Liver Function

Living reference work entry

Abstract

The Long-Evans Cinnamon strain of rats has been recommended as a useful model to study genetically transmitted fulminant hepatitis and chronic liver disease (Yoshida et al. 1987; Hawkins et al. 1995). The underlying cause is thought to be due to excessive copper accumulation in the liver of Long-Evans Cinnamon rats, thus making this animal a model for Wilson’s disease in humans (Okayasu et al. 1992). Chelation therapy or feeding a copper-deficient diet can ameliorate the symptoms in Long-Evans Cinnamon rats and Wilson’s disease (Togashi et al. 1992).

Keywords

Liver Fibrosis Bile Duct Ligation Hepatic Ischemia Prolyl Hydroxylase Activity Induce Liver Cirrhosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

Hepatitis in Long-Evans Cinnamon Rats

  1. Hawkins RL, Mori M, Inoue M, Torii K (1995) Proline, ascorbic acid, or thioredoxin affect jaundice and mortality in Long Evans Cinnamon rats. Pharmacol Biochem Behav 52:509–515PubMedCrossRefGoogle Scholar
  2. Iseki K, Kobayashi M, Ohba A, Miyazaki K, Li Y, Togashi Y, Takeichi N (1992) Comparison of disposition behavior and decoppering effect of triethylenetramine in animal model of Wilson’s disease (Long-Evans Cinnamon rat) with normal Wistar rat. Biopharm Drug Dispos 13:273–283PubMedCrossRefGoogle Scholar
  3. Ogra Y, Ohmichi M, Suzuki KT (1995) Systemic dispositions of molybdenum and copper after tetrathiomolybdate injection on LEC rats. J Trace Elem Med Biol 9:165–169PubMedCrossRefGoogle Scholar
  4. Okamoto T, Yamamura K, Hino O (1999) The mouse interferon-γ transgene chronic hepatitis model. Int J Mol Med 3:517–520PubMedGoogle Scholar
  5. Okayasu T, Tochimaru H, Hyuga T, Takahashi T, Takekoshi Y, Li Y, Togashi Y, Takeichi N, Kasai N, Arashima S (1992) Inherited copper toxicity in Long-Evans Cinnamon rats exhibiting spontaneous hepatitis: a model of Wilson’s disease. Pediatr Res 31:253–257PubMedCrossRefGoogle Scholar
  6. Shimizu N, Fujii Y, Saito Y, Yamaguchi Y, Aoki T (1997) Age-related copper, zinc, and iron metabolism in Long-Evans cinnamon rats and copper eliminating effects of d-penicillamine and trienthine 2 HCl. J Trace Elem Exp Med 10:49–59CrossRefGoogle Scholar
  7. Sone H, Maeda M, Wakabayashi K, Takeichi N, Mori M, Sigimura T, Nagao M (1996) Inhibition of hereditary hepatitis and liver tumor development in Long-Evans cinnamon rats by the copper chelating agent trientine dihydrochloride. Hepatology 23:764–770PubMedCrossRefGoogle Scholar
  8. Sugawara N, Ikeda T, Lai YR, Sugawara C (1999) The effect of subcutaneous tetrathiomolybdate administration on copper and iron metabolism, including their regional distribution in the brain, in the Long-Evans Cinnamon rat, a bona fide animal model for Wilson’s disease. Pharmacol Toxicol 84:211–217PubMedCrossRefGoogle Scholar
  9. Suzuki KT (1997) Selective removal of copper accumulating in a form bound to metallothionein in the liver of LEC rats by tetrathiomolybdate. J Trace Elem Exp Med 10:101–109CrossRefGoogle Scholar
  10. Togashi Y, Li Y, Kang KJ, Takeichi N, Fujioka Y, Nagashima K, Kobayashi H (1992) d-Penicillamine prevents the development of hepatitis in Long-Evans Cinnamon rats with abnormal copper metabolism. Hepatology 15:82–87PubMedCrossRefGoogle Scholar
  11. Yamamoto Y, Sone H, Yamashita S, Nagata Y, Niikawa H, Hara K, Nagao M (1997) Oxidative stress in LEC rats evaluated by plasma antioxidants and free fatty acids. J Trace Elem Exp Med 10:129–134CrossRefGoogle Scholar
  12. Yokoi T, Nagayama S, Kajiwara R, Kawaguchi Y, Kamataki T (1994) Effects of cyclosporin A and d-penicillamine on the development of hepatitis an the production of antibody to protein disulfide isomerase in LEC rats. Res Commun Mol Pathol Pharmacol 85:73–81PubMedGoogle Scholar
  13. Yokoi T, Nagayama S, Kajiwara R, Kawaguchi Y, Aizawa T, Otaki Y, Aburada M, Kamataki T (1995) Occurrence of autoimmune antibodies to liver microsomal proteins associated with lethal hepatitis in LEC rats: effects of TJN-101 ((+)-(6S,7S, R-biar)-5,6,7,8-tetrahydro-1,2,3,12-tetramethoxy-6,7-dimethyl-10,11-methylenedioxy-6-dibenzo[a, c]cyclooctenol) in the development of hepatitis and the antibodies. Toxicol Lett 76:33–38PubMedCrossRefGoogle Scholar
  14. Yoshida MC, Masuda C, Sasaki M, Takeichi N, Kobayashi H, Dempo K, Mori M (1987) New mutation causing hereditary hepatitis in the laboratory rat. J Hered 78:361–365PubMedGoogle Scholar

Temporary Hepatic Ischemia

  1. Chaudry IH, Clemens MG, Ohkawa M, Schleck S, Baue AE (1982) Restoration of hepatocellular function and blood flow following hepatic ischemia with ATP-MgCl2. Adv Shock Res 8:177–186PubMedGoogle Scholar
  2. Daemen MJAP, Thijssen HHW, van Essen Vervoort-Peters HTM, Prinzen FW, Struyker Boudier HAJ, Smits JFM (1989) Liver blood flow measurement in the rat. The electromagnetic versus the microsphere and the clearance methods. J Pharmacol Meth 21:287–297CrossRefGoogle Scholar
  3. Hirasawa H, Chaudry IH, Baue AE (1978) Improved hepatic function and survival with adenosine triphosphate magnesium chloride after hepatic ischemia. Surgery 83:655–662PubMedGoogle Scholar
  4. Kawaguchi A, Ohmori M, Fujimura A (2004) Partial protective effect of Y-27632, a Rho kinase inhibitor, against hepatic ischemia-reperfusion injury in rats. Eur J Pharmacol 493:167–171PubMedCrossRefGoogle Scholar
  5. Koo A, Liang IYS (1977) Blood flow in hepatic sinusoids in experimental hemorrhagic shock in the rat. Microvasc Res 13:315–325PubMedCrossRefGoogle Scholar
  6. Levy CM, Smith F, Longueville J, Paumgartener G, Howart M (1967) Indocyanine green as a test for hepatic function. JAMA 200:236–237CrossRefGoogle Scholar
  7. Nuxmalo JL, Teranaka M, Schenk WG (1978) Hepatic blood flow measurement. Total hepatic blood flow measured by ICG clearance and electromagnetic flow meters in a canine septic shock model. Ann Surg 183:299–302CrossRefGoogle Scholar
  8. Paumgartener G, Probst P, Kraines R, Levy CM (1970) Kinetics of indocyanine green removal from the blood. Ann NY Acad Sci 170:134–147CrossRefGoogle Scholar
  9. Ritz R, Cavanilles J, Michaels SBA, Shubin H, Weil MH (1973) Disappearance of indocyanine green during circulatory shock. Surg Gynecol Obstet 136:57–62PubMedGoogle Scholar

Model for Direct Transhepatic Studies in Dogs

  1. Burton RG, Gorewit RC (1984) Ultrasonic flowmeter uses wide beam transit time technique. Med Electron 15:68–73Google Scholar
  2. Semple HA, Tam YK, O’Brien DW (1990) Physiological modelling of the hepatic interaction between food and hydralazine in the conscious dog. Pharm Res 7:S223CrossRefGoogle Scholar
  3. O’Brien DW, Semple HA, Molnar GD, Tam Y, Coutts RT, Rajotte RV, Bayens-Simmonds J (1991) A chronic conscious dog model for direct transhepatic studies in normal and pancreatic islet cell transplanted dogs. J Pharmacol Methods 25:157–170PubMedCrossRefGoogle Scholar

Liver Cirrhosis and Necrosis

  1. Baader E, Bickel M, Brocks D, Engelbart K, Günzler V, Schmidts HL, Vogel G (1990) Liver selective fibrosuppression in the rat by HOE 077, an inhibitor of prolyl-4-hydroxylase. Hepatology 12:947Google Scholar
  2. Bickel M, Baader E, Brocks D, Burghard H, Günzler V, Engelbart K, Hanauske-Abel M, Vogel HG (1990) Liver selective fibrosuppression in the rat by a derivative of pyridine-2,4-dicarboxylate. Gastroenterology 98:A 570Google Scholar
  3. Bickel M, Baader E, Brocks DG, Engelbart K, Günzler V, Schmidts HL, Vogel HG (1991) Beneficial effects of inhibitors of prolyl-4-hydroxylase in CCl4-induced fibrosis of the liver in rats. J Hepatol 13(Suppl 3):S26–S34Google Scholar
  4. Kervar SS, Felix AM (1976) Effect of l-3,4-dehydroproline on collagen synthesis and prolyl hydroxylase activity in mammalian cell cultures. J Biol Chem 251:503–509Google Scholar
  5. Kervar SS, Oronsky AL, Choe D, Alvarez B (1976) Studies on the effect of 3,4-dehydroproline on collagen metabolism in carbon tetrachloride-induced hepatic fibrosis. Arch Biochem Biophys 182:118–123Google Scholar
  6. Nolan JC, Ridge S, Oronsky AL, Kervar SS (1978) Studies on the mechanism of reduction of prolyl hydroxylase activity by d, l-3,4 dehydroproline. Arch Biochem Biophys 189:448–453PubMedCrossRefGoogle Scholar
  7. Prockop DJ, Berg RA, Kivirikko KI, Uitto J (1976) Intracellular steps in the biosynthesis of collagen. In: Ramachandran GN, Reddi AH (eds) Biochemistry of collagen. Plenum Press, New York/London, pp 163–273CrossRefGoogle Scholar
  8. Vogel HG (1969) Zur Wirkung von Hormonen auf physikalische und chemische Eigenschaften des Binde- und Stützgewebes. Arzneim Forsch/Drug Res 19:1495, 1732, 1790, 1981Google Scholar
  9. Vogel HG (1972) Effects of d-penicillamine and prednisolone on connective tissue in rats. Connect Tissue Res 1:283–289CrossRefGoogle Scholar
  10. Vogel HG (1974a) Organ specificity of the effects of d-Penicillamine and of lathyrogen (aminoacetonitrile) on mechanical properties of connective and supporting tissue. Arzneim Forsch/Drug Res 24:157–163Google Scholar
  11. Vogel HG (1974b) Correlation between tensile strength and collagen content in rat skin. Effect of age and cortisol treatment. Connect Tissue Res 2:177–182PubMedCrossRefGoogle Scholar
  12. Vogel HG (1976) Tensile strength, relaxation and mechanical recovery in rat skin as influenced by maturation and age. J Med 7:177–188PubMedGoogle Scholar
  13. Vogel HG (1978) Influence of maturation and age on mechanical and biochemical parameters of connective tissue of various organs in the rat. Connect Tissue Res 6:161–166PubMedCrossRefGoogle Scholar
  14. Vogel HG (1980) Influence of maturation and aging on mechanical and biochemical properties of connective tissue in rats. Mech Aging Dev 14:283–292PubMedCrossRefGoogle Scholar
  15. Vogel HG (1989) Mechanical properties of rat skin with aging. In: Balin AK, Kligman AM (eds) Aging and the skin. Raven Press, New York, pp 227–275Google Scholar

Inhibition of Proline Hydroxylation

  1. Hanauske-Abel HM, Günzler V (1982) A stereochemical concept for the catalytic mechanism of prolylhydroxylase. Applicability to classification and design of inhibitors. J Theor Biol 94:421–455PubMedCrossRefGoogle Scholar
  2. Kivirikko KI, Myllylä R (1982) The hydroxylation of prolyl and lysyl residues. In: Freedman RB, Hawkins HC (eds) The enzymology of post-translational modification of proteins. Academic, London, pp 53–104Google Scholar
  3. Majamaa K, Hanauske-Abel HM, Günzler V, Kivirikko KI (1984) The 2-oxoglutarate binding site of prolyl 4-hydroxylase. Identification of distinct subsites and evidence for 2-oxoglutarate decarboxylation in a ligand reaction at the enzyme-bound ferrous ion. Eur J Biochem 138:239–245PubMedCrossRefGoogle Scholar
  4. Majamaa K, Turpeenniemi-Hujanen TM, Latipää P, Günzler V, Hanauske-Abel HM, Hassinen IE, Kivirikko KI (1985) Differences between collagen hydroxylases and 2-oxoglutarate dehydrogenase in their inhibition by structural analogues of 2-oxoglutarate. Biochem J 229:127–133PubMedCentralPubMedGoogle Scholar
  5. Majamaa K, Günzler V, Hanauske-Abel HM, Myllylä R, Kivirikko KI (1986) Partial identity of 2-oxoglutarate and ascorbate binding sites of prolyl 4-hydroxylase. J Biol Chem 261:7819–7823PubMedGoogle Scholar
  6. Peterkofsky B, DiBlasio R (1975) Modification of the tritium-release assays for prolyl and lysyl hydroxylases using Dowex-50 columns. Anal Biochem 66:279–286PubMedCrossRefGoogle Scholar

Influence on Collagen Synthesis in Human Skin Fibroblasts

  1. Negro A, Garbisa S, Gotte L, Spina M (1987) The use of reverse-phase high-performance liquid chromatography and precolumn derivatization with dansyl chloride for quantitation of specific amino acids in collagen and elastin. Anal Biochem 160:39–46PubMedCrossRefGoogle Scholar
  2. Tschank G, Raghunath M, Günzler V, Hanauske-Abel HM (1987) Pyridinedicarboxylates, the first mechanism-derived inhibitors for prolyl 4-hydroxylase, selectively suppress cellular hydroxyprolyl biosynthesis. Biochem J 248:625–633PubMedCentralPubMedGoogle Scholar
  3. Tschank G, Hanauske-Abel HM, Peterkofsky B (1988) The effectiveness of inhibitors of soluble prolyl hydroxylase against the enzyme in the cisternae of isolated bone microsomes. Arch Biochem Biophys 261:312–323PubMedCrossRefGoogle Scholar

Influence on Collagen Synthesis in Chicken Calvaria

  1. Bruckner P, Prockop DJ (1981) Proteolytic enzymes as probes for the triple-helical conformation of procollagen. Anal Biochem 110:360–368PubMedCrossRefGoogle Scholar
  2. Canalis EM, Dietrich JW, Maina DA, Raisz LG (1977) Hormonal control of bone collagen synthesis in vitro. Effects of insulin and glucagon. Endocrinology 100:668–674PubMedCrossRefGoogle Scholar
  3. Juva K, Prockop DJ (1966) Modified procedure for the assay of H3- or C14-labeled hydroxyproline. Anal Biochem 15:77–83PubMedCrossRefGoogle Scholar
  4. Peterkofsky B, Assad R (1976) Submicrosomal localization of prolyl hydroxylase from chick embryo limb bone. J Biol Chem 251:4770–4777PubMedGoogle Scholar
  5. Peterkofsky B, Chojkier M, Bateman J (1982) Determination of collagen synthesis in tissue and cell culture systems. In: Furthmayr H (ed) Immunochemistry of the extracellular matrix, vol II, Applications. CRC Press, Boca Raton, pp 19–47Google Scholar

Allyl Alcohol Induced Liver Necrosis in Rats

  1. Eger W (1954) Das Verhalten der Phosphoamidase in der Leber bei Tetrachlorkohlenstoff- und Allylalkoholvergiftung. Virchows Arch 325:648–656PubMedCrossRefGoogle Scholar
  2. Eger W (1955) Der Einfluß von Antibiotika und Sulfonamiden auf Lebernekrosen im Allylalkoholtest. Med Mschr 9:294–295PubMedGoogle Scholar

Carbon Tetrachloride Induced Liver Fibrosis in Rats

  1. Abe H, Sakaguchi M, Odashima S, Arichi S (1982) Protective effect of saikosaponin-d isolated from Bupleurum falcatum L. on CCl4-induced liver injury in the rat. Naunyn Schmiedeberg’s Arch Pharmacol 320:266–271CrossRefGoogle Scholar
  2. Ala-Kokko L, Stenbäck F, Ryhänen L (1987) Preventive effect of malotilate on carbon tetrachloride-induced liver damage and collagen accumulation in the rat. Biochem J 246:503–509PubMedCentralPubMedGoogle Scholar
  3. Bickel M, Baader E, Brocks D, Burghard H, Günzler V, Engelbart K, Hanauske-Abel HM, Vogel HG (1990) Liver selective fibrosuppression in the rat by a derivative of pyridine-2,4-dicarboxylate, S 0885. Gastroenterology 98:A 570Google Scholar
  4. Bickel M, Baader E, Brocks D, Günzler V, Schmidts HL (1991a) Effects of a prolyl-4-hydroxylase inhibitor on collagen synthesis in different rat organs. Eur J Gastroenterol Hepatol 3(Suppl 1):S65, Abstr. 260Google Scholar
  5. Bickel M, Baader E, Brocks DG, Engelbart K, Günzler V, Schmidts HL, Vogel HG (1991b) Beneficial effects of inhibitors of prolyl 4-hydroxylase in CCl4-induced fibrosis of the liver in rats. J Hepatol 13(Suppl 3):S26–S34Google Scholar
  6. Bickel M, Baringhaus KH, Gerl M, Guenzler V, Kanta J, Schmidts HL, Stapf M, Tschank G, Weidmann K, Werner U (1998) Selective inhibition of hepatic collagen accumulation in experimental liver fibrosis in rats, by a new prolyl 4-hydroxylase inhibitor. Hepatology 28:404–411PubMedCrossRefGoogle Scholar
  7. Brocks D, Bickel M, Engelbarth K (1986) Type IV collagen antigens in serum of rats with experimental fibrosis of the liver. Alcohol Alcohol Suppl 1:497–500Google Scholar
  8. Hirayama C, Morotomi I, Hiroshige K (1979) Quantitative and metabolic changes of hepatic collagens in rats after tetrachloride poisoning. Biochem J 118:229–232Google Scholar
  9. Kawaura Y, Dohden K, Ogawa S, Koichi K (1993) A new surgical procedure consisting of ligation of common hepatic artery and auto-transplantation of hepatocytes into the spleen for end stage liver cirrhosis accompanied by ascites. Gastroenterol Jpn 28:259–267PubMedGoogle Scholar
  10. Niederberger M, Martin PY, Gines P, Morris K, Tsai P, Xu DL, McMurtry I, Schrier RW (1995) Normalization of nitric oxide production corrects arterial vasodilation and hyperdynamic circulation in cirrhotic rats. Gastroenterology 109:1624–1630PubMedCrossRefGoogle Scholar
  11. Niederberger M, Gines P, Martin PY, St John J, Woytaszek P, Xu L, Tsai P, Nemenoff RA, Schrier RW (1998) Increased renal and vascular cytosolic phospholipase A2 activity in rats with cirrhosis and ascites. Hepatology 27:42–47PubMedCrossRefGoogle Scholar
  12. Sakamoto M, Ueno T, Nakamura T, Sakata R, Hasimoto O, Torimura R, Sata M (2005) Improvement of portal hypertension and hepatic blood flow in cirrhotic rats by oestrogen. Eur J Clin Invest 35:220–225PubMedCrossRefGoogle Scholar
  13. Wang YJ, Wang SS, Bickel M, Guenzler V, Gerl M, Bissell DM (1998) Two novel antifibrotics, HOE 077 and Safironil, modulate stellate cell activation in rat liver injury. Differential effects in males and females. Am J Pathol 152:279–287PubMedCentralPubMedGoogle Scholar
  14. Wirth KJ, Bickel M, Hropot M, Günzler V, Heitsch H, Ruppert D, Schölkens BA (1997) The bradykinin B1 receptor antagonist icatibant (HOE 140) corrects avid Na+ retention in rats with CCl4-induced liver cirrhosis: possible role of enhanced microvascular leakage. Eur J Pharmacol 337:45–53PubMedCrossRefGoogle Scholar

Bile Duct Ligation Induced Liver Fibrosis in Rats

  1. Alpini G, Ulrich CD II, Phillips JO, Pham LD, Miller LJ, LaRusso NF (1994) Upregulation of secretin receptor gene expression in rat cholangiocytes after bile duct ligation. Am J Physiol Gastrointest Liver Physiol 266:G922–G928Google Scholar
  2. Cameron GR, Oakley CL (1932) Ligation of the common bile duct. J Pathol 35:769–798CrossRefGoogle Scholar
  3. Fiorucci S, Antonelli E, Brancaleone V, Sanpaolo L, Orlandi S, Distrutt E, Acuto G, Clerici C, Baldoni M, Del Soldato P, Morelli A (2003) NCX-1000, a nitric oxide-releasing derivative of ursodeoxycholic acid, ameliorates portal hypertension and lowers norepinephrine-induced intrahepatic resistance in the isolated and perfused rat liver. J Hepatol 39:932–939PubMedCrossRefGoogle Scholar
  4. Kountouras J, Billing BH, Scheuer PJ (1984) Prolonged bile duct obstruction: a new experimental model for cirrhosis in the rat. Br J Exp Pathol 65:305–311PubMedCentralPubMedGoogle Scholar

Galactosamine Induced Liver Necrosis

  1. Bruck R, Hershkowviz R, Lider O, Aed H, Zaidel L, Matas Z, Barg J, Halpern Z (1996) Inhibition of experimentally-induced liver cirrhosis in rats by a nonpeptidic mimetic of the extracellular matrix-associated Arg–Gly–Asp epitope. J Hepatol 24:731–738PubMedCrossRefGoogle Scholar
  2. Dashti HM, Abul H, Behbehani A, Hussain T, Madda JP (1996) Interleukin-8 and trace element alterations in experimentally induced liver cirrhosis: the influence of zinc, selenium, and allopurinol treatment. J Trace Elem Exp Med 9:27–40CrossRefGoogle Scholar
  3. Decker K, Keppler D (1972) Galactosamine induced liver injury. In: Popper H, Schaffner F (eds) Progress in liver disease, vol IV. Grune and Stratton, New York, pp 183–199Google Scholar
  4. Eggstein S, Kreisel W, Gerok W, Eggstein M (1989) Dipeptidylaminopeptidase IV in einem klinischen Krankengut und bei Galaktosaminhepatitis der Ratte: Aktivität und Lektinaffinitätschromatographie in Serum und Leberplasmamembran. J Clin Chem Clin Biochem 27:547–554PubMedGoogle Scholar
  5. Galanos C, Freudenberg MA, Reutter W (1979) Galactosamine-induced sensitization to the lethal effects of endotoxin. Proc Natl Acad Sci U S A 76:5939–5943PubMedCentralPubMedCrossRefGoogle Scholar
  6. Jonker AM, Dijkhuis FWJ, Hardonk MJ, Moerkerk P, Kate JT, Grond J (1994) Immunohistochemical study of hepatic fibrosis induced in rats by multiple galactosamine injections. Hepatology 19:775–781PubMedCrossRefGoogle Scholar
  7. Keppler D, Lesch R, Reutter W, Decker K (1968) Experimental hepatitis induced by d-galactosamine. Exp Mol Pathol 9:279–290PubMedCrossRefGoogle Scholar
  8. Krell H, Höke H, Pfaff E (1982) Development of intrahepatic cholestasis by a-naphthylisothiocyanate in rats. Gastroenterology 82:507–514PubMedGoogle Scholar
  9. Leighton JA, Bay MK, Maldonato AL, Johnson RF, Schenker S, Speeg KV (1990) The effect of liver dysfunction on colchicine pharmacokinetics in the rat. Hepatology 11:210–215PubMedCrossRefGoogle Scholar
  10. Lesch R, Keppler D, Reutter W, Rudigier J, Oehlert W, Decker K (1970) Entwicklung einer experimentellen Leberzirrhose durch d-Galaktosamin. Histologische, biochemische und autoradiographische Untersuchungen an Ratten. Virchows Arch Abt B Zellpath 6:57–71Google Scholar
  11. Rodriguez I, Matsuura K, Ody C, Nagata S, Vassalli P (1996) Systemic injection of a tripeptide inhibits the intracellular activation of CPP32-like proteases in vivo and fully protects mice against Fas-mediated fulminant liver destruction and death. J Exp Med 184:2067–2072PubMedCrossRefGoogle Scholar
  12. Suzuki A (1998) The dominant role of CPP32 subfamily in fas-mediated hepatitis. Proc Soc Exp Biol Med 217:450–454PubMedCrossRefGoogle Scholar
  13. Zieve L, Anderson WR, Dozeman R (1988) Hepatic regenerative enzyme activity after diffuse injury with galactosamine: relationship to histologic alterations. J Lab Clin Med 112:575–582PubMedGoogle Scholar
  14. Zimmerman HJ (1976) Experimental hepatotoxicity. In: Born GVR, Eichler O, Farah A, Herken H, Welch AD (eds) Handbook of experimental pharmacology, vol XVI, Experimental production of diseases. Part 5: liver. Springer, Heidelberg/New York, pp 1–120Google Scholar

Liver Fibrosis Induced by Schistosome Cercariae

  1. Bickel M, Gerl M, Günzler V (1996) Die CCl4 induzierte Leberfibrose der Ratte. Validierung eines experimentellen modells. Z Gastroenterol Suppl 34:Abstr. 49Google Scholar
  2. Phillips SM, Diconza JJ, Gold JA, Reid WA (1977) Schistosomiasis in the congenitally athymic (nude) mouse. Thymic dependency of eosinophilia granuloma formation and host morbidity. J Immunol 118:594–599PubMedGoogle Scholar
  3. Phillips SM, Linette GP, Doughty BL, Byram JE, von Lichtenberg F (1987) In vivo T cell depletion regulates resistance and morbidity in murine schistosomiasis. J Immunol 139:919–924PubMedGoogle Scholar
  4. Phillips M, Ramadan M, Hilliard B, Sugaya H, Zekavat A, Günzler V, Bickel M (1997) The regulation of schistosome granuloma formation and fibrosis by anti-fibrogenic treatment: Safironil (HOE 277) and TGFβ1 Mab. Gastroenterol Suppl 122:Abstr. 1358Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Sanofi-Aventis Deutschland GmbHFrankfurtGermany

Personalised recommendations