Advertisement

Ovarian Hormones

  • Jürgen Sandow
Living reference work entry

Abstract

Ovariectomy is performed in immature female rats weighing 40–60 g (Bomskov 1939; Emmens 1969; May 1971). Animals are anesthetized. A single transverse incision is made in the skin of the back. This incision can be shifted readily from one side to the other by traction on the skin. A small puncture is then made over the site of the ovary, which can be seen through the abdominal wall, embedded in a pad of fat. The top of a pair of fine forceps is introduced, and the fat around the ovary is grasped, care being taken not to rupture the capsule around the ovary. The tip of the uterine horn is crushed with a pair of artery forceps, and the ovary, together with the fallopian tube, is removed with a single cut by a pair of fine scissors. Usually, no bleeding is observed. In older rats, the tip of the uterine horn may be ligated and the ovary removed distally from the ligature. The ovary of the other side is removed in the same way. The skin wound is closed by one or two clips. The animal recovers immediately.

Keywords

Progesterone Receptor Corpus Luteum Relative Binding Affinity Human Estrogen Receptor Progestin Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

Ovariectomy of Rats

  1. Bomskov C (1939) Die Methoden der Ovarexstirpation (Kastration). In Bomskov C, Methodik der Hormonforschung, 2. Band. Thieme, Leipzig, pp 9–18Google Scholar
  2. Emmens CW (1969a) Chapter 2: Estrogens. In: Dorfman RI (ed) Methods in hormone research, vol IIA. Academic, New York/London, pp 61–120Google Scholar
  3. May M (1971) Estrogenic and antiestrogenic agents. In: Turner RD, Hebborn P (eds) Screening methods in pharmacology, vol II. Academic, New York/London, pp 85–100Google Scholar

Estrogen Receptor Binding

  1. Astroff B, Safe S (1988) Comparative antiestrogenic activities of 2,3,7,8-tetrachlorodibenzo-p-dioxin and 6-methyl-1,3,8-trichlorodibenzofuran in the female rat. Toxicol Appl Pharmacol 95:435–443PubMedGoogle Scholar
  2. Bouton MM, Raynaud JP (1977) Impaired nuclear translocation and regulation: a possible explanation of anti-estrogenic activity. Res Steroids 7:127–137Google Scholar
  3. Bouton MM, Raynaud JP (1978) The relevance of kinetic parameters in the determination of specific binding to the estrogen receptor. J Steroid Biochem 9:9–15PubMedGoogle Scholar
  4. Brasier AR, Tate JE, Habener JF (1989) Optimized use of the firefly luciferase assay as a reporter gene in mammalian cell lines. BioTechniques 7:1116–1122PubMedGoogle Scholar
  5. Chander AK, McCague R, Luqmani Y, Newton C, Dowsett M, Jarman M, Coombes RC (1991) Pyrrolidino-4-iodotamoxifen and 4-iodotamoxifen, new analogues of the antiestrogen tamoxifen for the treatment of breast cancer. Cancer Res 51:5851–5858PubMedGoogle Scholar
  6. Clark JH, Peck J Jr, Anderson JN (1976) Estrogen-receptor binding: relationship to estrogen-induced responses. J Toxicol Environ Health 1:561–586PubMedGoogle Scholar
  7. Clark JH, Williams M, Upchurch S, Eriksson H, Helton E, Markaverich BM (1982) Effects of estradiol-17α on nuclear occupancy of the estrogen receptor, stimulation of nuclear type II sites and uterine growth. J Steroid Biochem 16:323–328PubMedGoogle Scholar
  8. Dhar JD, Dwivedi A, Srivastava A, Setty BS (1994) Structure activity relationship of some 2,3-diaryl-2H-1-benzopyrans to their anti-implantation, estrogenic and antiestrogenic activities in the rat. Contraception 49:609–616PubMedGoogle Scholar
  9. Greene GL, Gilna P, Waterfield M, Baker A, Hort Y, Shine J (1986) Sequence and expression of human estrogen receptor complementary DNA. Science 231:1150–1154PubMedGoogle Scholar
  10. Hwang KJ, Carlson KE, Anstead GM, Katzenellenbogen JA (1992) Donor-acceptor tetrahydrochrysenes, inherently fluorescent, high-affinity ligands for the estrogen receptor: binding and fluorescence characteristics and fluorometric assay of receptor. Biochemistry 31:11536–11545PubMedGoogle Scholar
  11. Jordan VC, Dix CJ, Rowsby L, Prestwich G (1977) Studies on the mechanism of action of the nonsteroidal antioestrogen tamoxifen (I.C.I. 46,474) in the rat. Mol Cell Endocrinol 7:177–192PubMedGoogle Scholar
  12. Katzenellenbogen BS, Ferguson ER, Lan NC (1977) Fundamental differences in the action of estrogens and antiestrogens on the uterus: comparison between compounds with similar duration of action. Endocrinology 100:1252–1259PubMedGoogle Scholar
  13. Labrie F, Poulin R, Simard J, Zhao HF, Labrie C, Dauvois S, Dumont M, Hatton AC, Poirier D, Mérand Y (1990) Interactions between estrogens, androgens, progestins, and glucocorticoids in ZR-75–1 human breast cancer cells. Ann NY Acad Sci 595:130–148PubMedGoogle Scholar
  14. Ludwig LB, Klinge CM, Peale FV Jr, Bambara RA, Zain S, Hilf R (1990) A microtiter well assay for quantitative measurement of estrogen receptor binding to estrogen-responsive elements. Mol Endocrinol 4:1027–1033PubMedGoogle Scholar
  15. Mukawa F, Suzuki T, Ishibashi M, Yamada F (1988) Estrogen and androgen receptor binding affinity of 10β-chloro-estrenen derivatives. J Steroid Biochem 31:867–870PubMedGoogle Scholar
  16. Nichols M, Rientjes JMJ, Stewart AF (1998) Different positioning of the ligand binding domain helix 12 and the F domain in the estrogen receptor accounts for the functional differences between agonists and antagonists. EMBO J 17:765–773PubMedCentralPubMedGoogle Scholar
  17. Obourn JD, Koszweski NJ, Notides AC (1993) Hormone- and DNA-binding mechanisms of the recombinant human estrogen receptor. Biochemistry 32:6229–6236PubMedGoogle Scholar
  18. Ojasoo T, Raynaud JP (1978a) Unique steroid congeners for receptor studies. Cancer Res 38:4186–4198PubMedGoogle Scholar
  19. Pons M, Gagne D, Nicolas JC, Mehtali M (1990) A new cellular model of response to estrogens: a bioluminescent test to characterize (anti)estrogen molecules. Biotechniques 9:450–459PubMedGoogle Scholar
  20. Raynaud JP, Bonne C, Bouton MM, Moguilewsky M, Philibert D, Azadian-Boulanger G (1975) Screening for antihormones by receptor studies. J Steroid Biochem 6:615–622PubMedGoogle Scholar
  21. Schwabe JWR, Neuhaus D, Rhodes D (1990) Solution structure of the DNA-binding domain of the oestrogen receptor. Nature 348:458–461PubMedGoogle Scholar
  22. Shutt DA, Cox RI (1972) Steroid and phyto-oestrogen binding to sheep uterine receptors in vitro. J Endocrinol 52:299–310PubMedGoogle Scholar
  23. Smanik EJ, Calderon JJ, Muldoon TG, Mahesh VB (1989) Effect of progesterone on the activity of occupied nuclear estrogen receptor in vitro. Mol Cell Endocrinol 64:111–117PubMedGoogle Scholar
  24. Tremblay GB, Tremblay A, Copeland NG, Gilbert DJ, Jenkins NA, Labrie F, Giguère V (1997) Cloning, chromosomal localization, and functional analysis of the murine estrogen receptor β. Mol Endocrinol 11:353–365PubMedGoogle Scholar
  25. Wakeling AE, Slater SR (1980) Estrogen-receptor binding and biological activity of tamoxifen and its metabolites. Cancer Treat Rep 64:741–744PubMedGoogle Scholar

Transactivation Assay for Estrogens

  1. Bergmann KE, Wooge CH, Carlson KE, Katzenellenbogen BS, Katzenellenbogen JA (1994) Bivalent ligands as probes for estrogen receptor action. J Steroid Biochem Mol Biol 49:139–152PubMedGoogle Scholar
  2. Biberger C, Von Angerer E (1996) 2-Phenylindoles with sulfur containing side chains. Estrogen receptor affinity, antiestrogenic potency, and antitumor activity. J Steroid Biochem Mol Biol 58:31–43PubMedGoogle Scholar
  3. Bush SM, Folta S, Lannigan DA (1996) Use of the yeast one-hybrid system to screen for mutations in the ligand-binding domain of the estrogen receptor. Steroids 61:102–109PubMedGoogle Scholar
  4. Chu S, Nishi Y, Yanase T, Nawata H, Fuller PJ (2004) Transrepression of estrogen receptor β signaling by nuclear factor-κB in ovarian granulosa cells. Mol Endocrinol 18:1919–1928PubMedGoogle Scholar
  5. Fuhrmann U, Slater EP, Fritzemeier KH (1995) Characterization of the novel progestin gestodene by receptor binding studies and transactivation assays. Contraception 51:45–52PubMedGoogle Scholar
  6. Fuhrmann U, Krattenmacher R, Slater EP, Fritzemeier KH (1996) The novel progestin drospirenone and its natural counterpart progesterone: biochemical profile and antiandrogenic potential. Contraception 54:243–251Google Scholar
  7. Gaido KW, Leonard LS, Lovell S, Gould JC, Babal D, Portier CJ, McDonnell DP (1997) Evaluation of chemicals with endocrine modulating activity in a yeast-based steroid hormone receptor gene transcription assay. Toxicol Appl Pharmacol 143:205–212PubMedGoogle Scholar
  8. Green S, Chambon P (1988a) Nuclear receptors enhance our understanding of transcription regulations. Trends Genet 4:309–314PubMedGoogle Scholar
  9. Kohno H, Gandini O, Curtis SW, Korach KS (1994) Anti-estrogenic activity in the yeast transcription system: estrogen receptor mediated agonist response. Steroids 59:572–578PubMedGoogle Scholar
  10. McDonnell DP, Nawaz Z, O’Malley BW (1991) In situ distinction between steroid receptor binding and transactivation at a target gene. Mol Cell Biol 11:4350–4355PubMedCentralPubMedGoogle Scholar
  11. Meyer T, Koop R, von Angerer E, Schönenberger H, Holler E (1994) A rapid luciferase transfection assay for transcription activation and stability control of estrogenic drugs in cell cultures. J Cancer Res Clin Oncol 120:359–364PubMedGoogle Scholar
  12. Muhn P, Fuhrmann U, Fritzemeier KH, Krattenmacher R, Schillinger E (1995a) Drospirenone: a novel progestogen with antimineralocorticoid and antiandrogenic activity. Ann NY Acad Sci 761:311–335PubMedGoogle Scholar
  13. Odum J, Lefevre PA, Tittensor S, Paton D, Routledge EJ, Beresford NA, Sumpter PJ, Ashby J (1997) The rodent uterotrophic assay: critical protocol features, studies with nonyl phenols, and comparison with a yeast estrogenicity assay. Regul Toxicol Pharmacol 25:178–188Google Scholar
  14. Pierrat B, Heery DM, Lemoine Y, Losson R (1992) Functional analysis of the human estrogen receptor using a phenotypic transactivation assay in yeast. Gene 119:237–245PubMedGoogle Scholar
  15. Shelby MD, Newbold RR, Tully DB, Chae K, Davis VL (1996) Assessing environmental chemicals for estrogenicity using a combination of in vitro and in vivo assays. Environ Health Perspect 104:1296–1300PubMedCentralPubMedGoogle Scholar
  16. Tran DQ, Die CF, McLachlan JA, Arnold SF (1996) The antiestrogenic activity of selected polynuclear aromatic hydrocarbons in yeast expressing human estrogen receptor. Biochem Biophys Res Commun 229:102–108Google Scholar
  17. Von Angerer E, Biberger C, Holler E, Koop R, Leichtl S (1994) 1-Carbamoylalkyl-2-phenylindoles: relationship between side chain structure and estrogen antagonism. J Steroid Biochem Mol Biol 49:51–62Google Scholar
  18. Von Angerer E, Biberger C, Leichtl S (1995) Studies on heterocycle-based pure estrogen antagonists. Ann NY Acad Sci 761:176–191Google Scholar

Estrogen-Dependent Cell Proliferation

  1. Miller MA, Katzenellenbogen BS (1983) Characterization and quantitation of antiestrogen binding sites in estrogen receptor-positive and -negative human breast cancer cell lines. Cancer Res 43:3094–3100Google Scholar
  2. Palkowitz AD, Glasebrook AL, Thrasher KJ, Hauser KL, Short LL, Phillips DL, Muehl BS, Sato M, Shetler PK, Cullinan GJ, Pell TR, Bryant HU (1997) Discovery and synthesis of [6-hydroxy-3-[4-[2-(1-piperidinyl)ethoxy]phenoxyl]-2-[4-hydroxyphenyl)]benzo[b]thiophene. A novel, highly potent selective estrogen receptor modulator. J Med Chem 40:1407–1417PubMedGoogle Scholar
  3. Scholl SM, Huff KK, Lippman ME (1983a) Antiestrogenic effects of LY117018 in MCF-7 cells. Endocrinology 112:611–617Google Scholar
  4. Thompson EW, Reich R, Shima TB, Albini A, Graf J, Martin GR, Dickson MB, Lippman ME (1984) Differential growth and invasiveness of MCF-7 breast cancer cells by antiestrogens. Cancer Res 48:6764–6768Google Scholar
  5. Zacharewski T (1997) In vitro bioassays for assessing estrogenic substances. Environ Sci Technol 31:613–623Google Scholar

Vaginal Cornification Assay

  1. Allen E, Doisy EA (1923) An ovarian hormone. Preliminary report on its localization, extraction and partial purification, and action in test animals. J Am Med Assoc 81:819–821Google Scholar
  2. Eisler M (1964) Animal techniques for evaluating sex steroids. In: Nodine JH, Siegler PE (eds) Animal and clinical pharmacologic techniques in drug evaluation. Year Book Medical Publishers, Chicago, pp 566–573Google Scholar
  3. Emmens CW (1969) Estrogens. In: Dorfman RI (ed) Methods in hormone research, vol IIA. Academic, New York, pp 61–120Google Scholar
  4. Stockard CR, Papanicolaou GN (1917) The existence of a typical oestrus cycle in the guinea-pig – with a study of its histological and physiological changes. Am J Anat 22:225–283Google Scholar
  5. Zondek B (1935a) Die Brunstreaktion der Nagetiere als Testobjekt zum Nachweis des weiblichen Sexualhormones. In: Zondek B (ed) Hormone des Ovariums und des Hypophysenvorderlappens. Springer, Berlin/Heidelberg/New York, pp 23–33Google Scholar

Uterine Weight Assay

  1. Astroff B, Safe S (1991) 6-Alkyl-1,3,8-trichlorodibenzofurans as antiestrogens in female Sprague–Dawley rats. Toxicology 69:187–197PubMedGoogle Scholar
  2. Bhakoo HS, Katzenellenbogen B (1977) Progesterone antagonism of estradiol-stimulated uterine `induced protein’ synthesis. Mol Cell Endocrinol 8:105–120PubMedGoogle Scholar
  3. Branham W, Zehr DR, Sheehan DM (1993) Differential sensitivity of rat uterine growth and epithelium hypertrophy to estrogens and antiestrogens. Proc Soc Exp Biol Med 203:297–303PubMedGoogle Scholar
  4. Emmens CW (1969) Estrogens. In: Dorfman RI (ed) Methods in hormone research, vol IIA. Academic, New York, pp 61–120Google Scholar
  5. Junkmann K (1957) Long-acting steroids in reproduction. Recent Prog Horm Res 13:389–427Google Scholar
  6. Lyttle CR, DeSombre ER (1977) Uterine peroxidase as a marker of estrogen action. Proc Natl Acad Sci U S A 74:3162–3166PubMedCentralPubMedGoogle Scholar
  7. Nishino Y, Schneider MR, Michna H, von Angerer E (1991) Pharmacological characterization of a novel oestrogen antagonist, ZK 119010, in rats and mice. J Endocrinol 130:409–414PubMedGoogle Scholar
  8. Odum J, Lefevre PA, Tittensor S, Paton D, Routledge EJ, Beresford NA, Sumpter PJ, Ashby J (1997) The rodent uterotrophic assay: critical protocol features, studies with nonyl phenols, and comparison with a yeast estrogenicity assay. Regul Toxicol Pharmacol 25:178–188Google Scholar
  9. Rubin BL, Dorfman AS, Black L, Dorfman RI (1951) Bioassay of estrogens using mouse uterine response. Endocrinology 49:429–439PubMedGoogle Scholar
  10. Van de Velde O, Nique F, Bouchoux F, Brémaud J, Hameau MC, Lucas D, Moratille C, Viet S, Philibert D, Teutsch G (1994) RU 58 668, a new pure antiestrogen inducing a regression of human mammary carcinoma implanted in nude mice. J Steroid Biochem Mol Biol 48:187–196PubMedGoogle Scholar
  11. Zondek B (1935) Das Wachstum des Uterus als Testobjekt zum Nachweis des weiblichen Sexualhormons (Ovarialhormon). In: Zondek B (ed) Hormone des Ovariums und des Hypophysenvorderlappens. Springer, Berlin/Heidelberg/New York, pp 10–16Google Scholar

Chick Oviduct Method

  1. Dorfman RI (1969) Antiestrogens. In: Dorfman RI (ed) Methods in hormone research, vol IIA. Academic, New York, pp 121–149Google Scholar
  2. Lerner LJ, Holthaus FJ Jr, Thompson CR (1958) A non-steroidal estrogen antagonist 1-(p-2-diethylaminoethoxyphenyl)-1-phenyl-2-p-methoxyphenyl ethanol. Endocrinology 63:295–318Google Scholar
  3. Tullner WW, Hertz R (1956) The effect of 17-alpha-hydroxy-11-desoxycorticosterone on estrogen-stimulated chick oviduct growth. Endocrinology 58:282–283Google Scholar

Antagonism of Estrogen Effect on Uterus Weight

  1. Byrnes WW, Shipley EG (1955) Guinea pig copulatory reflex in response to adrenal steroids and similar compounds. Endocrinology 57:5–9PubMedGoogle Scholar
  2. Byrnes WW, Stafford RO, Olson KJ (1953) Anti-gonadal hormone activity of 11α-hydroxyprogesterone. Proc Soc Exp Biol Med 82:243–247PubMedGoogle Scholar
  3. Dorfman RI (1969) Antiestrogens. In: Dorfman RI (ed) Methods in hormone research, vol IIA. Academic, New York, pp 121–149Google Scholar
  4. Kangas L (1992) Agonistic and antagonistic effects of antiestrogens in different target organs. Acta Oncol 31:143–146PubMedGoogle Scholar
  5. Lerner LJ, Holthaus FJ Jr, Thompson CR (1958) A non-steroidal estrogen antagonist 1-(p-2-diethylaminoethoxyphenyl)-1-phenyl-2-p-methoxyphenyl ethanol. Endocrinology 63:295–318Google Scholar
  6. Levesque C, Merand Y, Dufour JM, Labrie C, Labrie F (1991) Synthesis and biological activity of new halo-steroidal antiestrogens. J Med Chem 34:1624–1630PubMedGoogle Scholar
  7. Nique F, Van de Velde P, Brémaud J, Hardy M, Philibert D, Teutsch G (1994) 11β-Amidoalkoxyphenyl estradiols, a new series of pure antiestrogens. J Steroid Biochem Mol Biol 50:21–29PubMedGoogle Scholar
  8. Terenius L (1971) Structure–activity relationships of anti-oestrogens with regard to interaction with 17β-oestradiol in the mouse uterus and vagina. Acta Endocrinol 66:431–447PubMedGoogle Scholar
  9. Tullner WW, Hertz R (1956) The effect of 17-alpha-hydroxy-11-desoxycorticosterone on estrogen-stimulated chick oviduct growth. Endocrinology 58:282–283Google Scholar
  10. Wakeling AE, Bowler J (1988) Novel antiestrogens without partial agonistic activity. J Steroid Biochem 31:645–653PubMedGoogle Scholar

Aromatase Inhibition

  1. Brodie A (1991) Aromatase and its inhibitors – an overview. J Steroid Biochem Mol Biol 40:255–261PubMedGoogle Scholar
  2. Geelen JAA, Deckers GH, van der Wardt JTH, Loozen HJJ, Tax LJW, Kloosterboer HJ (1991) Selection of 19-(ethyldithio)-andro-4-ene-3,17-dione (ORG 30958): a potent aromatase inhibitor in vivo. J Steroid Biochem Mol Biol 38:181–188PubMedGoogle Scholar
  3. Häusler A, Schenkel L, Krähenbühl C, Monnet G, Bhatnagar AS (1989) An in vitro method to determine the selective inhibition of estrogen biosynthesis by aromatase inhibitors. J Steroid Biochem 33:125–131PubMedGoogle Scholar
  4. Suzuki K, Ito K, Tamura Y, Suzuki T, Honma S, Yamanaka H (1996) Effect of an aromatase inhibitor, TZA-2209, on the prostate of androstenedione-treated castrated dogs. Prostate 28:328–337PubMedGoogle Scholar
  5. Takahashi M, Kyo T, Karakida T, Nakagawa S, Kato M, Matsuno S, Koide Y, Sakato M, Kawashima S (1997) Potent and selective aromatase inhibitor: in vitro and in vivo studies with s-triazine derivative SEF19. Endocr Res 23:1–13PubMedGoogle Scholar
  6. Wouters W, Van Ginckel R, Krekels M, Bowden C, De Coster R (1993) Pharmacology of vorozole. J Steroid Biochem Mol Biol 44:617–621PubMedGoogle Scholar
  7. Zaccheo T, Giudici D, Lombard P, di Salle E (1989) A new irreversible aromatase inhibitor, 6-methylenandrosta-1,4,-diene-3,17-dione (FCE 24304): antitumor activity and endocrine effects in rats with DMBA-induced mammary tumors. Cancer Chemother Pharmacol 23:47–50PubMedGoogle Scholar

Antiestrogenic Effect on MCF-7 Breast Cancer Cells

  1. Albini A, Iwamoto Y, Kleinman HK, Martin GR, Aaronson SA, Kozlowski JM, McEwan RM (1987) A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 47:3239–3245PubMedGoogle Scholar
  2. Kleinman HK, McGarvey ML, Hassel JR, Star VL, Cannon FB, Laurie GW, Martin GR (1986) Basement membrane complexes with biological activity. Biochemistry 25:312–318PubMedGoogle Scholar
  3. Miller MA, Katzenellenbogen BS (1983) Characterization and quantitation of antiestrogen binding sites in estrogen receptor-positive and -negative human breast cancer cell lines. Cancer Res 43:3094–3100Google Scholar
  4. Scholl SM, Huff KK, Lippman ME (1983) Antiestrogenic effects of LY 117018 in MCF-7 cells. Endocrinology 113:611–617Google Scholar
  5. Thompson EW, Reich R, Shima TB, Albini A, Graf J, Martin GR, Dickson RB, Lippman ME (1988) Differential regulation of growth and invasiveness of MCF-7 breast cancer cells by antiestrogens. Cancer Res 48:6764–6768PubMedGoogle Scholar

Gestagen Receptor Binding

  1. Allan GF, Leng X, Tsai SY, Weigel NL, Edwards DP, Tsai M-J, O’Malley BW (1992) Hormone and antihormone induce distinct conformational changes which are central to steroid receptor activation. J Biol Chem 287:19513–19520Google Scholar
  2. Bélanger A, Philibert D, Teutsch G (1981) Regio- and stereospecific synthesis of 11β-substituted 19-norsteroids. Steroids 37:361–382PubMedGoogle Scholar
  3. Benhamou B, Garcia T, Lerouge T, Vergezac A, Gofflo D, Bigogne C, Chambon P, Gronemeyer H (1992) A single amino acid that determines the sensitivity of progesterone receptors to RU486. Science 255:206–209PubMedGoogle Scholar
  4. Bergink EW, van Meel F, Turpijn EW, van der Vies J (1983) Binding of progestagens to receptor proteins in MCF-7 cells. J Steroid Biochem 19:1563–1570PubMedGoogle Scholar
  5. Boonkasemsanti W, Aedo AR, Cekan SZ (1989) Relative affinity of various progestins and antiprogestins to a rabbit myometrium receptor. Arzneimittelforschung 39:195–199PubMedGoogle Scholar
  6. Carbajo P, Christensen K, Edwards DP, Skafar DF (1996) Binding of [3H]progesterone to the human progesterone receptors: differences between individual and mixed isoforms. Endocrinology 137:2339–2346PubMedGoogle Scholar
  7. Collins DC (1994) Sex hormone receptor binding, progestin selectivity, and the new oral contraceptives. Am J Obstet Gynecol 170:1508–1513PubMedGoogle Scholar
  8. Cook CA, Wani MC, Lee YW, Fail PA, Petrow V (1992) Reversal of activity profile in analogs of the antiprogestin RU 486: effect of a 16α-substituent on progestational (agonist) activity. Life Sci 52:155–162Google Scholar
  9. Cook CE, Lee YW, Wani MC, Fail PA, Petrow V (1994) Effects of D-ring substituents on antiprogestational (antagonist) and progestational (agonist) activity of 11β-aryl steroids. Human Reprod 9(Suppl 1):32–39Google Scholar
  10. Edwards DP, Altmann M, DeMarzo A, Zhang Y, Weigel NL, Beck CA (1995) Progesterone receptor and the mechanisms of action of progesterone antagonists. J Steroid Biochem Mol Biol 53:449–458PubMedGoogle Scholar
  11. Garcia T, Benhamou B, Gofflo D, Vergezac A, Philibert D, Chambon P, Gronemeyer H (1992) Switching agonistic, antagonistic, and mixed transcriptional responses to 11β-substituted progestins by mutation of the progesterone receptor. Mol Endocrinol 6:2071–2078PubMedGoogle Scholar
  12. Hurd C, Moudgil VK (1988) Characterization of R5020 and RU486 binding to progesterone receptor from calf uterus. Biochemistry 27:3618–3623PubMedGoogle Scholar
  13. Jänne O, Kontula K, Vihko R (1976) Progestin receptors in human tissues: concentration and binding kinetics. J Steroid Biochem 7:1061–1068PubMedGoogle Scholar
  14. Kloosterboer HJ, Deckers GHJ, van der Heuvel MJ, Loozen HJJ (1988a) Screening for antiprogestagens by receptor studies and bioassays. J Steroid Biochem 31:567–571PubMedGoogle Scholar
  15. Kloosterboer HJ, Vonk-Noordegraaf CA, Turpijn EW (1988b) Selectivity in progesterone and androgen receptor binding of progestagens used in oral contraceptives. Contraception 38:325–332PubMedGoogle Scholar
  16. Kloosterboer HJ, Deckers GH, Schoonen WGEJ (1994) Pharmacology of two new very selective antiprogestagens: Org 31710 and Org 31806. Human Reprod 9(Suppl 1):47–52Google Scholar
  17. Kontula K, Jänne O, Vihko R, de Jager E, de Visser J, Zeelen F (1975) Progesterone binding proteins: in vitro binding and biological activity of different steroidal ligands. Acta Endocrinol 78:574–592PubMedGoogle Scholar
  18. Kuhl H (1996) Comparative pharmacology of newer progestagens. Drugs 51:188–215PubMedGoogle Scholar
  19. Li F, Kumar N, TsongY-Y MC, Bardin CW (1997a) Synthesis and progestational activity of 16-methylene-17α-hydroxy-19-norpregn-4-ene-3,20-dione and its derivatives. Steroids 62:403–408PubMedGoogle Scholar
  20. Meyer ME, Pornon A, Ji J, Bocquel MT, Chambon P, Gronemeyer H (1990) Agonistic and antagonistic activities of RU486 on the functions of the human progesterone receptor. EMBO J 9:3923–3932PubMedCentralPubMedGoogle Scholar
  21. Misrani M, Atger M, d’Auriol L, Loosfelt H, Meriel C, Fridlansky F, Guiochon-Mantel A, Galibert F, Milgrom E (1987) Complete amino acid sequence of the human progesterone receptor deduced from cloned cDNA. Biochem Biophys Res Commun 143:740–748Google Scholar
  22. Moguilewsky M, Raynaud JP (1979) Estrogen-sensitive progestin-binding sites in the female rat brain and pituitary. Brain Res 164:165–175PubMedGoogle Scholar
  23. Ojasoo T, Raynaud JP (1978) Unique steroid congeners for receptor studies. Cancer Res 38:4186–4198Google Scholar
  24. Ojasoo T, Raynaud JP (1990) Steroid hormone receptors. Binding to the progestin receptor. Structural requirements of the ligand and mapping of the hormone-binding site. In: Emmet E, Hansch C (eds) Comprehensive medicinal chemistry, vol 3. Pergamon, New York, pp 1200–1207Google Scholar
  25. Oñate SA, Pendergast P, Wagner PJ, Nissen M, Reeves R, Pettijohn DE, Edwards DE (1994) The DNA-binding protein HMG-1 enhances progesterone receptor binding to its target DNA sequences. Mol Cell Biol 14:3376–3391PubMedCentralPubMedGoogle Scholar
  26. Philibert D, Raynaud JP (1977) Cytoplasmatic progestin receptors in mouse uterus. In: McGuire WL, Raynaud JP, Baulieu EE (eds) Progress in cancer research and therapy, vol 4, Progesterone receptors in normal and neoplastic tissues. Raven, New York, pp 227–243Google Scholar
  27. Philibert D, Ojasoo T, Raynaud JP (1977) Properties of the cytoplasmic progestin-binding protein in the rabbit uterus. Endocrinology 101:1850–1861PubMedGoogle Scholar
  28. Phillips A, Demarest K, Hahn DW, Wong F, McGuire JL (1990) Progestational and androgenic receptor binding affinities and in vivo activities of norgestimate and other progestins. Contraception 41:399–410PubMedGoogle Scholar
  29. Pinney KG, Carlson KE, Katzenellenbogen JA (1990) [3H]DU41165: a high affinity ligand and novel photoaffinity labeling reagent for the progesterone receptor. J Steroid Biochem 35:179–189PubMedGoogle Scholar
  30. Pollow K, Juchem M, Grill HJ, Elger W, Beier S, Henderson D, Schmidt-Gollwitzer K, Manz B (1989a) Gestodene: a novel synthetic progestin-characterization of binding to receptor and serum proteins. Contraception 40:325–341PubMedGoogle Scholar
  31. Pollow K, Juchem M, Grill HJ, Manz B, Beier S, Henderson D, Schmidt-Gollwitzer K, Elger W (1989b) 3H-ZK 98,734, a new 11β-aryl substituted antigestagen: binding characteristics to receptor and serum proteins. Contraception 40:213–232PubMedGoogle Scholar
  32. Pollow K, Juchem M, Elger W, Jacobi N, Hoffmann G, Möbus V (1992) Dihydrospirorenone (ZK 30595): a novel synthetic progestagen – characterization of binding to different receptor proteins. Contraception 46:561–574PubMedGoogle Scholar
  33. Reel JR, Humphrey RR, Shih YH, Windsor BL, Sakowski R, Creger PL, Edgren RA (1979) Competitive progesterone antagonists: receptor binding and biological activity of testosterone and 19-nortestosterone derivatives. Fertil Steril 31:552–561PubMedGoogle Scholar
  34. Savouret JF, Chauchereau A, Misrahi M, Lescop P, Mantel A, Bailly A, Milgrom E (1994) The progesterone receptor: biological effects of progestins and antiprogestins. Hum Reprod 9(Suppl 1):7–11PubMedGoogle Scholar
  35. Schowalter DB, Sullivan WP, Maihle NJ, Dobson ADW, Conneely OM, O’Malley BW, Toft DO (1991) Characterization of progesterone receptor binding to the 90- and 70-kDa heat shock proteins. J Biol Chem 266:21165–21173PubMedGoogle Scholar
  36. Seth NM, Bhaduri AP (1986) Progesterone binding of steroidal and nonsteroidal compounds. In: Jucker E (ed) Progress in drug research, vol 30. Birkhäuser, Basel, pp 151–188Google Scholar
  37. Skafar DF (1991) Differential DNA binding by calf uterine estrogen and progesterone receptors results from differences in oligomeric states. Biochemistry 30:6148–6154PubMedGoogle Scholar
  38. Snyder BW, Beecham GD, Winneker RC (1989) Studies on the mechanism of action of danazole and gestrinone (R2323) in the rat: evidence for a masked estrogen component. Fertil Steril 51:705–710PubMedGoogle Scholar
  39. Theofan G, Notides AC (1984) Characterization of the calf uterine progesterone receptor and its stabilization by nucleic acids. Endocrinology 114:1173–1179PubMedGoogle Scholar

Transactivation Assay for Gestagens

  1. Dijkema R, Schoonen WEG, Teuwen R, van der Struik E, de Ries RJH, van der Kar BAT, Olijve W (1998) Human receptor A and B isoforms in CHO cells. I. Stable transfection of receptor and receptor-responsive reporter genes: transcription modulation by (anti)progestagens. J Steroid Biochem Mol Biol 64:147–156PubMedGoogle Scholar
  2. Edwards JP, West SJ, Marschke KB, Mais DE, Gottardis MM, Jones TK (1998) 5-Aryl-1,2-dihydro-5H-chromeno[3,4-f] quinolines as potent, orally active nonsteroidal progesterone receptor agonists. The effect of D-ring substituents. J Med Chem 41:303–310PubMedGoogle Scholar
  3. Fuhrmann U, Krattenmacher R, Slater EP, Fritzemeier KH (1996) The novel progestin drospirenone and its natural counterpart progesterone: biochemical profile and antiandrogenic potential. Contraception 54:243–251Google Scholar
  4. Green S, Chambon P (1988) Nuclear receptors enhance our understanding of transcription regulations. Trends Genet 4:309–314Google Scholar
  5. Jones TK, Pathirana C, Goldman ME, Hamann LG, Farmer LJ, Ianiro T, Johnson MG, Bender SL, Mais DE, Stein RB (1996) Discovery of novel intracellular receptor modulating drugs. J Steroid Biochem Mol Biol 56:61–66PubMedGoogle Scholar
  6. Muhn P, Fuhrmann U, Fritzemeier KH, Krattenmacher R, Schillinger E (1995) Drospirenone: a novel progestogen with antimineralocorticoid and antiandrogenic activity. Ann NY Acad Sci 761:311–335Google Scholar
  7. Pathirana C, Stein RB, Berger TS, Fenical W, Ianiro T, Mais DE, Torres A, Goldman ME (1995) Nonsteroidal human progesterone receptor modulators from the marine alga Cymopolia barbata. Mol Pharmacol 47:630–635Google Scholar
  8. Schoonen WGEJ, Dijkema R, de Ries RJH, Wagenaars JL, Joosten JWH, de Gooyer ME, Deckers GH, Kloosterboer HJ (1998) Human progesterone receptor A and B isoforms in CHO cells. II. Comparison of binding, transactivation and ED50 values of several synthetic (anti)progestagen. in vitro in CHO and MCF-7 cells and in vivo in rabbits and rats. J Steroid Biochem Mol Biol 64:157–170PubMedGoogle Scholar
  9. Sobek L, di Lorenzo D, Oettel M, Kaufmann G (1994) Normal and stable transfected cancer cell lines: tools for a screening of progestogenic, antiprogestogenic and antiglucocorticoid substances. Methods Find Exp Clin Pharmacol 16:545–551Google Scholar
  10. Zhi L, Tegley CM, Kallel EA, Marschk KB, Mais DE, Gottardis MM, Jones TK (1998) 5-Aryl-1,2-dihydrochromeno[3,4-f] quinolines: a novel class of nonsteroidal human progesterone receptor agonists. J Med Chem 41:291–302PubMedGoogle Scholar

Alkaline Phosphatase Assay

  1. Di Lorenzo D, Albertini A, Zava D (1991) Progestin regulation of alkaline phosphatase in the human breast cancer cell line T47D. Cancer Res 51:4470–4475PubMedGoogle Scholar
  2. Di Lorenzo D, Gianni M, Savoldi GF, Ferrari F, Albertini A, Garattini E (1993) Progesterone induced expression of alkaline phosphatase is associated with a secretory phenotype in T47D breast cancer cells. Biochem Biophys Res Commun 192:1066–1072PubMedGoogle Scholar
  3. Li F, Kumar N, TsongY-Y MC, Bardin CW (1997) Synthesis and progestational activity of 16-methylene-17α-hydroxy-19-norpregn-4-ene-3,20-dione and its derivatives. Steroids 62:403–408Google Scholar
  4. Pathirana C, Stein RB, Berger TS, Fenical W, Ianiro T, Mais DE, Torres A, Goldman ME (1995) Nonsteroidal human progesterone receptor modulators from the marine alga Cymopolia barbata. Mol Pharmacol 47:630–635Google Scholar
  5. Sobek L, di Lorenzo D, Oettel M, Kaufmann G (1994) Normal and stable transfected cancer cell lines: tools for a screening of progestogenic, antiprogestogenic and antiglucocorticoid substances. Methods Find Exp Clin Pharmacol 16:545–551Google Scholar

Clauberg (McPhail) Test in Rabbits

  1. Butenandt A, Westphal U, Hohlweg W (1943) Über das Hormon des Corpus luteum. Hoppe-Seyler’s Z Biol Chem 227:84–98Google Scholar
  2. Clauberg C (1930a) Der biologische Test für das Corpus luteum-Hormon. Klin Wschr 9:2004–2005Google Scholar
  3. Clauberg C (1930b) Das Hormon des Corpus luteum. Zentralbl Gynakol 54:7–19Google Scholar
  4. Clauberg C (1930c) Experimentelle Untersuchungen zur Frage eines Mäusetestes für das Hormon des Corpus luteum. Zentralbl Gynakol 54:1154–1164Google Scholar
  5. Clauberg C (1930d) Zur Physiologie und Pathologie der Sexualhormone, im besonderen des Hormons des Corpus luteum. 1. Mitteilung: Der biologische Test für das Luteohormon (das spezifische Hormon des Corpus luteum) am infantilen Kaninchen. Zentralbl Gynakol 54:2757–2770Google Scholar
  6. Elton RL, Edgren RA (1958) Biological actions of 17α-(2-methallyl)-19-nortestosterone, an orally active progestational agent. Endocrinology 63:464–472Google Scholar
  7. Hebborn P (1971) Progestational agents. In: Turner RD, Hebborn P (eds) Screening methods in pharmacology, vol II. Academic, New York, pp 105–119Google Scholar
  8. Junkmann K (1957) Long-acting steroids in reproduction. Recent Prog Horm Res 13:389–427Google Scholar
  9. McGinty DA, Anderson LP, McCollough NB (1939) Effect of local application of progesterone on the rabbit uterus. Endocrinology 24:829–832Google Scholar
  10. McPhail MK (1934) The assay of progestin. J Physiol (Lond) 83:145–156Google Scholar
  11. Miyake T (1962) Progestational substances. In: Dorfman RI (ed) Methods in hormone research, vol II. Academic, New York, pp 127–178Google Scholar
  12. Pincus G, Miyake T, Merrill AP, Longo P (1957) The bioassay of progesterone. Endocrinology 61:528–533Google Scholar
  13. Tayama T, Motoyama T, Ohono Y, Ide N, Turusaki T, Okada H (1979) Local progestational and antiprogestational effects of steroids and their metabolites on the rabbit uterus. Jpn J Fertil Steril 24:48–51Google Scholar
  14. Wiechert R, Neumann F (1965) Gestagene Wirksamkeit von 1-Methyl- und 1,2α-Methylen-Steroiden. Arzneimittelforschung 15:244–246Google Scholar
  15. Zondek B (1935) Follikelhormon (Follikulin) und Corpus-luteum-Hormon (Progestin). In: Zondek B (ed) Hormone des Ovariums und des Hypophysenvorderlappens. Springer, Berlin/Heidelberg/New York, pp 162–170Google Scholar

Endometrial Carbonic Anhydrase Assay

  1. Eisler M (1964) Animal techniques for evaluating sex steroids. In: Nodine JH, Siegler PE (eds) Animal and clinical pharmacologic techniques in drug evaluation. Year Book Medical Publishers, Chicago, pp 566–573Google Scholar
  2. Elton RL, Edgren RA (1958) Biological actions of 17α-(2-methallyl)-19-nortestosterone, an orally active progestational agent. Endocrinology 63:464–472Google Scholar
  3. Lutwak-Mann C (1955) Carbonic anhydrase in the female reproductive tract. Occurrence, distribution and hormonal dependence. J Endocrinol 13:26–38PubMedGoogle Scholar
  4. Miyake T (1962) Progestational substances. In: Dorfman RI (ed) Methods in hormone research, vol II. Academic, New York, pp 127–178Google Scholar
  5. Miyake T, Pincus G (1958) Progestational activity of certain 19-norsteroids and progesterone derivatives. Endocrinology 63:816–824PubMedGoogle Scholar
  6. Philpot FJ, Philpot JSL (1936) A modified colorimetric estimation of carbonic anhydrase. Biochem J 30:2191–2193PubMedCentralPubMedGoogle Scholar
  7. Pincus G, Miyake T, Merrill AP, Longo P (1957) The bioassay of progesterone. Endocrinology 61:528–533Google Scholar

Deciduoma Formation

  1. Astwood EB (1939) An assay method for progesterone based on the decidual reaction in the rat. J Endocrinol 1:49–55Google Scholar
  2. Eisler M (1964) Animal techniques for evaluating sex steroids. In: Nodine JH, Siegler PE (eds) Animal and clinical pharmacologic techniques in drug evaluation. Year Book Medical Publishers, Chicago, pp 566–573Google Scholar
  3. Elton RL, Edgren RA (1958) Biological actions of 17α-(2-methallyl)-19-nortestosterone, an orally active progestational agent. Endocrinology 63:464–472Google Scholar
  4. Miyake T (1962) Progestational substances. In: Dorfman RI (ed) Methods in hormone research, vol II. Academic, New York, pp 127–178Google Scholar
  5. Sreenivasulu S, Singh MM, Setty BS, Kamboj VP (1993) Effect of a pure nonsteroidal antiestrogen, CDRI-85/287, on implantation-associated histological and biochemical changes in the rat uterus. Contraception 48:597–609PubMedGoogle Scholar
  6. Zarrow MX, Peters LE, Caldwell AL Jr (1958) Comparative potency of several progestogenic compounds in a battery of different biological tests. Ann NY Acad Sci 71:532–541PubMedGoogle Scholar

Pregnancy Maintenance Assay

  1. Eisler M (1964) Animal techniques for evaluating sex steroids. In: Nodine JH, Siegler PE (eds) Animal and clinical pharmacologic techniques in drug evaluation. Year Book Medical Publishers, Chicago, pp 566–573Google Scholar
  2. Elton RL, Edgren RA (1958) Biological actions of 17α-(2-methallyl)-19-nortestosterone, an orally active progestational agent. Endocrinology 63:464–472Google Scholar
  3. Hebborn P (1971) Progestational agents. In: Turner RD, Hebborn P (eds) Screening methods in pharmacology, vol II. Academic, New York, pp 105–119Google Scholar
  4. Kuhnz W, Beier S (1994) Comparative progestational and androgenic activity of norgestimate and levonorgestrel in the rat. Contraception 49:275–289PubMedGoogle Scholar
  5. McGinty DA (1959) Discussion. Fed Proc Fed Am Soc Exp Biol 18:1048–1050Google Scholar
  6. Miyake T (1962) Progestational substances. In: Dorfman RI (ed) Methods in hormone research, vol II. Academic, New York, pp 127–178Google Scholar
  7. Phillips A, Hahn DW, Klimek S, McGuire JL (1987) A comparison of the potencies and activities of progestagens used in contraceptives. Contraception 36:181–192PubMedGoogle Scholar
  8. Shipley EG (1965) Effectiveness of topical application of a number of progestins. Steroids 5:699–717Google Scholar
  9. Stucki JC (1958) Maintenance of pregnancy in ovariectomized rats with some newer progestins. Proc Soc Exp Biol Med 99:500–504PubMedGoogle Scholar

Progesterone Antagonism (Antiprogestins)

  1. Chwalisz K (1994) The use of progesterone antagonists for cervical ripening and as adjunct to labor and delivery. Human Reprod 9:131–161Google Scholar
  2. Chwalisz K, Hegele-Hartung C, Schulz R, Qing SS, Louton PT, Elger W (1991) Progesterone control of cervical ripening – experimental studies with the progesterone antagonists onapristone, lilopristone and mefipristone. In: Leppert PC, Woessner JF (eds) The extracellular matrix of the uterus, cervix and fetal membranes: synthesis, degradation and hormonal regulation. Perinatology, Ithaca, pp 119–131Google Scholar
  3. Cook CE, Lee YW, Wani MC, Fail PA, Petrow V (1994) Effects of D-ring substituents on antiprogestational (antagonist) and progestational (agonist) activity of 11β-aryl steroids. Human Reprod 9(Suppl 1):32–39Google Scholar
  4. Michna H, Nishino Y, Schneider MR, Louton T, El Etreby MF (1991) A bioassay for the evaluation of antiproliferative potencies of progesterone antagonists. J Steroid Biochem Mol Biol 38:359–365PubMedGoogle Scholar
  5. Miyake T, Dorfman RI (1965) Anti-progestational compounds. In: Dorfman RI (ed) Methods in hormone research, vol IV. Academic, New York, pp 95–106Google Scholar
  6. Oettel M, Kurischko A (1980) STS 557, a new orally active progestin with antiprogestational and contragestational properties in rabbits. Contraception 21:61–75PubMedGoogle Scholar
  7. Philibert D, Moguilewsky M, Mary I, Lecaque D, Tournemine C, Secchi J, Deraedt R (1985) Pharmacological profile of RU 486 in animals. In: Baulieu EE, Segal SJ (eds) The anti-progestin steroid RU 486 and human fertility control. Plenum, New York, pp 49–68Google Scholar
  8. Stöckemann K, Chwalisz K (1993) Effects of the progesterone antagonists onapristone and ZK 136799 on surgically induced endometriosis in rats. Exp Clin Endocrinol 101(Suppl 1):59Google Scholar
  9. Tamaya T, Motoyama T, Ohono Y, Ide N, Turusaki T, Okada H (1979) Local progestational and antiprogestational effects of steroids and their metabolites on the rabbit uterus. Jpn J Fertil Steril 24:48–51Google Scholar
  10. Teutsch G, Philibert D (1994) History and perspectives of antiprogestins from the chemist’s point of view. Human Reprod 9(Suppl 1):12–31Google Scholar

Luteolytic Activity of Prostaglandins

  1. Auletta FJ, Kelm LB (1994) Mechanisms controlling corpus luteum function in the rhesus monkey (Macaca mulatta): inhibitory action of hCG on luteolysis induced by PGF2α. J Reprod Fertil 102:215–220PubMedGoogle Scholar
  2. Auletta FJ, Kelm LB, Schofield MJ (1995) Responsiveness of the corpus luteum of the rhesus monkey to gonadotrophin in vitro during spontaneous and prostaglandin F2α-induced luteolysis. J Reprod Fertil 103:107–113PubMedGoogle Scholar
  3. Bartmann W, Beck G, Lerch U, Teufel H, Schölkens B (1979) Luteolytic prostaglandins. Synthesis and biological activity. Prostaglandins 17:301–311PubMedGoogle Scholar
  4. Blatchley FR, Donovan BT (1969) Luteolytic effect of prostaglandin in the guinea-pig. Nature 221:1065–1066PubMedGoogle Scholar
  5. Brambaifa N (1988) Luteolytic potency of 16-phenoxy-derivatives of prostaglandin F2α. Experientia 44:45–47PubMedGoogle Scholar
  6. Buhr MM, Gruber MY, Riley JCM, Carlson JC (1983) The effect of prolactin pretreatment on prostaglandin F2α-associated structural changes in membranes from rat corpora lutea. Am J Obstet Gynecol 145:263–268PubMedGoogle Scholar
  7. Cao L, Chan WY (1993) Effects of oxytocin and luteal prostaglandins on the functional regression of the corpus luteum in pseudopregnant rats. J Reprod Fertil 99:181–186PubMedGoogle Scholar
  8. Chatterjee A (1973) Possible mode of action of prostaglandins: differential effects of prostaglandin F2α before and after the establishment of placental physiology in pregnant rats. Prostaglandins 3:189–199PubMedGoogle Scholar
  9. Dukes M, Russell W, Walpole AL (1974) Potent luteolytic agents related to prostaglandin F2α. Nature 250:330–331PubMedGoogle Scholar
  10. Dwivedy I, Ray S, Grover A (1993) Present status of luteolytic agents in fertility regulation. Prog Drug Res 40:239–267PubMedGoogle Scholar
  11. Fuchs AR, Mok E, Sundaram K (1974) Luteolytic effects of prostaglandins in rat pregnancy, and reversal by luteinizing hormone. Acta Endocrinol 76:583–596PubMedGoogle Scholar
  12. Galliani G, Ciabatti R, Colombo G, Guzzi U, Luzzani F, Glässer A (1984) Studies on the luteolytic activity of MDL-646, a new gastroprotective PGE1 analogue, in the hamster. Prostaglandins 27:583–590PubMedGoogle Scholar
  13. Gutknecht GD, Wyngarden LJ, Pharriss BB (1971) The effect of prostaglandin F2α on ovarian and plasma progesterone levels in the pregnant hamster. Proc Soc Exp Biol Med 136:1151–1157PubMedGoogle Scholar
  14. Henderson KM, McNatty KP (1975) A biochemical hypothesis to explain the mechanism of luteal regression. Prostaglandins 9:779–797PubMedGoogle Scholar
  15. Hoyer PB (1998) Regulation of luteal regression: the ewe as a model. J Soc Gynecol Investig 5:49–57PubMedGoogle Scholar
  16. Johnston JO, Hunter KK (1970) Prostaglandin F2α: mode of action in pregnant hamster. Physiologist 13:235Google Scholar
  17. Karim SMM, Ratnam SS, Ilancheran A (1977) Menstrual induction with vaginal administration of 16,16 dimethyl trans-Δ2-PGE1 methyl ester (ONO 802). Prostaglandins 14:615–616PubMedGoogle Scholar
  18. Kenny N, Robinson J (1986) Prostaglandin F2α-induced functional luteolysis: interactions of LH, prostaglandin F2α and forskolin in cyclic AMP and progesterone synthesis in isolated rat luteal cells. J Endocrinol 111:415–423PubMedGoogle Scholar
  19. Labhsetwar AP (1971) Luteolysis and ovulation induced by prostaglandin F2α in the hamster. Nature 230:528–529PubMedGoogle Scholar
  20. Labhsetwar AP (1972a) New antifertility agent – an orally active prostaglandin – ICI 74,205. Nature 238:400–401PubMedGoogle Scholar
  21. Labhsetwar AP (1972b) Luteolytic and ovulation-inducing properties of prostaglandin F2α in pregnant mice. J Reprod Fertil 28:451–452PubMedGoogle Scholar
  22. McCracken JA, Glew ME, Scaramuzzi RJ (1970) Corpus luteum regression induced by prostaglandin F2α. J Clin Endocrinol Metab 30:544–546PubMedGoogle Scholar
  23. Motta AB, Franchi AM, Faletti A, Gimeno MF (1996) Effect of an oxytocin receptor antagonist on ovarian and uterine synthesis and release of prostaglandin F2α in pseudopregnant rats. Prostaglandins Leukot Essent Fatty Acids 54:95–100PubMedGoogle Scholar
  24. O’Grady JP, Kohorn EI, Glass RH, Caldwell BV, Brock WA, Speroff L (1972) Inhibition of progesterone synthesis in vitro by prostaglandin F2α. J Reprod Fertil 30:153–156PubMedGoogle Scholar
  25. Pharriss BB, Wyngarden LJ (1969) The effect of prostaglandin F2α on the progesterone content of ovaries of pseudopregnant rats. Proc Soc Exp Biol Med 130:92–94PubMedGoogle Scholar
  26. Roy R, Karanth S, Dutt A, Juneja HS (1987) Involvement of prostaglandin A1 in interrupting early pregnancy in Syrian golden hamsters. Adv Contracept 3:341–348PubMedGoogle Scholar
  27. Speroff L, Ramwell PW (1970) Prostaglandin stimulation of in vitro progesterone synthesis. J Clin Endocrinol Metab 30:345–350PubMedGoogle Scholar
  28. Stocco CO, Deis RP (1998) Participation of intraluteal progesterone and prostaglandin F2α in LH-induced luteolysis in pregnant rats. J Endocrinol 156:253–259PubMedGoogle Scholar
  29. Takagi S, Sakata H, Yoshida T, Nakazawa S, Fujii KT, Tominaga Y, Iwasa Y, Ninagawa T, Hiroshima T, Tomioda Y, Itoh K, Masukawa R (1977) Termination of early pregnancy by ONO-802 (16,16 dimethyl trans-Δ2-PGE1 methyl ester). Prostaglandins 14:791–799PubMedGoogle Scholar
  30. Takagi S, Sakata H, Yoshida T, Den K, Fujii TK, Amemiya H, Tomita M (1978) Termination of early pregnancy by ONO-802 suppositories (16,16 dimethyl trans-Δ2-PGE1 methyl ester). Prostaglandins 15:913–919PubMedGoogle Scholar
  31. Toppozada M, Warda A, Ramadan M (1979) Intramuscular 16-phenoxy PGE2 ester for pregnancy termination. Prostaglandins 17:461–467PubMedGoogle Scholar
  32. Torjesen PA, Aakvaag A (1984) Ovarian production of progesterone and 20α-dihydroprogesterone in vitro following prostaglandin F2α induced luteolysis in the superluteinized rat. Acta Endocrinol 105:258–265PubMedGoogle Scholar
  33. Torjesen PA, Aakvaag A (1986) Characterization of adenylate cyclase of the rat corpus luteum during luteolysis induced by a prostaglandin F2α analogue. Mol Cell Endocrinol 44:237–242PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Centre of PharmacologyFrankfurt-Main UniversityGlashuettenGermany

Personalised recommendations