potent nonpeptide vasopressin V1a and V2 receptor antagonist, in vitro and in vivo. J Pharmacol Exp Ther 282:301–308PubMedGoogle Scholar
  21. Tahara A, Tomura Y, Wada KI, Kusayama T, Tsukada J, Ishii N, Yatsu T, Uchida W, Tanaka A (1997b) Effect of YM087, a potent nonpeptide vasopressin antagonist on vasopressin-induced hyperplasia and hypertrophy of cultured vascular smooth muscle cells. J Cardiovasc Pharmacol 30:759–766CrossRefPubMedGoogle Scholar
  22. Tahara A, Saito M, Sugimoto T, Tomura Y, Wada K, Kusayama T, Tsukuda J, Ishii N, Yatsu T, Uchida W, Tanaka A (1998) Pharmacological characterization of the human receptor subtypes stably expressed in Chinese hamster ovary cells. Br J Pharmacol 125:1463–1470CrossRefPubMedCentralPubMedGoogle Scholar
  23. Thibonnier M (1998) Development and therapeutic indications of orally-active vasopressin receptor antagonists. Expert Opin Investig Drugs 7:729–740CrossRefPubMedGoogle Scholar
  24. Thibonnier M, Auzan C, Madhun Z, Wilkins P, Berti-Mattera L, Clauser E (1994) Molecular cloning, sequencing, and functional expression of a cDNA encoding the human V1a vasopressin receptor. J Biol Chem 269:3304–3310PubMedGoogle Scholar
  25. Thibonnier M, Berti-Mattera LN, Dulin N, Conarty DM, Mattera R (1998) Signal transduction pathways of the human V1-vascular, V2-renal, V3-pituitary vasopressin and oxytocin receptors. Prog Brain Res 119:147–161Google Scholar
  26. Yatsu T, Tomura Y, Tahara A, Wada K, Tsukada J, Uchida W, Tanaka A, Takenaka T (1997) Pharmacological profile of YM087, a novel nonpeptide dual vasopressin V1a and V2 receptor antagonist, in dogs. Eur J Pharmacol 321(2):225–230CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Frankfurt-Main University, Centre of PharmacologyGlashuettenGermany

Personalised recommendations