Methods to Induce Cardiac Hypertrophy and Insufficiency

  • Michael Gralinski
  • Liomar A. A. Neves
  • Olga Tiniakova
Living reference work entry


Animal models of cardiac hypertrophy and insufficiency have been reviewed by Hasenfuss (1988), Muders and Elsner (2000), Vanoli et al. (2004), Patten and Hall-Porter (2009), Dubi and Arbel (2010), Gomes et al. (2013), and Szymanski et al. (2012).


Heart Failure Chronic Heart Failure Cardiac Hypertrophy Atrial Natriuretic Peptide Syrian Hamster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

  1. Dubi S, Arbel Y (2010) Large animal models for diastolic dysfunction and diastolic heart failure-a review of the literature. Cardiovasc Pathol 19(3):147–152PubMedGoogle Scholar
  2. Gomes AC, Falcão-Pires I, Pires AL, Brás-Silva C, Leite-Moreira AF (2013) Rodent models of heart failure: an updated review. Heart Fail Rev 18(2):219–249PubMedGoogle Scholar
  3. Hasenfuss G (1988) Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc Res 39:60–76Google Scholar
  4. Muders F, Elsner F (2000) Animal models of chronic heart failure. Pharmacol Res 41:605–612Google Scholar
  5. Patten RD, Hall-Porter MR (2009) Small animal models of heart failure: development of novel therapies, past and present. Circ Heart Fail 2:138–144PubMedGoogle Scholar
  6. Szymanski MK, de Boer RA, Navis GJ, van Gilst WH, Hillege HL (2012) Animal models of cardiorenal syndrome: a review. Heart Fail Rev 17(3):411–420PubMedCentralPubMedGoogle Scholar
  7. Vanoli E, Bacchini S, Panigada S, Pentimalli F, Adamson PB (2004) Experimental models of heart failure. Eur Heart J Suppl 6(Suppl F):F7–F15Google Scholar

Aortic Banding in Rats

  1. Bruckschlegel G, Holmer SR, Jandeleit K, Grimm D, Muders F, Kromer EP, Riegger GA, Schunkert H (1995) Blockade of the renin-angiotensin system in cardiac pressure-overload hypertrophy in rats. Hypertension 25:250–259PubMedGoogle Scholar
  2. Feldman AM, Weinberg EO, Ray PE, Lorell BH (1993) Selective changes in cardiac gene expression during compensated hypertrophy and the transition to cardiac decompensation in rats with aortic banding. Circ Res 73:184–192PubMedGoogle Scholar
  3. Gohlke P, Stoll M, Lamberty V, Mattfeld T, Mall G, van Even P, Martorana P, Unger T (1992) Cardiac and vascular effects of chronic angiotensin converting enzyme inhibition at subantihypertensive doses. J Hypertens 10(Suppl 6):S141–S145Google Scholar
  4. Ishiye M, Umemura K, Uematsu T, Nakashima M (1995) Effects of losartan, an angiotensin II antagonist, on the development of cardiac hypertrophy due to volume overload. Biol Pharm Bull 18:700–704PubMedGoogle Scholar
  5. Linz W, Schölkens BA (1992) A specific B2-bradykinin receptor antagonist Hoe 140 abolishes the antihypertrophic effect of ramipril. Br J Pharmacol 105:771–772PubMedCentralPubMedGoogle Scholar
  6. Linz W, Schölkens BW, Ganten D (1989) Converting enzyme inhibition specifically prevents the development and induces regression of cardiac hypertrophy in rats. Clin Exp Hypertens A 11(7):1325–1350PubMedGoogle Scholar
  7. Linz W, Henning R, Schölkens BA (1991) Role of angiotensin II receptor antagonism and converting enzyme inhibition in the progression and regression of cardiac hypertrophy in rats. J Hypertens 9(Suppl 6):S400–S401Google Scholar
  8. Linz W, Schaper J, Wiemer G, Albus U, Schölkens BW (1992a) Ramipril prevents left ventricular hypertrophy with myocardial fibrosis without blood pressure reduction: a one year study in rats. Br J Pharmacol 107:970–975PubMedCentralPubMedGoogle Scholar
  9. Linz W, Wiemer G, Schölkens BA (1992b) Contribution of bradykinin to the cardiovascular effects of ramipril. J Cardiovasc Pharmacol 22(Suppl 9):S1–S8Google Scholar
  10. Linz W, Wiemer G, Schölkens BA (1993) Bradykinin prevents left ventricular hypertrophy in rats. J Hypertens 11(Suppl 5):S96–S97Google Scholar
  11. Linz W, Wiemer G, Gohlke P, Unger T, Schölkens BA (1994) The contribution of bradykinin to the cardiovascular actions of ACE inhibitors. In: Lindpaintner K, Ganten D (eds) The cardiac renin angiotensin system. Futura Publishing Company, Armonk, pp 253–287Google Scholar
  12. Linz W, Wiemer G, Schmidts HL, Ulmer W, Ruppert D, Schölkens BA (1996) ACE inhibition decreases postoperative mortality in rats with left ventricular hypertrophy and myocardial infarction. Clin Exp Hypertens 18:691–712PubMedGoogle Scholar
  13. Molina EJ, Gupta D, Palma J, Torres D, Gaughan JP, Houser S, Macha M (2009) Novel experimental model of pressure overload hypertrophy in rats. J Surg Res 153:287–294PubMedGoogle Scholar
  14. Muders F, Kromer EP, Bahner U, Elsner D, Ackermann B, Schunkert H, Plakovits M, Riegger GAJ (1995) Central vasopressin in experimental aortic stenosis in the rat. Cardiovasc Res 29:416–421PubMedGoogle Scholar
  15. Ogawa T, Linz W, Scholkens BA, de Bold AJ (1998) Regulation of aortic atrial natriuretic factor and angiotensinogen in experimental hypertension. J Cardiovasc Pharmacol 32:1001–1008PubMedGoogle Scholar
  16. Owens GK, Reidy MA (1985) Hyperplastic growth response of vascular smooth muscle cells following induction of acute hypertension in rats by aortic coarctation. Circ Res 57:695–705PubMedGoogle Scholar
  17. Scholkens BA, Linz W, Martorana PA (1991) Experimental cardiovascular benefits of angiotensin-converting enzyme inhibitors: beyond blood pressure reduction. J Cardiovasc Pharmacol 18(Suppl 2):S26–S30PubMedGoogle Scholar
  18. Schunkert T, Weinberg EO, Bruckschlegel G, Riegger AJ, Lorell BH (1995) Alteration of growth responses in established cardiac pressure overload hypertrophy in rats with aortic banding. J Clin Invest 96:2768–2774PubMedCentralPubMedGoogle Scholar
  19. Uetmatsu T, Yamazaki T, Matsuno H, Hayashi Y, Nakashima M (1989) A simple method for producing graded aortic insufficiencies in rats and subsequent development of cardiac hypertrophy. J Pharmacol Methods 22:249–257Google Scholar
  20. Umemura K, Zierhut W, Quast U, Hof RP (1992) Baroreflex and β-adrenoceptor function are diminished in rat cardiac hypertrophy due to volume overload. Basic Res Cardiol 87:263–271PubMedGoogle Scholar
  21. Weinberg EO, Schoen FJ, George D, Kagaya Y, Douglas PS, Litwin SE, Schunkert H, Benedict CR, Lorell BH (1994) Angiotensin-converting enzyme inhibition prolongs survival and modifies the transition to heart failure in rats with pressure overload hypertrophy due to ascending aortic stenosis. Circulation 90:1410–1422PubMedGoogle Scholar
  22. Weinberg EO, Lee MA, Weigner M, Lindpaintner K, Bishop SP, Benedict CR, Ho KKL, Douglas PS, Chafizadeh E, Lorell BH (1997) Angiotensin AT1 receptor inhibition: effects on hypertrophic remodelling and ACE expression in rats with pressure-overload hypertrophy due to ascending aortic stenosis. Circulation 95:1592–1600PubMedGoogle Scholar
  23. Yamazaki T, Uematsu T, Mizuno A, Takiguchi Y, Nakashima M (1989) Alterations of cardiac adrenoceptors and calcium channels subsequent to production of aortic insufficiency in rats. Arch Int Pharmacodyn Ther 299:155–168PubMedGoogle Scholar

Chronic Heart Failure in Rats

  1. Doi R, Masuyama T, Yamamoto K, Doi Y, Mano T, Sakata Y, Ono K, Kuzuya T, Hirota S, Koyama T, Miwa T, Hori M (2000) Development of different phenotypes of hypertensive heart failure: systolic versus diastolic failure in Dahl salt-sensitive rats. J Hypertens 18:111–120PubMedGoogle Scholar
  2. Flaim SF, Minteer WJ, Nellis SH, Clark DP (1979) Chronic arteriovenous shunt: evaluation of a model for heart failure in rat. Am J Physiol 236:H698–H704PubMedGoogle Scholar
  3. Garcia R, Diebold S (1990) Simple, rapid, and effective method of producing aortacaval shunts in the rat. Cardiovasc Res 24:430–432PubMedGoogle Scholar
  4. Gómez AM, Valdivia HH, Cheng H, Lederer MR, Santana LF, Cannell MB, McCune SA, Altschuld REA, Lederer WJ (1997) Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science 276:800–806PubMedGoogle Scholar
  5. Hodsman GP, Kohzuki M, Howes LG, Sumithran E, Tsunoda K, Johnston CI (1988) Neurohumoral responses to chronic myocardial infarction in rats. Circulation 78:376–381PubMedGoogle Scholar
  6. Inoko M, Kihara Y, Morii I, Fujiwara H, Sasayama S (1994) Transition from compensatory hypertrophy to dilated, failing left ventricles in Dahl salt-sensitive rats. Am J Physiol 267:H2471–H2482PubMedGoogle Scholar
  7. Isoyama S, Grossman W, Wei JY (1988) The effect of myocardial adaptation to volume overload in the rat. J Clin Invest 81:1850–1857PubMedCentralPubMedGoogle Scholar
  8. Itter G, Jung W, Juretschke P, Scholkens BA, Linz W (2004) A model of chronic heart failure in spontaneous hypertensive rats (SHR). Lab Anim 38:138–148PubMedGoogle Scholar
  9. Jadavo S, Huang C, Kirshenbaum L, Karmazyn M (2005) NHE-1 inhibition improves impaired mitochondrial permeability transition and respiratory function during postinfarction remodelling in the rat. J Mol Cell Cardiol 38:135–143Google Scholar
  10. Jain M, Liao R, Ngoy S, Whittaker P, Apstein CS, Eberli FR (2000) Angiotensin II receptor blockade attenuates the deleterious effects of exercise training on post-MI ventricular remodelling in rats. Cardiovasc Res 46:66–72PubMedGoogle Scholar
  11. Junhong W, Jing Y, Jizheng M, Shushu Z, Xiangjian C, Hengfang W, Di Y, Jinan Z (2008) Proteomic analysis of left ventricular diastolic dysfunction hearts in renovascular hypertensive rats. Int J Cardiol 127:198–207PubMedGoogle Scholar
  12. Kajstura J, Zhang X, Reiss K, Szoke E, Li P, Lagrasta C, Cheng W, Darzynkiewicz Z, Olivetti G, Anversa P (1994) Myocyte cellular hyperplasia and myocytes cellular hypertrophy contribute to chronic ventricular remodelling in coronary artery narrowing-induced cardiomyopathy in rats. Circ Res 74:383–400PubMedGoogle Scholar
  13. Katona M, Boros K, Sántha P, Ferdinandy P, Dux M, Jancsό G (2004) Selective sensory denervation by capsaicin aggravates adriamycin-induced cardiomyopathy in rats. Naunyn Schmiedebergs Arch Pharmacol 370:436–443PubMedGoogle Scholar
  14. Klotz S, Hay I, Zhang G, Maurer M, Wang J, Burkhoff D (2006) Development of heart failure in chronic hypertensive Dahl rats: focus on heart failure with preserved ejection fraction. Hypertension 47:901–911PubMedGoogle Scholar
  15. Liu Z, Hilbelink DR, Crockett WB, Gerdes AM (1991) Regional changes in hemodynamics and cardiomyocyte size in rats with aortacaval fistulas. 1. Developing and established hypertrophy. Circ Res 69:52–58PubMedGoogle Scholar
  16. Liu YH, Yang XP, Sharov VG, Nass O, Sabbah HN, Peterson E, Carretero OA (1997a) Effects of angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists in rats with heart failure. J Clin Invest 99:1926–1935PubMedCentralPubMedGoogle Scholar
  17. Liu YH, Yang XP, Nass O, Sabbah HN, Petersen E, Carretero OA (1997b) Chronic heart failure induced by coronary artery ligation in Lewis inbred rats. Am J Physiol 272(2 Pt2):H722–H727Google Scholar
  18. López de León A, Rojkind M (1985) A simple method for collagen and total protein determination in formalin-fixed paraffin-embedded sections. J Histochem Cytochem 33:737–743PubMedGoogle Scholar
  19. Medvedev OS, Gorodetskaya EA (1993) Systemic and regional hemodynamic effects of perindopril in experimental heart failure. Am Heart J 126(3 Pt2):764–769Google Scholar
  20. Muders F, Elsner F (2000) Animal models of chronic heart failure. Pharmacol Res 41:605–612Google Scholar
  21. Pfeffer MA, Pfeffer JM (1987) Ventricular enlargement and reduced survival after myocardial infarction. Circulation 7(Suppl IV):93–97Google Scholar
  22. Pfeffer MA, Pfeffer JM, Fishbein MC, Fletcher PJ, Spadaro J, Kloner RA, Braunwald E (1979) Myocardial infarct size and ventricular function in rats. Circ Res 44:503–512PubMedGoogle Scholar
  23. Pfeffer MA, Pfeffer JM, Steinberg C, Finn P (1985) Survival after an experimental myocardial infarction: beneficial effects of long-term therapy with captopril. Circulation 72:406–412PubMedGoogle Scholar
  24. Rizzi E, Castro MM, Prado CM, Silva CA, Fazan R Jr, Rossi MA, Tanus-Santos JE, Gerlach RF (2010) Matrix metalloproteinase inhibition improves cardiac dysfunction and remodeling in 2-kidney, 1-clip hypertension. J Card Fail 16:599–608PubMedGoogle Scholar
  25. Rudin M, Pedersen B, Umemura K, Zierhut W (1991) Determination of rat heart morphology and function in vivo in two models of cardiac hypertrophy by means of magnetic resonance imaging. Basic Res Cardiol 8:165–174Google Scholar
  26. Sabbah HN, Stein PD, Kono T, Gheorghiade M, Levine TB, Jafri S, Hawkins ED, Goldstein S (1991) A canine model of chronic heart failure produced by multiple sequential coronary microembolizations. Am J Physiol 260(4 Pt 2):H1379–H1384Google Scholar
  27. Selye H, Bajusz E, Grasso S, Mendell P (1960) Simple techniques for the surgical occlusion of coronary vessels in the rat. Angiology 11:398–407Google Scholar
  28. Terlink JR, Pfeffer JM, Pfeffer MA (1998) Effect of left ventricular sphericity on the evolution of ventricular dysfunction in rats with diffuse isoproterenol-induced myocardial necrosis. J Card Fail 4:45–56Google Scholar
  29. Van Veldhuisen DJ, van Gilst WH, de Smet BJ, de Graeff PA, Scholtens E, Buikema H, Girbes AR, Wesseling H, Lie KI (1994) Neurohumoral and hemodynamic effects of ibopamine in a rat model of chronic myocardial infarction and heart failure. Cardiovasc Drugs Ther 8:245–250PubMedGoogle Scholar
  30. Van Veldhuisen DJ, Brodde OE, van Gilst WH, Schulze C, Hegeman H, Anthonio RL, Scholtens E, de Graeff PA, Wesseling H, Lie KI (1995) Relation between myocardial β-adrenoceptor density and hemodynamic and neurohumoral changes in a rat model of chronic myocardial infarction: effects of ibopamine and captopril. Cardiovasc Res 30:386–393PubMedGoogle Scholar

Cardiac Hypertrophy in Mice

  1. Dom GW, Robins J, Ball N, Walsh RA (1994) Myosin heavy chain regulation and myocytes contractile depression after LV hypertrophy in aortic-banded mice. Am J Physiol 267(1 Pt2):H400–H406Google Scholar
  2. Okada KI, Minamino T, Tsukamoto Y, Liao Y, Tsukamoto O, Takashima S, Hirata A, Fujita M, Nagamachi Y, Nakatani T, Yutani C, Ozawa K, Ogawa S, Tomoike H, Hori M, Kitakaze M (2004) Prolonged endoplasmatic reticulum stress in hypertrophic and failing heart after aortic constriction. Possible contribution of endoplasmatic reticulum stress to cardiac myocyte apoptosis. Circulation 110:705–712PubMedGoogle Scholar
  3. Rockman HA, Ross RS, Harris AN, Knowlton KU, Steinhelper ME, Field LJ, Ross J Jr, Chien KR (1991) Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc Natl Acad Sci U S A 88:8277–8281PubMedCentralPubMedGoogle Scholar
  4. Rockman HA, Knowlton KU, Ross J Jr, Chien KR (1993) In vivo murine cardiac hypertrophy. A novel model to identify genetic signaling mechanisms that activate an adaptive physiological response. Circulation 87(Suppl VII):VII-14–VII-21Google Scholar
  5. Stansfield WE, Rojas M, Corn D, Willis M, Patterson C, Smyth SS, Selzman CH (2007) Characterization of a model to independently study regression of ventricular hypertrophy. J Surg Res 142:387–393PubMedGoogle Scholar

Chronic Heart Failure in Mice

  1. Balasubramaniam R, Chawla S, Mackenzie L, Schwiening CJ, Grace AA, Huang CLH (2004) Nifedipine and diltiazem suppress ventricular arrhythmogenesis and calcium release in mouse hearts. Pflugers Arch 449:150–158PubMedGoogle Scholar
  2. Kaplan ML, Cheslow Y, Vikstrom K, Malhotra A, Geenen DL, Nakouzi A, Leinwand LA, Buttrik PM (1994) Cardiac adaptations to chronic exercise in mice. Am J Physiol 267(3 Pt2):H1167–H1173Google Scholar
  3. Liao Y, Asakura M, Takashima S, Ogai A, Asano Y, Asanuma H, Minamino T, Tomoike H, Hori M, Kitakaze M (2005) Benidipine, a long-acting calcium channel blocker, inhibits cardiac remodeling in pressure-overloaded mice. Cardiovasc Res 65:879–888PubMedGoogle Scholar
  4. Rockman HA, Ono S, Ross RS, Jones LR, Karimi M, Bhargava V, Ross J Jr, Chien KR (1994) Molecular and physiological alterations in murine ventricular dysfunction. Proc Natl Acad Sci U S A 91:2694–2698PubMedCentralPubMedGoogle Scholar
  5. Scheuermann-Freestone M, Freestone NS, Langenickel T, Hohnel K, Dietz R, Willenbrock R (2001) A new model of congestive heart failure in the mouse due to chronic volume overload. Eur J Heart Fail 3:535–543PubMedGoogle Scholar
  6. Suzuki Y, Nakano K, Sugiyama M, Imagawa JI (2004) βARK1 inhibition improves survival in a mouse model of heart failure induced by myocardial infarction. J Cardiovasc Pharmacol 44:329–334PubMedGoogle Scholar
  7. Walther T, Steendijk P, Westermann D, Hohmann C, Schulze K, Heringer-Walther S, Schultheiss HP, Tschöpe C (2004) Angiotensin deficiency in mice leads to dilated cardiomyopathy. Eur J Pharmacol 493:161–165PubMedGoogle Scholar
  8. Wang D, Liu YH, Yang XP, Rhaleb NE, Xu J, Peterson E, Rudolph AE, Carretero OA (2004) Role of a selective aldosterone blocker in mice with chronic heart failure. J Card Fail 10:67–73PubMedGoogle Scholar
  9. Xu J, Carretero OA, Liu YH, Yang F, Shesley EG, Oja-Tebbe N, Yang XP (2004) Dual inhibition of ACE and NEP provides greater cardioprotection in mice with heart failure. J Card Fail 10:83–89PubMedGoogle Scholar

Transgenic Mice and Heart Failure

  1. Arber S, Hunter JJ, Ross J Jr, Hongo M, Sansig G, Borg J, Perriard JC, Chien KR, Caroni P (1997) MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88:393–403PubMedGoogle Scholar
  2. Beggah AT, Escoubert B, Puttini S, Cailmail S, Delage V, Ouvrard- Pascaud A, Bocchi B, Peuchmaur M, Delcayre C (2002) Reversible cardiac fibrosis and heart failure induced by conditional expression of an antisense mRNA of the mineralocorticoid receptor in cardiomyocytes. Proc Natl Acad Sci U S A 99:7160–7165PubMedCentralPubMedGoogle Scholar
  3. Chien KR (1995) Cardiac muscle diseases in genetically engineered mice: evolution of molecular physiology. Am J Physiol 269:H755–H766PubMedGoogle Scholar
  4. Duncan JG, Ravi R, Stull LB, Murphy AM (2005) Chronic xanthine oxidase inhibition prevents myofibrillar protein oxidation and preserves cardiac function in a transgenic mouse model of cardiomyopathy. Am J Physiol 289:H1512–H1518Google Scholar
  5. Edwards JG, Lyons GE, Micales BK, Malhotra A, Factor S, Leinwand LA (1996) Cardiomyopathy in transgenic myf5 mice. Circ Res 78:379–387PubMedGoogle Scholar
  6. Graham BH, Waymire KG, Cottrell B, Trounce IA, MacGregor GR, Wallace DC (1997) A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoforms of the adenine nucleotide translocator. Nat Genet 16:226–234PubMedGoogle Scholar
  7. Hartil K, Charron MJ (2005) Genetic modification of the heart: transgenic modification of cardiac lipid and carbohydrate utilization. J Mol Cell Cardiol 39:581–593PubMedGoogle Scholar
  8. Hilfiker-Kleiner D, Hilfiker A, Drexler H (2005) Many good reasons to have STAT3 in the heart. Pharmacol Ther 107:131–137PubMedGoogle Scholar
  9. Iwase M, Uechi M, Vatner DA, Asai K, Shannon RP, Kudej RK, Wagner TE, Wight DC, Patrick TA, Ishikawa Y, Homcy CJ, Vatner SF (1997) Cardiomyopathy induced by cardiac Gs α overexpression. Am J Physiol 272(1 Pt2):H585–H589Google Scholar
  10. Knollmannn BC, Knollmann-Ritschel BEC, Weissman NJ, Jones LR, Morad M (2000) Remodelling of ionic currents in hypertrophied and failing hearts of transgenic mice overexpressing calsequestrin. J Physiol 525(2):483–498Google Scholar
  11. Sanbe A, Osinska H, Villa C, Gulick J, Klevitsky R, Glabe CG, Kayed R, Robbins J (2005) Reversal of amyloid-induced heart disease in desmin-related cardiomyopathy. Proc Natl Acad Sci U S A 102:13592–13597Google Scholar
  12. Verheule S, Sato T, Everett T, Engle SK, Otten D, Rubart-von der Lohe M, Nakajima HO, Nakajima H, Field LJ, Olgin FE (2004) Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-β1. Circ Res 94:1458–1465PubMedCentralPubMedGoogle Scholar

Cardiac Insufficiency in Guinea Pigs

  1. Huang Y, Kawaguchi O, Zeng B, Carrington RAJ, Horam CJ, Yuasa T, Abdul-Hussein N, Hunyor SN (1997) A stable ovine congestive heart failure model. A suitable substrate for left ventricular assist device assessment. ASAIO J 43:M408–M413PubMedGoogle Scholar
  2. Kiss E, Ball NA, Kranias EG, Walsh RA (1995) Differential changes in cardiac phospholamban and sarcoplasmic reticular Ca2+-ATPase protein levels. Effects on Ca2+ transport and mechanics in compensated pressure-overload hypertrophy and congestive heart failure. Circ Res 77:759–764PubMedGoogle Scholar
  3. Pfeffer JM, Pfeffer MA, Braunwald E (1987) Hemodynamic benefits and prolonged survival with long-term captopril therapy in rats with myocardial infarction and heart failure. Circulation 75:I-149–I-155Google Scholar
  4. Selye H, Bajusz E, Grasso S, Mendell P (1960) Simple techniques for the surgical occlusion of coronary vessels in the rat. Angiology 11:398–407Google Scholar
  5. Siri FM, Nordin C, Factor SM, Sonnenblick E, Aronson R (1989) Compensatory hypertrophy and failure in gradual pressure-overloaded guinea pig heart. Am J Physiol 257(3 Pt2):H1016–H1024Google Scholar
  6. Siri FM, Krueger J, Nordin C, Ming Z, Aronson RS (1991) Depressed intracellular calcium transients and contraction in myocytes from hypertrophied and failing guinea pig hearts. Am J Physiol 261(2 Pt2):H514–H530Google Scholar
  7. Tweedle D, Henderson CG, Kane KA (1995) Assessment of subrenal banding of the abdominal aorta as a method of inducing cardiac hypertrophy in the guinea pig. Cardioscience 6:115–119Google Scholar
  8. Vogel HG, Marx KH (1964) Untersuchungen an der experimentellen hydropischen Herzinsuffizienz des Meerschweinchens. Naunyn Schmiedeberg’s Arch Path Pharm 247:337Google Scholar
  9. Vogel HG, Marx KH, Ther L (1965) Über die experimentelle hydropische Herzinsuffizienz am Meerschweinchen. Operationstechnik, Einfluß zusätzlicher Faktoren und Effekt von Herzglykosiden. Arzneim Forsch/Drug Res 15:542–548Google Scholar

Cardiomyopathic Syrian Hamster

  1. Bajusz E (1969) Hereditary cardiomyopathy: a new disease model. Am Heart J 77:686–696PubMedGoogle Scholar
  2. Bajusz E, Lossnitzer A (1968) A new disease model of chronic congestive heart failure: studies on its pathogenesis. Trans N Y Acad Sci 30:939–948PubMedGoogle Scholar
  3. Bajusz E, Homburger F, Baker JR, Opie LH (1966) The heart muscle in muscular dystrophy with special reference to involvement of the cardiovascular system in the hereditary myopathy of the hamster. Ann N Y Acad Sci 138:213–229Google Scholar
  4. Bajusz E, Baker JR, Nixon CW, Homburger F (1969a) Spontaneous hereditary myocardial degeneration and congestive heart failure in a strain of Syrian hamsters. Ann N Y Acad Sci 156:105–129PubMedGoogle Scholar
  5. Bajusz E, Homburger F, Baker JR, Bogdonoff P (1969b) Dissociation of factors influencing myocardial degeneration and generalized cardiocirculatory failure. Ann N Y Acad Sci 156:396–420PubMedGoogle Scholar
  6. Bilate AMB, Salemi VMC, Ramirez FJA, de Brito T, Silva AM, Umezawa ES, Mady C, Kalil J, Cunha-Neto E (2003) The Syrian hamster as a model for the dilated cardiomyopathy of Chagas’ disease: a quantitative echocardiographical and histopathological analysis. Microbes Infect 5:1116–1124PubMedGoogle Scholar
  7. Capasso JM, Olivetti G, Anvera P (1989) Mechanical and electrical properties of cardiomyopathic hearts of Syrian hamsters. Am J Physiol Heart Circ Physiol 257:H1836–H1842Google Scholar
  8. Capasso JM, Sonnenblick EH, Anversa P (1990) Chronic calcium channel blockade prevents the progression of myocardial contractile and electrical dysfunction in the cardiomyopathic Syrian hamster. Circ Res 67:1381–1393PubMedGoogle Scholar
  9. Chemla D, Scalbert E, Desché P, Pourny JC, Lambert F, Lecarpentier Y (1992) Effects of perindopril on myocardial inotropy, lusitropy and economy, and on diaphragm contractility in the cardiomyopathic Syrian hamster. J Pharmacol Exp Ther 262:515–525Google Scholar
  10. Chemla D, Scalbert E, Desché P, Pourny JC, Lambert F, Lecarpentier Y (1993) Myocardial effects of early therapy with perindopril during experimental cardiomyopathy. Am J Cardiol 71:41E–47EPubMedGoogle Scholar
  11. Desjardins S, Mueller RW, Hubert RS, Cauchy MJ (1989) Effects of milrinone treatment in cardiomyopathic hamsters (CHF 147) with severe congestive heart failure. Cardiovasc Res 23:620–630PubMedGoogle Scholar
  12. Devaux JY, Cabane L, Elser M, Flaouters H, Duboc D (1993) Non-invasive evaluation of the cardiac function in golden retriever dogs by radionuclide angiography. Neuromuscul Disord 3:429–432PubMedGoogle Scholar
  13. Dixon IMC, Ju H, Reidl NL, Scammell-La-Fleur T, Werner JP, Jasmin G (1997) Cardiac collagen remodelling in the cardiomyopathic Syrian hamster and the effect of losartan. J Mol Cell Cardiol 29:1837–1850PubMedGoogle Scholar
  14. Factor SM, Sonnenblick EH (1985) The pathogenesis of clinical and experimental congestive cardiomyopathy: recent concepts. Prog Cardiovasc Dis 27:395–420PubMedGoogle Scholar
  15. Factor SM, Minase T, Cho S, Dominitz R, Sonnenblick EH (1982) Microvascular spasm in the cardiomyopathic Syrian hamster: a preventable cause of focal myocardial necrosis. Circulation 66:342–354PubMedGoogle Scholar
  16. Forman R, Parmley WW, Sonnenblick EH (1972) Myocardial contractility in relation to hypertrophy and failure in myopathic Syrian hamsters. J Mol Cell Cardiol 4:203–211PubMedGoogle Scholar
  17. Gardi C, Martorana PA, Calzoni P, Cavarra E, Marcolongo P, de Santi MM, van Even P, Lungarella G (1994) Cardiac collagen changes during the development of right ventricular hypertrophy in tight-skin mice with emphysema. Exp Mol Pathol 60:100–107PubMedGoogle Scholar
  18. Gertz EW (1972) Cardiomyopathic Syrian hamster: a possible model of human disease. Prog Exp Tumor Res 16:242–260PubMedGoogle Scholar
  19. Haleen SJ, Weishaar RE, Overhiser RW, Bousley RF, Keiser JA, Rapundalo SR, Taylor DG (1991) Effects of Quinapril, a new angiotensin converting enzyme inhibitor, on left ventricular failure and survival in the cardiomyopathic hamster. Circ Res 68:1302–1312PubMedGoogle Scholar
  20. Hanton G, Barnes P, Shepperson NB, Walley R (1993) Effects of hydrochlorothiazide and captopril on the survival and heart weight of cardiomyopathic hamsters. Res Commun Chem Pathol Pharmacol 81:159–166PubMedGoogle Scholar
  21. Homburger F (1979) Myopathy of hamster dystrophy: history and morphological aspects. Ann N Y Acad Sci 317:2–17Google Scholar
  22. Homburger F, Bajusz E (1970) New models of human disease in Syrian hamsters. JAMA 212:604–610PubMedGoogle Scholar
  23. Jasmin G, Proscheck L (1982) Hereditary polymyopathy and cardiomyopathy in the Syrian hamster: I. Progression of heart and skeleton muscle lesions in the UM-X7.1 line. Muscle Nerve 5:20–25PubMedGoogle Scholar
  24. Jasmin G, Proschek L (1984) Calcium and myocardial cell injury. An appraisal in the cardiomyopathic hamster. Can J Physiol Pharmacol 62:891–898PubMedGoogle Scholar
  25. Kato M, Takeda N, Yang J, Nagano M (1992) Effects of angiotensin converting enzyme inhibitors and the role of the renin-angiotensin-aldosterone system in J-2-N cardiomyopathic hamsters. Jpn Circ J 56:46–51PubMedGoogle Scholar
  26. Kuo TH, Tsang W, Wang KK, Carlock L (1992) Simultaneous reduction of the sarcolemmal and SR calcium APTase activities and gene expression in cardiomyopathic hamster. Biochim Biophys Acta 1138:343–349PubMedGoogle Scholar
  27. Malhotra A, Karell M, Scheuer J (1985) Multiple cardiac contractile protein abnormalities in myopathic Syrian hamsters (Bio 53:58). J Mol Cell Cardiol 17:95–107PubMedGoogle Scholar
  28. Martorana PA, Wilkinson M, van Even P, Lungarella G (1990) Tsk mice with genetic emphysema. Right ventricular hypertrophy occurs without hypertrophy of muscular pulmonary arteries or muscularization of arterioles. Am Rev Respir Dis 142:333–337PubMedGoogle Scholar
  29. Nigro V, Okazaki Y, Belsito A, Piluso G, Matsuda Y, Politano L, Nigro G, Ventura C, Abbondanza C, Molinari AM, Acampora D, Nishimura A, Hayashizaki Y, Puca GA (1997) Identification of the Syrian hamster cardiomyopathy gene. Hum Mol Genet 6:601–607PubMedGoogle Scholar
  30. Sen L, O’Neill M, Marsh JD, Smith TW (1990) Inotropic and calcium kinetic effects of calcium channel agonist and antagonist in isolated cardiac myocytes from cardiomyopathic hamsters. Circ Res 67:599–608PubMedGoogle Scholar
  31. Strobeck JE, Factor SM, Bhan A, Sole M, Liew CC, Fein F, Sonnenblick EH (1979) Hereditary and acquired cardiomyopathies in experimental animals: mechanical, biochemical and structural features. Ann N Y Acad Sci 317:59–68PubMedGoogle Scholar
  32. Tanguay M, Jasmin G, Blaise G, Dumant L (1997) Coronary and cardiac sensitivity to the vasoselective benzothiazepine-like calcium antagonist, clentiazem, in experimental heart failure. Cardiovasc Drugs Ther 11:71–79PubMedGoogle Scholar
  33. Tapp WN, Natelson BH, Creighton D, Khazam C, Ottenweller JE (1989) Alprazolam reduces stress-induced mortality in cardiomyopathic hamsters. Pharmacol Biochem Behav 32:331–336PubMedGoogle Scholar
  34. Van Meel JC, Mauz ABM, Wienen W, Diederen W (1989) Pimobendan increases survival of cardiomyopathic hamsters. J Cardiovasc Pharmacol 13:508–509PubMedGoogle Scholar
  35. Ver Donck L, Wouters L, Olbrich HG, Mutschler E, Brogers M (1991) Nebivolol increases survival in cardiomyopathic hamsters with congestive heart failure. J Cardiovasc Pharmacol 18:1–3PubMedGoogle Scholar
  36. Whitmer JT, Kumar P, Solaro RJ (1988) Calcium transport properties of cardiac sarcoplasmic reticulum from cardiomyopathic Syrian hamsters (BIO 53.58 and 14.6): evidence for a quantitative defect in dilated myopathic hearts not evident in hypertrophic hearts. Circ Res 62:81–85PubMedGoogle Scholar
  37. Wiederhold KF, Nilius B (1986) Increased sensitivity of ventricular myocardium to intracellular calcium-overload in Syrian cardiomyopathic hamster. Biomed Biochim Acta 45:1333–1337PubMedGoogle Scholar

Cardiac Failure in Rabbits

  1. Alexander IK, Keene BW, Small JD, Yount B Jr, Baric RS (1993) Electrographic changes following rabbit coronavirus- induced myocarditis and dilated cardiomyopathy. Adv Exp Med Biol 342:365–370PubMedGoogle Scholar
  2. Arnolda L, McGrath B, Cocks M, Sumithran E, Johnston C (1985) Adriamycin cardiomyopathy in the rabbit: an animal model of low output cardiac failure with activation of vasoconstrictor mechanisms. Cardiovasc Res 19:378–382PubMedGoogle Scholar
  3. Baartscheer A, Schumacher CA, Belterman CNW, Coronel R, Fiolet JWT (2003a) SR calcium handling and calcium after-transients in a rabbit model of heart failure. Cardiovasc Res 58:99–108PubMedGoogle Scholar
  4. Baartscheer A, Schumacher CA, van Borren MMGJ, Belterman VNW, Coronel R, Fiolet JWT (2003b) Increased Na+/H+-exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model. Cardiovasc Res 57:1015–1024PubMedGoogle Scholar
  5. Bouanani N, Cosin A, Gilson N, Crotazier B (1991) Betaadrenoceptors and adenylate cyclase activity in hypertrophied and failing rabbit left ventricle. J Mol Cell Cardiol 23:573–581PubMedGoogle Scholar
  6. Currie S, Smith GL (1999) Enhanced phosphorylation of phospholamban and downregulation of sarco/endoplasmatic reticulum Ca2+ ATPase type 2 (SERCA2) in cardiac sarcoplasmatic reticulum from rabbits with heart failure. Cardiovasc Res 41:135–146PubMedGoogle Scholar
  7. Dekker LR, Rademaker H, Vermeulen JT, Opthof T, Coronel R, Spaan JA, Janse MJ (1988) Cellular uncoupling during ischemia in hypertrophied and failing rabbit ventricular myocardium: effects of preconditioning. Circulation 97:1724–1730Google Scholar
  8. Dekker LR, Rademaker H, Vermeulen JT, Opthof T, Coronel R, Spaan JA, Janse MJ (1998) Cellular uncoupling during ischemia in hypertrophied and failing rabbit ventricular myocardium: effects of preconditioning. Circulation. 97(17):1724–30.PubMedGoogle Scholar
  9. Eble DM, Walker JD, Samarei AM, Spinale FG (1998) Myosin heavy chain synthesis during progression of chronic tachycardia induced heart failure in rabbits. Basic Res Cardiol 93:50–55PubMedGoogle Scholar
  10. Ezzaher A, el Houda-Bouanani N, Su JB, Hittinger L, Crozatier B (1991) Increased negative inotropic effect of calcium- channel blockers in hypertrophied and failing rabbit heart. J Pharmacol Exp Ther 257:466–471PubMedGoogle Scholar
  11. Gunawardena S, Bravo E, Kappagoda CT (1999) Rapidly adapting receptors in a rabbit model of mitral regurgitation. J Physiol 521:739–748PubMedCentralPubMedGoogle Scholar
  12. King RK, Magid NM, Opio G, Borer JS (1997) Protein turnover in compensated chronic aortic regurgitation. Cardiology 88:518–525PubMedGoogle Scholar
  13. Klimtova I, Simunek T, Mazurova Y, Hrdina R, Gersi V, Adamcova M (2002) Comparative study of chronic toxic effects of daunorubicin and doxorubicin in rabbits. Hum Exp Toxicol 21:649–657PubMedGoogle Scholar
  14. Li YL, Sun YS, Overholt JL, Prabhakar NR, Rozanski GJ, Zucker IH, Schultz HD (2003) Attenuated outward potassium currents in carotid body glomus cells of heart failure rabbit: involvement of nitric oxide. J Physiol 555:219–229PubMedCentralPubMedGoogle Scholar
  15. Liu SK, Magid NR, Fox PR, Goldfine SM, Borer JS (1998) Fibrosis, myocyte degeneration and heart failure in chronic aortic regurgitation. Cardiology 90:101–109PubMedGoogle Scholar
  16. Luchner A, Muders F, Dietl O, Friedrich E, Blumberg F, Protter AA, Riegger GAJ, Elsner D (2001) Differential expression of cardiac ANP and BNP in a rabbit model of progressive left ventricular dysfunction. Cardiovasc Res 51:601–607PubMedGoogle Scholar
  17. Magid NM, Young MS, Wallerson DC, Goldweit RS, Carter JN, Deveraux RB, Borer JS (1988) Hypertrophic and functional response to experimental chronic aortic regurgitation. J Mol Cell Cardiol 20:239–246PubMedGoogle Scholar
  18. Magid NM, Opio G, Wallerson DC, Young MS, Borer JS (1994) Heart failure due to chronic aortic regurgitation. Am J Physiol 267(2 Pt2):H556–H562Google Scholar
  19. Masaki H, Imaizumi T, Harasawa Y, Takeshita A (1994) Dynamic arterial baroreflex in rabbits with heart failure induced by rapid pacing. Am J Physiol 267(1 Pt2):H92–H99Google Scholar
  20. Miller DJ, MacFarlane NG, Wilson G (2004) Altered oscillatory work by ventricular myofilaments from a rabbit coronary artery ligation model of heart failure. Cardiovasc Res 61:94–104PubMedGoogle Scholar
  21. Mohammadi K, Rouet-Benzineb P, Laplace M, Crozatier B (1997) Protein kinase C activity and expression in rabbit left ventricular hypertrophy. J Mol Cell Cardiol 29:1687–1694PubMedGoogle Scholar
  22. Muders F, Elsner F (2000) Animal models of chronic heart failure. Pharmacol Res 41:605–612Google Scholar
  23. Pennock GD, Yun DD, Agarwal PG, Spooner PH, Goldman S (1997) Echocardiographic changes after myocardial infarction in a model of left ventricular dysfunction. Am J Physiol 273(4 Pt2):H2018–H2029Google Scholar
  24. Pogwizd SM, Qi M, Yuan W, Samaral AM, Bers DM (1999) Upregulation of Na+/Ca2+ exchanger expression and function in an arrhythmogenic rabbit model of heart failure. Circ Res 85:1009–1019PubMedGoogle Scholar
  25. Porsa E, Freeman GL, Herlihy JT (1994) Tachycardia heart failure alters rabbit aortic smooth muscle responsiveness to angiotensin II. Am J Physiol 266(3 Pt2):H1228–H1232Google Scholar
  26. Romanic AM, Burns-Curtis CL, Gout B, Berrebi-Bertrand I, Ohlstein EH (2001) Matrix metalloproteinase expression in cardiac myocytes following myocardial infarction in the rabbit. Life Sci 68:799–814PubMedGoogle Scholar
  27. Rose J, Armoundas AA, Tian Y, DeSilvestre D, Burysek M, Halperin V, O’Rourke B, Kass DA, Marban E, Tomaselli GF (2005) Molecular correlates to altered expression of potassium currents in failing rabbit myocardium. Am J Physiol 288:H2077–H2087Google Scholar
  28. Sanbe DM, James J, Tuzcu V, Nas S, Martin L, Gulick J, Osinka H, Sakthivel S, Klevitsky R, Ginsburg KS (2005) Transgenic model for human troponin I-based hypertrophic cardiomyopathy. Circulation 111:2330–2338Google Scholar
  29. Yoshikawa T, Handa S, Yamada T, Wainai Y, Suzuki M, Nagami K, Tani M, Nakamura Y (1993) Sequential changes in sympatho-neuronal regulation and contractile function following aortic regurgitation in rabbit heart. Eur Heart J 14:1404–1409PubMedGoogle Scholar

Cardiac Failure in Dogs

  1. Armstrong PW, Stopps TP, Ford SE, de Bold AJ (1986) Rapid ventricular pacing in the dog: pathophysiological studies of heart failure. Circulation 74:1075–1084PubMedGoogle Scholar
  2. Carlyle PF, Cohn JN (1983) A nonchirurgical model of chronic left ventricular dysfunction. Am J Physiol 244:H769–H774PubMedGoogle Scholar
  3. Cheng CP, Noda T, Nozawa T, Little WD (1993) Effect of heart failure on the mechanism of exercise-induced augmentation of mitral valve flow. Circ Res 72:795–806PubMedGoogle Scholar
  4. Cory CR, Shen H, O’Brien PJ (1994) Compensatory asymmetry in down-regulation and inhibition of the myocardial Ca2+ cycle in congestive heart failure in dogs by idiopathic dilated cardiomyopathy and rapid ventricular pacing. J Mol Cell Cardiol 26:173–184PubMedGoogle Scholar
  5. Dell’Italia LJ, Meng QC, Balcells E, Straeter-Knowlen IM, Hankes GH, Dillon R, Cartee RE, Orr R, Bishop SP, Oparil S (1995) Increased ACE and chymase-like activity in cardiac tissue of dogs with chronic mitral regurgitation. Am J Physiol 269(6 Pt2):H2065–H2073Google Scholar
  6. Eaton GM, Cody RJ, Nunziata E, Binkley PF (1995) Early left ventricular dysfunction elicits activation of sympathetic drive and attenuation of parasympathetic tone in the paced canine model of congestive heart failure. Circulation 92:555–561PubMedGoogle Scholar
  7. Freeman GL, Little WC, O’Rourke RA (1987) Influence of heart rate on left ventricular performance in conscious dogs. Circ Res 61:455–464PubMedGoogle Scholar
  8. Gengo PJ, Sabbah HN, Steffen RP, Sharpe KJ, Kono T, Stein PD, Goldstein S (1992) Myocardial beta receptor and voltage sensitive calcium channel changes in a canine model of chronic heart failure. J Mol Cell Cardiol 24:1361–1369PubMedGoogle Scholar
  9. Hart CY, Meyer DM, Tazelaar HD, Grande JP, Burnett JC, Housmans PR, Redfield MM (2001) Load versus humoral activation in the genesis of early hypertensive heart disease. Circulation 104:215–220PubMedGoogle Scholar
  10. Hayashida W, Donckier J, Van Mechelen H, Charlier AA, Pouleur H (1997) Diastolic properties in canine hypertensive left ventricular hypertrophy: effects of angiotensin converting enzyme inhibition and angiotensin II type-1 receptor blockade. Cardiovasc Res 33:54PubMedGoogle Scholar
  11. Hayashida W, Donckier J, Van Mechelen H, Charlier AA, Pouleur H (1998) Load-sensitive diastolic relaxation in hypertrophied left ventricles. Am J Physiol Heart Circ Physiol 274:H609–H615Google Scholar
  12. Kinney TE, Olinger GN, Sgar KB, Boerboom LE (1991) Acute, reversible tricuspid insufficiency: creation of a canine model. Am J Physiol 260:H638–H641PubMedGoogle Scholar
  13. Kiuchi K, Shannon RP, Sato N, Bigaud M, Lajoie C, Morgan KG, Vatner SF (1994) Factors involved in delaying the rise in peripheral resistance in developing heart failure. Am J Physiol 267(1 Pt2):H211–H216Google Scholar
  14. Kleaveland JP, Kussmaul WG, Vinciguerra T, Diters R, Carabello BA (1988) Volume overload hypertrophy in a closed chest model of mitral regurgitation. Am J Physiol 254(6 Pt2):H1034–H1041Google Scholar
  15. Koide M, Nagatsu M, Zile MR, Hamakawi M, Swindle MM, Keech G, DeFreyte G, Tagawa H, Cooper G, Carabello BA (1997) Premorbid determinants of left ventricular dysfunction in a novel model of gradually induced pressure overload in the adult canine. Circulation 95:1601–1610PubMedGoogle Scholar
  16. Komamura K, Shannon RP, Pasipoularides A, Ihara T, Lader AS, Patrick TA, Bishop SP, Vatner SF (1992) Alterations in left ventricular diastolic function in conscious dogs with pacing- induced heart failure. J Clin Invest 89:1825–1838PubMedCentralPubMedGoogle Scholar
  17. Komamura K, Shannon RP, Ihara T, Shen YT, Mirsky I, Bishop SP, Vatner SF (1993) Exhaustion of Frank-Starling mechanism in conscious dogs with heart failure. Am J Physiol 265(4 Pt2):H1119–H1131Google Scholar
  18. Luchner A, Stevens TL, Borgeson DD, Redfield MM, Bailey JE, Sandberg SM, Heublein DM, Burnett JC Jr (1996) Angiotensin II in the evolution of experimental heart failure. Hypertension 28:472–477PubMedGoogle Scholar
  19. Magovern JA, Christlieb IY, Badylak SF, Lantz GC, Kao RL (1992) A model of left ventricular dysfunction caused by intracoronary adriamycin. Ann Thorac Surg 53:861–863PubMedGoogle Scholar
  20. Maniu CV, Meyer DM, Redfield MM (2002) Hemodynamic and humoral effects of vasopeptidase inhibition in canine hypertension. Hypertension 40:528–534PubMedGoogle Scholar
  21. McDonald KM, Francis GS, Carlyle PF, Hauer K, Matthews J, Hunter DW, Cohn JN (1992) Hemodynamic, left ventricular structural and hormonal changes after discrete myocardial damage in the dog. J Am Coll Cardiol 19:460–467Google Scholar
  22. Nagatsu M, Zile MR, Tsutsui H, Schmid PG, DeFreyte G, Cooper G IV, Carabello BA (1994) Native β-adrenergic support for left ventricular dysfunction in experimental mitral regurgitation normalizes indexes of pump and contractile function. Circulation 89:818–826PubMedGoogle Scholar
  23. O’Rourke B, Kass DA, Tomaselle GF, Kääb S, Tunin R, Marbán E (1999) Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure. I: experimental studies. Circ Res 84:562–570PubMedGoogle Scholar
  24. Ohno M, Cheng CP, Little WC (1994) Mechanism of altered patterns of left ventricular filling during the development of congestive heart failure. Circulation 89:2241–2250PubMedGoogle Scholar
  25. Page I (1939) A method for producing persistent hypertension by cellophane. Science 89:273–274PubMedGoogle Scholar
  26. Perreault CL, Shannon RP, Komamura K, Vatner SF, Morgan JP (1992) Abnormalities in intracellular calcium regulation and contractile function in myocardium from dogs with pacing-induced heart failure. J Clin Invest 83:932–938Google Scholar
  27. Ravens U, Davia K, Davies CH, O’Gara P, Drake-Holland AJ, Hynd JW, Noble MIM, Harding SE (1996) Tachycardia induced failure alters contractile properties of canine ventricular myocytes. Cardiovasc Res 32:613–621PubMedGoogle Scholar
  28. Redfield MM, Aarhus LL, Wright RS, Burnett JC (1993) Cardiorenal and neurohumoral function in a canine model of left ventricular dysfunction. Circulation 87:2016–2022PubMedGoogle Scholar
  29. Sabbah HN, Stein PD, Kono D, Gheorghiade M, Levine TB, Jafri S, Hawkins ET, Goldstein S (1991) A canine model of chronic heart failure produced by multiple sequential coronary microembolizations. Am J Physiol 260(4 Pt2):H1379–H1384Google Scholar
  30. Sabbah HN, Hansen-Smith F, Sharov VG, Kono T, Lesch M, Gengo PJ, Steffen RP, Levine TB, Goldstein S (1993) Decreases proportion of type I myofibers in skeletal muscle of dogs with chronic heart failure. Circulation 87:1729–1737PubMedGoogle Scholar
  31. Sabbah HN, Shimoyama H, Kono T, Gupta RC, Sharov VG, Scicli G, Levine TB, Doldstein S (1994) Effects of long term monotherapy with enalapril, metoprolol, and digoxin on the progression of left ventricular dysfunction and dilation in dogs with reduced ejection fraction. Circulation 89:2852–2859PubMedGoogle Scholar
  32. Shinbane JS, Wood MA, Jensen DN, Ellenbogen KA, Fitzpatrick AP, Scheinman MM (1997) Tachycardia-induced cardiomyopathy: a review of animal models and clinical studies. J Am Coll Cardiol 29:709–715PubMedGoogle Scholar
  33. Spinale FG, Holzgrefe HH, Mukherjee R, Hird B, Walker JD, Armin-Baker A, Powell JR, Koster WH (1995) Angiotensin- converting enzyme inhibition and the progression of congestive cardiomyopathy. Circulation 92:562–578PubMedGoogle Scholar
  34. Su X, Wei CC, Machida N, Bishop SP, Hankes GH, Dillon AR, Oparil S, Dell’Italia LJ (1999) Differential expression of angiotensin-converting enzyme and chymase in dogs with chronic mitral regurgitation. J Mol Cell Cardiol 31:1033–1045PubMedGoogle Scholar
  35. Travill CM, Williams TD, Pate P, Song G, Chalmers J, Lightman SL, Sutton R, Noble MI (1992) Hemodynamic and neurohumoral response in heart failure produced by rapid ventricular pacing. Cardiovasc Res 26:783–790PubMedGoogle Scholar
  36. Valentine BA, Cooper BJ, DeLahunta A, O’Quinn R, Blue JT (1988) Canine X-linked muscular dystrophy. An animal model of Duchenne muscular dystrophy: clinical studies. J Neurol Sci 88:69–81PubMedGoogle Scholar
  37. Vanoli E, Bacchini S, Panigada S, Pentimalli F, Adamson PB (2004) Experimental models of heart failure. Eur Heart J Suppl 6 (Suppl F):F7–F15Google Scholar
  38. Vatner DE, Sato N, Kiucho K, Shannon RP, Vatner SF (1994) Decrease in myocardial ryanodine receptors and altered excitation-contraction coupling early in the development of heart failure. Circulation 90:1423–1430PubMedGoogle Scholar
  39. Wang J, Seyedi N, Xu XB, Wolin MS, Hintze TH (1994) Defective endothelium-mediated control of coronary circulation in conscious dogs after heart failure. Am J Physiol 266(2 Pt2):H670–H680Google Scholar
  40. Williams RE, Kass DA, Kawagoe Y, Pak P, Tunin RS, Shah R, Hwang A, Feldman AM (1994) Endomyocardial gene expression during development of pacing tachycardia-induced heart failure in the dog. Circ Res 75:615–623PubMedGoogle Scholar
  41. Wilson JR, Douglas P, Hickey WF, Lanoce V, Ferraro N, Muhammad A, Reicheck N (1987) Experimental congestive heart failure produced by rapid ventricular pacing in the dog: cardiac effects. Circulation 75:857–867PubMedGoogle Scholar
  42. Winslow RL, Rice J, Jafri S, Marbán E, O’Rourke B (1999) Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II: model studies. Circ Res 84:571–586PubMedGoogle Scholar
  43. Wolff MR, Whitesell LF, Moss RL (1995) Calcium sensitivity of isometric tension is increased in canine experimental heart failure. Circ Res 76:781–789PubMedGoogle Scholar
  44. Zile MR, Mukherjee R, Clayton C, Kato S, Spinale FG (1995) Effects of chronic supraventricular pacing tachycardia on relaxation rate in isolated cardiac muscle cells. Am J Physiol 268(5 Pt2):H2104–H2113Google Scholar

Cardiac Failure in Pigs

  1. Atkinson DJ, Edelman RR (1991) Cineangiography of the heart in a single breath hold with segmented turboflash sequence. Radiology 178:357–360PubMedGoogle Scholar
  2. Carroll SM, Nimmo LE, Knoepfler PS, White FC, Bloor CM (1995) Gene expression in a swine model of ventricular hypertrophy: intercellular adhesion molecule, vascular endothelial growth factor and plasminogen activators are upregulated during pressure overload. J Mol Cell Cardiol 27:1427–1441PubMedGoogle Scholar
  3. Chow E, Woodard JC, Farrar DJ (1990) Rapid ventricular pacing in pigs: an experimental model of congestive heart failure. Am J Physiol 258:H1603–H1605PubMedGoogle Scholar
  4. Farrar DJ, Woodard JC, Chow E (1993) Pacing-induced dilated cardiomyopathy increases left-to-right ventricular systolic interaction. Circulation 88:720–725PubMedGoogle Scholar
  5. Geiger D, Gupta A, Costa LA, Vlontzos J (1995) Dynamic programming for detecting, tracking and matching deformable contours. IEEE Trans Pattern Anal Mach Intell 17:294–302Google Scholar
  6. Grossman W, Jones D, McLaurin LP (1975) Wall stress and patterns of hypertrophy in human left ventricle. J Clin Invest 56:56–64PubMedCentralPubMedGoogle Scholar
  7. Hendrich K, Merkle H, Weisdorf S, Vine W, Garwood M, Ugurbil K (1991) Phase modulated rotating frame spectroscopic localization using an adiabatic plane rotation pulse and a single surface coil. J Magn Reson 92:258–275Google Scholar
  8. Kassab GS, Imoto K, White FC, Rider CA, Fung YC, Bloor CM (1993) Coronary arterial tree remodelling in right ventricular hypertrophy. Am J Physiol 265(1 Pt2):H366–H375Google Scholar
  9. Kassab GS, Schatz A, Imoto K, Fung YC (2000) Remodeling of the bifurcation asymmetry of right ventricular braches in hypertrophy. Ann Biomed Eng 28:424–430PubMedGoogle Scholar
  10. Krombach RS, Clair MJ, Hendrick JW, Mukherjee R, Houck WV, Hebbar L, Kribbs SB, Dodd MG, Spirale FG (1999) Amlodipine therapy in congestive heart failure: hemodynamic and neurohormonal effects at rest and after treadmill exercise. Am J Cardiol 84:3L–15LPubMedGoogle Scholar
  11. McDonald K, Parrish T, Wennberg P, Stillman AE, Francis GS, Cohn JN (1992) Rapid, accurate and simultaneous noninvasive assessment of right and left ventricular mass with nuclear magnetic resonance imaging using the snapshot gradient method. J Am Coll Cardiol 19:1601–1607Google Scholar
  12. McDonald KM, Yoshiyama M, Francis GS, Ugurbil K, Cohn JN, Zhang J (1994) Abnormal myocardial bioenergetics in canine asymptomatic left ventricular dysfunction. J Am Coll Cardiol 23:786–793PubMedGoogle Scholar
  13. Multani MM, Krombach RS, Hednrick JW, Baicu SC, Joffs C, Sample JA, deGasparo M, Spinale FG (2001) Long-term angiotensin-converting enzyme and angiotensin I receptor inhibition in pacing-induced heart failure. Effects on myocardial interstitial bradykinin levels. J Card Fail 7:348–354PubMedGoogle Scholar
  14. Robitaille PM, Lew B, Merkle H, Path G, Sublett E, Hendrich K, Lindstrom P, From AHL, Garwood M, Bache RJ, Ugurbil K (1990) Transmural high energy phosphate distribution and response to alterations in workload in the normal canine myocardium as studied with spatially localized 31P NMR spectroscopy. Magn Reson Med 16:91–116PubMedGoogle Scholar
  15. Spinale FG, Hendrick DA, Crawford FA, Smith AC, Hamada Y, Carabello BA (1990a) Chronic supraventricular tachycardia causes ventricular dysfunction and subendocardial injury in swine. Am J Physiol 259(1 Pt2):H218–H229Google Scholar
  16. Spinale FG, Hendrick DA, Crawford FA, Carabello BA (1990b) Relationship between bioimpedance, thermodilution, and ventriculographic measurements in experimental congestive heart failure. Cardiovasc Res 24:423–429PubMedGoogle Scholar
  17. Spinale FG, Tomita M, Zellner JL, Cook JC, Crawford FA, Zile MR (1991) Collagen remodelling and changes in LV function during development and recovery from supraventricular tachycardia. Am J Physiol 261(2 Pt2):H308–H318Google Scholar
  18. Spinale FG, Fulbright BM, Mukherjee R, Tanaka R, Hu J, Crawford FA, Zile MR (1992) Relation between ventricular and myocytes function with tachycardia-induced cardiomyopathy. Circ Res 71:174–187PubMedGoogle Scholar
  19. Wilke N, Simm C, Zhang J, Ellermann J, Ya X, Merkle H, Path G, Ludemann H, Bache RJ, Ugurbil K (1993) Contrast-enhanced first pass myocardial perfusion imaging: correlation between myocardial blood flow in dogs at rest and during hyperemia. Magn Reson Med 29:485–497PubMedGoogle Scholar
  20. Zhang J, McDonald K (1995) Bioenergetic consequence of left ventricular remodeling secondary to discrete myocardial infarction. Circulation 92:1011–1019PubMedGoogle Scholar
  21. Zhang J, Wilke N, Wang Y, Zhang Y, Wang C, Eijgelshoven MHJ, Cho YK, Murakami Y, Ugurbil K, Bache RJ, From AHL (1996) Functional and bioenergetic consequences of postinfarction left remodelling in a new porcine model. Circulation 94:1089–1100PubMedGoogle Scholar

Cardiac Failure in Sheep

  1. Aoyagi T, Fujii AM, Flaganan MF, Arnold LW, Brathwaite KW, Colan SD, Mirsky I (1993) Transition from compensated hypertrophy to intrinsic myocardial dysfunction during development of left ventricular pressure-overload hypertrophy in conscious sheep. Systolic dysfunction precedes diastolic dysfunction. Circulation 88:2415–2425PubMedGoogle Scholar
  2. Byrne MJ, Raman JS, Alferness CA, Elser MD, Kaye DM, Power JM (2002) An ovine model of tachycardia-induced degenerative dilated cardiomyopathy and heart failure with prolonged onset. J Card Fail 8:108–115PubMedGoogle Scholar
  3. Chandrakala AN, Kwiatkowski P, Sai-Sudhakar CB, Sun B, Phillips A, Parthasarathy S (2013) Induction of early biomarkers in a thrombus-induced sheep model of ischemic heart failure. Tex Heart Inst J 40(5):511–520PubMedCentralPubMedGoogle Scholar
  4. Charles CJ, Kaaja RJ, Espiner EA, Nicholls MG, Pemberton CJ, Richards AM, Yandle TG (1996) Natriuretic peptides in sheep with pressure overload left ventricular hypertrophy. Clin Exp Hypertens 18:1051–1071PubMedGoogle Scholar
  5. Charles CJ, Elliott JM, Nicholls MG, Rademaker MT, Richards AM (2003) Natriuretic peptides maintain sodium homoeostasis during chronic volume loading post-myocardial infarction in sheep. Clin Sci 104:429–436PubMedGoogle Scholar
  6. Huang Y, Hunyor SN, Liang L, Kawaguchi O, Shirota K, Ikeda Y, Yuasa T, Gallagher G, Zeng B, Zheng X (2004) Remodeling of chronic severely failing ischemic sheep heart after coronary microembolization: functional, energetic, structural, and cellular responses. Am J Physiol 286:H2141–H2150Google Scholar
  7. Monreal G, Gerhardt MA, Kambara A, Abrishamchian AR, Bauer JA, Goldstein AH (2004) Selective microembolization of the circumflex coronary artery in an ovine model: dilated, ischemic cardiomyopathy and left ventricular dysfunction. J Card Fail 10:174–183PubMedGoogle Scholar
  8. Moreno J, Zaitsev AV, Warren M, Berenfeld O, Kalifa J, Lucca E, Mironov S, Guha P, Jalife J (2005) Effect of remodelling, stretch and ischemia on ventricular fibrillation frequency and dynamics in a heart failure model. Cardiovasc Res 65:158–166PubMedGoogle Scholar
  9. Rademaker MT, Charles CJ, Lewis LK, Yandle TG, Cooper GJS, Coy DH, Richards AM, Nicholls MG (1997) Beneficial hemodynamic and renal effects of adrenomedullin in an ovine model of heart failure. Circulation 96:1983–1990PubMedGoogle Scholar
  10. Rademaker MT, Charles CJ, Cooper JS, Coy DH, Espiner EA, Lewis LK, Nicholls MG, Richards AM (2002) Combined angiotensin-converting enzyme inhibition and adrenomedullin in an ovine model of heart failure. Clin Sci 102:653–660PubMedGoogle Scholar
  11. Rademaker MT, Charkles CJ, Espiner EA, Frampton CM, Lainchbury JG, Richards AM (2005) Four-day urocortin-I administration has sustained beneficial hemodynamic, hormonal, and renal effects in experimental heart failure. Eur Heart J 26:2055–2062PubMedGoogle Scholar

Cardiac Failure in Monkeys

  1. Hoit BD, Shao Y, Gabel M, Walsh RA (1995a) Disparate effects of early pressure overload hypertrophy and force-dependent indices of ventricular performance in the conscious baboon. Circulation 91:1213–1220PubMedGoogle Scholar
  2. Hoit BD, Shao Y, Kinoshita A, Gabel M, Husain A, Walsh RA (1995b) Effects of angiotensin II generated by an angiotensin converting enzyme-independent pathway on left ventricular performance in the conscious baboon. J Clin Invest 95:1519–1527PubMedCentralPubMedGoogle Scholar
  3. Hoit BD, Khoury SF, Shao Y, Gabel M, Liggett SB, Walsh RA (1997a) Effects of thyroid hormone on cardiac β-adrenergic responsiveness in conscious baboons. Circulation 96:592–598PubMedGoogle Scholar
  4. Hoit BD, Pawlowski-Dam CM, Shao Y, Gabel M, Walsh RA (1997b) The effects of a thyroid hormone analog on left ventricular performance and contractile and calcium cycling proteins in the baboon. Proc Assoc Am Physicians 109:136–145PubMedGoogle Scholar
  5. Hollander W, Prusty S, Kirkpatrick B, Paddok J, Nagraj S (1977) Role of hypertension in ischemic heart disease and cerebral vascular disease in the cynomolgus monkey with coarctation of the aorta. Circ Res 40(5 Suppl 1):I70–I80PubMedGoogle Scholar
  6. Khoury SF, Hoit BD, Dave V, Pawlowski-Dahm CM, Shao Y, Gavel M, Periasamy M, Walsh RA (1996) Effects of thyroid hormone on left ventricular performance and regulation of contractile and Ca2+-cycling proteins in the baboon. Circ Res 79:727–735PubMedGoogle Scholar
  7. Sieber SM, Correa P, Young DM, Dalgard DW, Adamson RH (1980) Cardiotoxic and possible leukemogenic effects of adriamycin in nonhuman primates. Pharmacology 20:9–14PubMedGoogle Scholar
  8. Weiss JL, Frederickson JW, Weisfeldt ML (1976) Hemodynamic determinants of the time course of fall in canine left ventricular pressure. J Clin Invest 58:751–760PubMedCentralPubMedGoogle Scholar

Cardiac Failure in Other Species

  1. Breisch EA, White FC, Bloor CM (1984) Myocardial characteristics of pressure overload hypertrophy. A structural and functional study. Lab Invest 51:333–342PubMedGoogle Scholar
  2. Do E, Baudet S, Verdys M, Touzeau C, Bailly F, Lucas-Héron B, Sagniez M, Rossi A, Noireaud J (1997) Energy metabolism in normal and hypertrophied right ventricle of the ferret heart. J Mol Cell Cardiol 29:1903–1913PubMedGoogle Scholar
  3. Eschenhagen T, Dieterich M, Kluge SH, Magnussen O, Mene U, Muller F, Schmitz W, Scholz H, Weil J, Sent U (1995) Bovine hereditary cardiomyopathy: an animal model of human dilated cardiomyopathy. J Mol Cell Cardiol 27:357–370PubMedGoogle Scholar
  4. Genao A, Seth K, Schmnidt U, Carles M, Gwathmey JK (1996) Dilated cardiomyopathy in turkeys: an animal model for the study of human heart failure. Lab Anim Sci 46:399–404PubMedGoogle Scholar
  5. Wang J, Flemal K, Qiu Z, Ablin L, Grossman W, Morgan JP (1994) Ca2+ handling and myofibrillar Ca2+ sensitivity in ferret cardiac myocytes with pressure-overload hypertrophy. Am J Physiol 267(3 Pt2):H918–H924Google Scholar

Hypertrophy of Cultured Cardiac Cells

  1. Kojima M, Shiojima I, Yamazaki T, Komuro I, Yunzeng Z, Ying W, Mizuno T, Ueki K, Tobe K, Kadowaki T, Nagai R, Yazaki Y (1994) Angiotensin II receptor antagonist TCV-116 induces regression of hypertensive left ventricular hypertrophy in vivo and inhibits the intercellular signaling pathway of stretch-mediated cardiomyocyte hypertrophy in vitro. Circulation 89:2204–2211PubMedGoogle Scholar
  2. Komuro I, Yazaki Y (1993) Control of cardiac gene expression by mechanical stress. Annu Rev Physiol 55:55–75PubMedGoogle Scholar
  3. Komuro I, Kaida T, Shibazaki Y, Kurabayashi M, Katoh Y, Hoh E, Takaku F, Yazaki Y (1990) Stretching cardiac myocytes stimulates protooncogene expression. J Biol Chem 265:3595–3598PubMedGoogle Scholar
  4. Komuro I, Katoh Y, Kaida T, Shibazaki Y, Kurabayashi M, Hoh E, Takaku F, Yazaki Y (1991) Mechanical loading stimulates cell hypertrophy and specific gene expression in cultured rat cardiac myocytes. J Biol Chem 266:1265–1268PubMedGoogle Scholar
  5. Simpson P, Savion A (1982) Differentiation of rat myocytes in single cell cultures with and without proliferating nonmyocardial cells. Circ Res 50:101–116PubMedGoogle Scholar
  6. Yamazaki T, Tobe K, Hoh E, Maemura K, Kaida T, Komuro I, Tamamoto H, Kadowaki T, Nagai R, Yazaki Y (1993) Mechanical loading activates mitogen-activated protein kinase and S6 peptide kinase in cultured cardiac myocytes. J Biol Chem 268:12069–12076PubMedGoogle Scholar
  7. Yamazaki T, Komuro I, Shiojima I, Mizuno T, Nagai R, Yazaki Y (1994) In vitro methods to study hypertrophy of cardiac cells. J Pharmacol Toxicol Methods 32:19–23PubMedGoogle Scholar
  8. Yamazaki T, Komuro I, Yazaki Y (1996) Molecular aspects of mechanical stress-induced hypertrophy. Mol Cell Biochem 163(164):197–201PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Michael Gralinski
    • 1
  • Liomar A. A. Neves
    • 1
  • Olga Tiniakova
    • 1
  1. 1.CorDynamicsChicagoUSA

Personalised recommendations