Advertisement

Thyroid Hormones

  • Jürgen Sandow
Living reference work entry

Abstract

The purpose of this section is twofold: to describe the methods for the determination of hormones secreted by the thyroid gland and to describe the investigation of thyroid function in experimental models. For information on the hypothalamic–pituitary–thyroid system and its investigation, see the sections on anterior pituitary hormones (N.7) and hypothalamic hormones (N.9).

Keywords

Thyroid Hormone Thyroid Hormone Receptor Salmon Calcitonin Calcitonin Receptor Human Calcitonin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

General Considerations

  1. Apriletti JW, Baxter JD, Lavin TN (1988) Large scale purification of the nuclear thyroid hormone receptor from rat liver and sequence-specific binding of the receptor to DNA. J Biol Chem 263:9409–9417PubMedGoogle Scholar
  2. Ballock RT, Mita BC, Zhou X, Chen DH, Mink LM (1999) Expression of thyroid hormone receptor isoforms in rat growth plate cartilage in vivo. J Bone Miner Res 14:1550–1556CrossRefPubMedGoogle Scholar
  3. Biedl A (1916) Das thyreo-parathyreo-thymische System. In: Biedl A (ed) Innere Sekretion. Ihre physiologischen Grundlagen und ihre Bedeutung für die Pathologie, Dritte Auflage, Erster Teil. Urban and Schwarzenberg, Berlin, pp 5–405Google Scholar
  4. Bomskov C (1937) Methodik der Hormonforschung Das Hormon der Schilddrüse, vol 1. Thieme, Leipzig, pp 143–394Google Scholar
  5. Burris TP, Nawaz Z, Tsai M-J, O’Malley BW (1995) A nuclear hormone receptor-associated protein that inhibits transactivation by the thyroid hormone and retinoic acid receptors. Proc Natl Acad Sci U S A 92:9525–9529CrossRefPubMedCentralPubMedGoogle Scholar
  6. Chiellini G, Apriletti JW, Yoshikara HA, Baxter JD, Ribeiro RCJ, Scalan TS (1998) A high-affinity subtype-selective agonist ligand for the thyroid hormone receptor. Chem Biol 5:299–306CrossRefPubMedGoogle Scholar
  7. Copp DH (1964) Parathyroids, calcitonin, and control of plasma calcium. Recent Prog Horm Res 20:59–88Google Scholar
  8. Copp DH, Cameron EC, Cheney BA, Davidson AFG, Henze KG (1962) Evidence for calcitonin – a new hormone from the parathyroid that lowers calcium. Endocrinology 70:638–649Google Scholar
  9. Gundernatsch JF (1913a) Feeding experiments on tadpoles. I. The influence of specific organs given as food on growth and differentiation. Roux Arch Entwickl mech 35:457–483CrossRefGoogle Scholar
  10. Gundernatsch JF (1913b) Feeding experiments on tadpoles. II. A further contribution to the knowledge of organs with internal secretion. Am J Anat 15:431–473CrossRefGoogle Scholar
  11. Haffner F (1927) Pharmakologische Untersuchungen mit einem deutschen Thyroxin. Klin Wochenschr 6:1932–1935CrossRefGoogle Scholar
  12. Huxley JS, Hogben LT (1922) Experiments on amphibian metamorphosis and pigment responses in relation to internal secretions. Proc R Soc B Biol Sci 93:36–53CrossRefGoogle Scholar
  13. Ichikawa K, DeGroot LJ (1987a) Purification and characterization of rat liver nuclear thyroid hormone receptors. Proc Natl Acad Sci U S A 84:3420–3424CrossRefPubMedCentralPubMedGoogle Scholar
  14. Ichikawa K, DeGroot LJ (1987b) Thyroid hormone receptors in a human hepatoma cell line: multiple receptor forms on isoelectric focusing. Mol Cell Endocrinol 51:135–143CrossRefPubMedGoogle Scholar
  15. Ichikawa K, Hashizume K, Miyamoto T, Nishii Y, Yamauchi K, Ohtsuka H, Yamada T (1988) Conformational transition of thyroid hormone receptor upon hormone binding: demonstration by aqueous two-phase partitioning. J Endocrinol 119:431–437CrossRefPubMedGoogle Scholar
  16. Ichikawa K, Hashizume K (1991) Use of aqueous two-phase partitioning to study thyroid hormone receptor. In: Greenstein B (ed) Neuroendocrine research methods, vol 1. Harwood, Chur, pp 149–159Google Scholar
  17. Kreitmair H (1928) Jodgehalt und Schilddrüsenwirkung. Zugleich Bekanntgabe einer biologischen Wertbestimmungsmethode für Schilddrüsenpräparate. Z Gesamte Exp Med 61:202–210CrossRefGoogle Scholar
  18. Pitt-Rivers R, Tata JR (1959) The thyroid hormones. Pergamon, LondonGoogle Scholar
  19. Torresanai J, Anselmet A (1978) Partial purification and characterization of nuclear triiodothyronine binding proteins. Biochem Biophys Res Commun 81:147–153CrossRefGoogle Scholar
  20. Turner CW, Premachandra BN (1962) Thyroidal substances. In: Dorfman RI (ed) Methods in hormone research, vol II. Academic, New York, pp 385–411Google Scholar
  21. William GR, Franklyn JA (1994) Physiology of the steroid-thyroid hormone nuclear receptor superfamily. Balliéres Clin Endocrinol Metab 8:241–266CrossRefGoogle Scholar
  22. Wu Y, Xu B, Koenig RJ (2001) Thyroid hormone response element sequence and the recruitment of retinoid X receptors for thyroid hormone responsiveness. J Biol Chem 276:3929–3936CrossRefPubMedGoogle Scholar
  23. Yuan C-X, Ito M, Fondell JD, Fu Z-Y, Roeder RG (1998) The TRAP220 component of a thyroid hormone receptor-associated protein (TRAP) coactivator complex interacts directly with nuclear receptors in a ligand-dependent fashion. Proc Natl Acad Sci U S A 95:7939–7944CrossRefPubMedCentralPubMedGoogle Scholar
  24. Zavadovsky BM, Zavadovsky EV (1926) Application of the axolotl metamorphosis reaction to the quantitative assay of thyroid gland hormones. Endocrinology 10:550–559CrossRefGoogle Scholar

Thyroidectomy

  1. Bomskov C (1937) Die chirurgischen Methoden der Schilddrüsenforschung. In: Methodik der Hormonforschung. Band 1. Georg Thieme, Leipzig, pp 143–155 Hammet 1924, 1926a, 1926b; Smith et al. 1927; Hammet 1929;Pittman et al. 1964; Grossie 1965Google Scholar
  2. Grossie J, Hendrich CE, Turner CW (1965) Comparative methods for determining biological half-life (t1/2)of L-thyroxine in normal, thyroidectomized and methimazole treated female rats. Proc Soc Exp Biol Med 120:413–415CrossRefPubMedGoogle Scholar
  3. Hammet FS (1924) Studies of the thyroid apparatus. XXVIII. The differential development of the albino rat from 75 to 150 days of age and the influence of thyro-parathyroidectomy and parathyroidectomy thereon. Am J Physiol 70:259–272Google Scholar
  4. Hammet FS (1926a) Studies on the thyroid apparatus. XXIX. The role of the thyroid apparatus in growth. Am J Physiol 76:69–91Google Scholar
  5. Hammet FS (1926b) Studies on the thyroid apparatus. The relation between age at initiation of and response of body growth to thyroid and parathyroid deficiency. Endocrinology 10:29–42CrossRefGoogle Scholar
  6. Hammet FS (1929) Thyroid and differential development. Endokrinologie 5:81–86Google Scholar
  7. Pittman CS, Shinohara M, Thrasher H, McCraw EF (1964) Effect of thyroxine analogues on the peripheral metabolism of thyroxine: the half-life and pattern of elimination. Endocrinology 74:611–616CrossRefPubMedGoogle Scholar
  8. Smith PE, Greenwood CF, Foster GL (1927) A comparison in normal, thyroidectomized and hypophysectomized rats of the effects upon metabolism and growth resulting from daily injections of small amounts of thyroid extract. Am J Pathol 3:669–687PubMedCentralPubMedGoogle Scholar

Oxygen Consumption

  1. Anderson BG (1954) Potency and duration of action of triiodothyronine and thyroxine in rats and mice. Endocrinology 54:659–665Google Scholar
  2. Basil B, Somers GF, Woolett EA (1950) Measurement of thyroid activity by mouse anoxia method. Br J Pharmacol 5:315–322Google Scholar
  3. Bomskov C (1937) Methodik der Hormonforschung. Das Hormon der Schilddrüse, vol 1. Thieme, Leipzig, pp 143–394Google Scholar
  4. Gemmill CL (1953) Comparison of activity of thyroxine and 3,5,3′-triiodothyronine. Am J Physiol 172:286–290Google Scholar
  5. Heming AE (1964) Animal techniques for evaluating thyroid and antithyroid agents. In: Nodine JH, Siegler PE (eds) Animal and clinical pharmacologic techniques in drug evaluation. Year Book Medical, Chicago, pp 530–534Google Scholar
  6. Holtkamp DE, Ochs S, Pfeiffer CC, Heming AE (1955) Determination of the oxygen consumption of groups of rats. Endocrinology 56:93–104CrossRefPubMedGoogle Scholar
  7. Lilienthal JL, Zierler KL, Folk BP (1949) A simple volumeter for measuring the oxygen consumption of small animals. Bull Johns Hopkins Hosp 84:238–244PubMedGoogle Scholar
  8. MacLagan NF, Sheahan MM (1950) The measurement of oxygen consumption in small animals by a closed circuit method. J Endocrinol 6:456–463CrossRefPubMedGoogle Scholar
  9. Reineke EP, Turner CW (1950) Thyroidal substances. In: Emmens CW (ed) Hormone assay. Academic, New York, pp 489–511Google Scholar
  10. Smith AU, Emmens CW, Parkes AS (1947) Assay of thyroidal activity by a closed vessel technique. J Endocrinol 5:186–206CrossRefPubMedGoogle Scholar
  11. Stock MJ (1975) An automatic, closed-circuit oxygen consumption apparatus for small animals. J Appl Physiol 39:849–850PubMedGoogle Scholar
  12. Turner CW (1969) Thyroidal substances. In: Dorfman RI (ed) Methods in hormone research, vol IIA. Academic, New York, pp 301–363Google Scholar

Inhibition of Iodine Release

  1. Anderson BG (1954) Potency and duration of action of triiodothyronine and thyroxine in rats and mice. Endocrinology 54:659–665Google Scholar
  2. Perry WF (1951) A method for measuring thyroid hormone secretion in the rat with its application to the bioassay of thyroid extracts. Endocrinology 48:643–650CrossRefPubMedGoogle Scholar
  3. Reineke EP, Turner CW (1950) Thyroidal substances. In: Emmens CW (ed) Hormone assay. Academic, New York, pp 489–511Google Scholar
  4. Turner CW, Premachandra BN (1962) Thyroidal substances. In: Dorfman RI (ed) Methods in hormone research, vol II. Academic, New York, pp 385–411Google Scholar
  5. Wolff J (1951) Some factors that influence the release of iodine from the thyroid gland. Endocrinology 48:284–297CrossRefPubMedGoogle Scholar

Anti-Goitrogenic Activity

  1. Ortiz-Caro J, Pastor RM, Jolin T (1983) Effects of KClO4 in propylthiouracil-hypothyroid rats. Acta Endocrinol 103:81–87PubMedGoogle Scholar
  2. Pisarev MA, Krawiec L, Juvenal GJ, Bocanera LV, Pregliasco LB, Sartorio G, Chester HA (1994) Studies on the goiter inhibiting action of iodolactones. Eur J Pharmacol 258:33–37CrossRefPubMedGoogle Scholar
  3. Pitt-Rivers R, Tata JR (1959) The thyroid hormones. Pergamon, LondonGoogle Scholar
  4. Reineke EP, Mixner JP, Turner CW (1945) Effect of graded doses of thyroxine on metabolism and thyroid weight of rats treated with thiouracil. Endocrinology 36:64–67CrossRefGoogle Scholar
  5. Turner CW, Premachandra BN (1962) Thyroidal substances. In: Dorfman RI (ed) Methods in hormone research, vol II. Academic, New York, pp 385–411Google Scholar
  6. Wiberg GS, Carter JR, Stephenson NR (1964) The effects of various goitrogens on the determination of the relative potency of thyroid by the goiter prevention assay. Acta Endocrinol 45:370–380PubMedGoogle Scholar

Tensile Strength of Connective Tissue in Rats, Modified for Thyroid Hormones

  1. Ther L, Schramm H, Vogel G (1963) Über die antagonistische Wirkung von Trijodthyronin und Progesteron auf den Prednisoloneffekt am Epiphysenknorpel. Acta Endocrinol 42:29–38PubMedGoogle Scholar
  2. Vogel G, Ther L (1964) Über den Einfluß von einigen Hormonen auf mechanisch-physikalische Eigenschaften des Bindeund Stützgewebes. Anatom Anzeig Suppl 115:117–122Google Scholar
  3. Vogel HG (1969) Zur Wirkung von Hormonen auf physikalische und chemische Eigenschaften des Bindeund Stützgewebes. Arzneimittelforschung 19:1495–1503, 1732–1742, 1790–1801, 1981–1996PubMedGoogle Scholar

General Considerations

  1. Heming AE (1964) Animal techniques for evaluating thyroid and antithyroid agents. In: Nodine JH, Siegler PE (eds) Animal and clinical pharmacologic techniques in drug evaluation. Year Book Medical, Chicago, pp 530–534Google Scholar
  2. MacKenzie CG, MacKenzie JB (1943) Effect of sulfonamides and thioureas on the thyroid gland and basal metabolism. Endocrinology 32:185–209CrossRefGoogle Scholar

Inhibition of Iodine Uptake in Rats

  1. Astwood EB, Bissell A (1944) Effect of thiouracil on the iodine content of the thyroid gland. Endocrinology 34:282–296CrossRefGoogle Scholar
  2. McGinty DA, Bywater WG (1945) Antithyroid studies. I. The goitrogenic activity of some thioureas, pyrimidines and miscellaneous compounds. J Pharmacol Exp Ther 84:342–357PubMedGoogle Scholar
  3. Prasad R, Srivastava PK (1993) 1-Aryl-2-amino/hydrazino-4-phenyl-1,6-dihydro-1,3,5-triazine-6-thione and related thiocarbamides/thiosemicarbazides as antithyroidal agents. Arch Pharmacol 326:963–966CrossRefGoogle Scholar
  4. Walker JS, Levy G (1989) Induction of experimental thyroid dysfunction in rats with implantable pellets of thyroxine or propylthiouracil. J Pharmacol Methods 21:223–229CrossRefPubMedGoogle Scholar

Antithyroidal Effects in Animal Assays

  1. Bänder A, Bauer F, Häussler A, Muschaweck R, Vogel G (1962) Pharmakologische Untersuchungen mit Isonikotinsäure-[3,3-di-(p-chlorphenyl)-propyl(1)]-amid (Präparat Hoechst 13217). Z Vet Med 9:693–704Google Scholar
  2. Bomskov C (1937) Methodik der Hormonforschung. Das Hormon der Schilddrüse, vol 1. Thieme, Leipzig, pp 143–394Google Scholar
  3. Chesney AM, Clawson TA, Mebster B (1928) Endemic goiter in rabbits. Incidence and characteristics. Bull Hopkins Hosp 43:261–277Google Scholar
  4. Marine D, Baumann EJ, Cipra A (1929) Studies on simple goiter produced by cabbage and other vegetables. Proc Soc Exp Biol Med 26:822–824CrossRefGoogle Scholar
  5. Müller P, Löbe M, Sorger D, Ludewig R, Hambsch K (1985) Zur strumigenen Wirkung nichtsteroidaler Antirheumatika und Zytostatika. Ergebnisse experimenteller Untersuchungen. Radiobiol Radiother 26:201–206Google Scholar
  6. Webster B (1934) Studies in the experimental production of simple goiter. Endocrinology 16:617–625CrossRefGoogle Scholar
  7. Weiss SR, Burns JM (1988) The effect of acute treatment with two goitrogens on plasma thyroid hormones, testosterone and testicular morphology in adult male rats. Comp Biochem Physiol 90A:449–452CrossRefGoogle Scholar

General Considerations

  1. Austin LA, Heath H 3rd (1981) Calcitonin: physiology and pathophysiology [review]. N Engl J Med 304(5):269–278CrossRefPubMedGoogle Scholar
  2. Braga PC (1994) Calcitonin and its antinociceptive activity: animal and human investigations 1975–1992 [review]. Agents Actions 41(3–4):121–131CrossRefPubMedGoogle Scholar
  3. Copp DH (1964) Parathyroids, calcitonin, and control of plasma calcium. Recent Prog Horm Res 20:59–88Google Scholar
  4. Copp DH (1994) Calcitonin: discovery, development, and clinical application. Clin Invest Med 17:268–277PubMedGoogle Scholar
  5. Copp DH, Cameron EC, Cheney BA, Davidson AFG, Henze KG (1962) Evidence for calcitonin – a new hormone from the parathyroid that lowers calcium. Endocrinology 70:638–649Google Scholar
  6. Deftos LJ (1989) In: Azria M (ed) The calcitonins. Physiology and pharmacology. Karger, Basel, pp 67–132Google Scholar
  7. Hirsch PF, Voelkel EF, Musnon PL (1964) Thyrocalcitonin: hypocalcemic hypophosphatemic principle of the thyroid gland. Science 146:412–413CrossRefPubMedGoogle Scholar
  8. MacIntyre I (1992) The calcitonin family of peptides [review]. Ann N Y Acad Sci 657:117–118CrossRefPubMedGoogle Scholar
  9. Munson PF, Hirsch RP (1966) Thyrocalcitonin. Newly recognized thyroid hormone concerned with metabolism of bone. Clin Orthop 49:209–215CrossRefPubMedGoogle Scholar
  10. Nissenson RA, Teitelbaum AP, Arnaud CD (1985) Assay for calcitonin receptors. Methods Enzymol 109:40–48CrossRefPubMedGoogle Scholar
  11. Pento JT (1985) A method for the evaluation of calcitonin secretion using the isolated perfused porcine thyroid. J Pharmacol Methods 13:43–51CrossRefPubMedGoogle Scholar
  12. Raisz LG, Au WYW, Friedman J, Nieman I (1967) Thyrocalcitonin and bone resorption. Studies employing a tissue culture bioassay. Am J Med 43:684–690CrossRefPubMedGoogle Scholar
  13. Reginster JY (1993) Calcitonin for prevention and treatment of osteoporosis [review]. Am J Med 95(5A):44S–47SCrossRefPubMedGoogle Scholar
  14. Silverman SL (2003) Calcitonin [review]. Endocrinol Metab Clin North Am 32(1):273–284CrossRefPubMedGoogle Scholar
  15. Tashjian A, Voelkel EF (1979) Human calcitonin: application of affinity chromatography. In: Jaffe BM, Behrman HR (eds) Methods of hormone radioimmunoassay, 2nd edn. Academic, New York, pp 355–373Google Scholar
  16. Wallach S, Rousseau G, Martin L, Azria M (1999) Effects of calcitonin on animal and in vitro models of skeletal metabolism. Bone 25(5):509–516, ReviewCrossRefPubMedGoogle Scholar
  17. Zaidi M, Moonga BS, Bevis PJR, Bascal ZA, Breimer LH (1990) The calcitonin gene peptides: biology and clinical relevance. Crit Rev Clin Lab Sci 28:109–174Google Scholar

Decrease of Serum Calcium in Rats

  1. British Pharmacopoeia (1988) Biological assay of calcitonin (pork). Biological assay of salcatonin. A164, vol II, 1. HMSO, LondonGoogle Scholar
  2. Buck RH, Maxl F (1990) A validated HPLC assay for salmon calcitonin analysis. Comparison of HPLC and biological assay. J Pharm Biomed Anal 8:761–769CrossRefPubMedGoogle Scholar
  3. Deming Q, Genquan S, Ruolun K (1994) Biological assay of calcitonin by blood calcium determination in rats. Chin J Pharm Anal 14:30–34Google Scholar
  4. European Pharmacopoeia (1986) Monograph 471. Maisonneuve, Sainte RuffineGoogle Scholar
  5. Findlay DM, Michelangeli VP, Orlowski RC, Martin TJ (1983) Biological activities and receptor interactions of des-leu16 salmon and des-phe16 human calcitonin. Endocrinology 112:1288–1291Google Scholar
  6. Findlay DM, Michelangeli VP, Martin TJ, Orlowski RC, Seyler JK (1985) Conformational requirements for activity of salmon calcitonin. Endocrinology 117:801–805Google Scholar
  7. Kapurniotu A, Taylor JW (1995) Structural and conformational requirements for human calcitonin activity: design, synthesis, and study of lactam-bridged analogues. J Med Chem 38:836–847CrossRefPubMedGoogle Scholar
  8. Kumar M, Slack E, Edwards A, Soliman H, Baghdiantz A, Foster GV, MacIntyre I (1965) A biological assay for calcitonin. J Endocrinol 33:469–475CrossRefPubMedGoogle Scholar
  9. Munson PL, Hirsch PF, Brewer HB, Reisfeld RA, Cooper CW, Wästhed AB, Orimo H, Potts JT Jr (1968) Thyrocalcitonin. In: Astwood EB (ed) Recent progress in hormone research, vol 24. Academic, New York, pp 589–650Google Scholar
  10. Rittel W, Maier R, Brugger M, Kamber B, Riniker B, Sieber P (1976) Structure-activity relationship of human calcitonin. III. Biological activity of synthetic analogues with shortened or terminally modified peptide chains. Experientia 32:246–248CrossRefPubMedGoogle Scholar
  11. Sasayama Y, Suzuki N, Oguro C, Takei Y, Takahashi A, Watanabe TX, Nakajima K, Sakakibara S (1992) Calcitonin of the stingray: comparison of the hypocalcemic activity with other calcitonins. Gen Comp Endocrinol 86:269–274CrossRefPubMedGoogle Scholar
  12. Sasayama Y, Ukawa KI, Kai-Ya H, Oguro C, Takei Y, Watanabe TX, Nakayama K, Sakakibara S (1993) Goldfish calcitonin: purification, characterization, and hypocalcemic potency. Gen Comp Endocrinol 89:189–194CrossRefPubMedGoogle Scholar
  13. Schwartz KE, Orlowski RC, Marcus R (1981) des-Ser2 salmon calcitonin: a biologically potent synthetic analog. Endocrinology 108:831–835CrossRefPubMedGoogle Scholar
  14. Yates AJ, Gutierrez GE, Garrett IR, Mencel JJ, Nuss GW, Schreiber AB, Mundy GR (1990) A noncyclical analog of calcitonin (Nα-propionyl di-ala1,7, des-leu19 sCT) retains full potency without inducing anorexia in rats. Endocrinology 126:2845–2849Google Scholar
  15. Zanelli JM, Gaines-Das RE, Corran PH (1990) International standards for salmon calcitonin, eel calcitonin, and the Asu1–7 analogue of eel calcitonin: calibration by international collaborative study. Bone Miner 11:1–17CrossRefPubMedGoogle Scholar
  16. Zanelli JM, Gaines-Das RE, Corran P (1993) Establishment of the second international standards for porcine and human calcitonins: report of the international collaborative study. Acta Endocrinol 128:443–450PubMedGoogle Scholar

Effect of Calcitonin on Osteoclasts in Vitro

  1. Aliapoulios MA, Goldhaber P, Munson PL (1966) Thyrocalcitonin inhibition of bone resorption induced by parathyroid hormone in tissue culture. Science 151:330–331CrossRefPubMedGoogle Scholar
  2. Friedman J, Raisz LG (1965) Thyrocalcitonin: inhibitor of bone resorption in tissue culture. Science 150:1465–1467CrossRefPubMedGoogle Scholar
  3. Zaidi M, Chambers TJ, Moonga BS, Oldoni T, Passarella E, Soncini R, MacIntyre I (1990) A new approach for calcitonin determination based on target cell responsiveness. J Endocrinol Invest 13:119–126Google Scholar
  4. Zaidi M, Bax BE, Shankar VS, Moonga BS, Simon B, Towhidul Alam ASM, Gaines Das RE, Pazianis M, Huang CLH (1994) Dimensional analysis of osteoclastic bone resorption and the measurement of biologically active calcitonin. Exp Physiol 79:387–399CrossRefPubMedGoogle Scholar

Receptor Binding and cAMP Accumulation in Isolated Cells

  1. Albrandt K, Mull E, Brady EMG, Herich J, Moore CX, Beaumont K (1993) Molecular cloning of two receptors from rat brain with high affinity for salmon calcitonin. FEBS Lett 325:225–232CrossRefPubMedGoogle Scholar
  2. Blind E, Raue F, Kienle P, Schroth J, Grauer A, Kabay A, Brügger P, Ziegler R (1993) Development and validation of an assay to measure bioactivity of human calcitonin in vitro using T47D cell membranes. Anal Biochem 212:91–97CrossRefPubMedGoogle Scholar
  3. Findlay DM, Michelangeli VP, Eisman JA, Frampton RJ, Moseley JM, MacIntyre I, Whitehead R, Martin TJ (1980) Calcitonin and 1,25-dihydroxyvitamin D3 receptors in human breast cancer lines. Cancer Res 40:4764–4767PubMedGoogle Scholar
  4. Findlay DM, Michelangeli VP, Orlowski RC, Martin TJ (1983) Biological activities and receptor interactions of des-leu16 salmon and des-phe16 human calcitonin. Endocrinology 112:1288–1291Google Scholar
  5. Findlay DM, Michelangeli VP, Martin TJ, Orlowski RC, Seyler JK (1985) Conformational requirements for activity of salmon calcitonin. Endocrinology 117:801–805Google Scholar
  6. Fukase M, Birge SJ, Rifas L, Avioli LV, Chase LR (1982) Regulation of 25 hydroxyvitamin D3 1-hydroxylase in serum-free monolayer culture of mouse kidney. Endocrinology 110:1073–1075CrossRefPubMedGoogle Scholar
  7. Grauer A, Raue F, Reinel HH, Schneider HG, Schroth J, Kabay A, Brügger P, Ziegler R (1992) A new in vitro bioassay for human calcitonin: validation and comparison to the rat hypocalcemia bioassay. Bone Miner 17:65–74CrossRefPubMedGoogle Scholar
  8. Hilton JM, Chai SY, Sexton PM (1995) In vitro autoradiographic localization of the calcitonin receptor isoforms, C1a and C1b, in rat brain. Neuroscience 69:1223–1237CrossRefPubMedGoogle Scholar
  9. Horne WC, Shyu J-F, Chakraborty M, Baron R (1994) Signal transduction by calcitonin. Multiple ligands, receptors, and signaling pathways. Trends Endocrinol Metab 5:395–401CrossRefPubMedGoogle Scholar
  10. Horwitz KB, Zava DT, Thilager AK, Jensen EM, McGuire WL (1978) Steroid receptor analyses of nine human breast cancer cell lines. Cancer Res 38:2434–2437PubMedGoogle Scholar
  11. Houssami S, Findlay DM, Brady CL, Martin TJ, Epand RM, Moore EE, Murayama E, Tamura T, Orlowski RC, Sexton PM (1994) Different structural requirements exist for calcitonin receptor binding specificity and adenylate cyclase activation. Mol Pharmacol 47:798–809Google Scholar
  12. Kuestner RE, Elrod RD, Grant FJ, Hagen FS, Kuijper JL, Matthewes SL, O’Hara PJ, Sheppard PO, Stroop SD, Thompson DL, Whitmore TE, Findlay DM, Houssami S, Sexton PM, Moore EE (1994) Cloning and characterization of an abundant subtype of the human calcitonin receptor. Mol Pharmacol 46:246–255PubMedGoogle Scholar
  13. Martin TJ, Findlay DM, Houssami S, Ikegame M, Rakopoulos M, Moseley JM, Sexton PM (1995) Heterogeneity of the calcitonin receptors: functional aspects in osteoclasts and other sites. J Nutr 125:2009S–2014SPubMedGoogle Scholar
  14. Nygaard SC, Küstner RE, Moore EE, Stroop SD (1997) Phosphorylation of the human calcitonin receptor by multiple kinases in localized to the C-terminus. J Bone Miner Res 12:1681–1690CrossRefPubMedGoogle Scholar
  15. Povzek G, Hilton JM, Quiza M, Houssami S, Sexton PM (1997) Structure/function relationships of salmon calcitonin analogues as agonists, antagonists, or inverse agonists in a constitutively activated receptor cell system. Mol Pharmacol 51:658–665Google Scholar
  16. Sexton PM, Hilton JM (1992) Biologically active salmon calcitonin-like peptide is present in brain. Brain Res 596:279–284CrossRefPubMedGoogle Scholar
  17. Sexton PM, Houssami S, Hilton JM, O’Keefe M, Center RJ, Gillespie MT, Darcy P, Findlay DM (1993) Identification of brain isoforms of the rat calcitonin receptor. Mol Endocrinol 7:815–821PubMedGoogle Scholar
  18. Sexton PM, Houssami S, Brady CL, Myers DE, Findlay DM (1994) Amylin is an agonist for the renal porcine calcitonin receptor. Endocrinology 134:2103–2107PubMedGoogle Scholar
  19. Sjödin L, Nederman T, Pråhl M, Montelius K (1990) Radioreceptor assay for formulations of salmon calcitonin. Int J Pharm 63:135–142CrossRefGoogle Scholar
  20. Suva LJ, Flannery MS, Caulfileld MP, Findlay DM, Juppner G, Goldring SR, Rosenblatt M, Chorev M (1997) Design, synthesis and utility of novel benzophenone-containing calcitonin analogs for photoaffinity labeling the calcitonin receptor. J Pharmacol Exp Ther 283:876–884PubMedGoogle Scholar
  21. Yates AJ, Gutierrez GE, Garrett IR, Mencel JJ, Nuss GW, Schreiber AB, Mundy GR (1990) A noncyclical analog of calcitonin (Nα-propionyl di-ala1,7, des-leu19 sCT) retains full potency without inducing anorexia in rats. Endocrinology 126:2845–2849Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Centre of PharmacologyFrankfurt-Main UniversityGlashuettenGermany

Personalised recommendations