Gallbladder Function

Living reference work entry

Abstract

A rapid method for standardization of cholagogues in mice by simple weighing the gallbladder filled with bile was published by Litvinchuk (1976).

Keywords

Ground Squirrel Silicon Ring Gallbladder Motility Ductus Choledochus Cynomys Ludovicianus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

Cholagogic Activity in Mice

  1. Gully D, Fréhel D, Marcy C, Spinazzé A, Lespy L, Neliat G, Maffrand JP, LeFur G (1993) Peripheral biological activity of SR 27897: a new potent non-peptide antagonist of CCKA receptors. Eur J Pharmacol 232:13–19PubMedCrossRefGoogle Scholar
  2. Litvinchuk MD (1976) Rapid method for standardization cholagogues in mice. Byul Eksp Biol Med 82:889–890Google Scholar
  3. Makovec FL, Revel L, Rovati L, Setnikar I (1986) In vivo spasmodic activity on the gall bladder of the mouse of new glutamic acid derivatives with CCK antagonistic activity. Gastroenterology 90:1531–1535Google Scholar
  4. Sterczer A, Voros K, Karsal F (1996) Effect of cholagogues on the volume of the gallbladder of dogs. Res Vet Sci 60:44–47PubMedCrossRefGoogle Scholar

Choleretic Activity in Rats

  1. Bouchard G, Yousef IM, Tuchweber B (1993) Influence of oral treatment with ursodeoxycholic and tauroursodeoxycholic acids on estrogen induced cholestasis in rats: effects on bile formation and liver plasma membranes. Liver 13:193–202PubMedCrossRefGoogle Scholar
  2. Cohen DE, Leighton LS, Carey MC (1992) Bile salt hydrophobicity controls vesicle secretion rates and transformation in native bile. Am J Physiol Gastrointest Liver Physiol 263:G386–G395Google Scholar
  3. De la Puerta R, Saenz MT, Garcia MD (1993) Choleretic effect of the essential oil from Helichrysum picardi Boiss. and Reuter in rats. Phytother Res 7:376–377CrossRefGoogle Scholar
  4. Grella G, Paglietti G, Sparatore F, Satta M, Manca P, Peana A (1992) Synthesis and choleretic activity of 3-[2-(3-R′, 4-R″, 5-R″′-benzyl)-5-R-benzimidazol-1-yl]butanoic acids. Farmaco 47:21–35PubMedGoogle Scholar
  5. Matsumura JS, Neri K, Rege RV (1996) Hypercholeresis with cholate infusion in dogs with pigment gallstones. Dig Dis Sci 41:272–281PubMedCrossRefGoogle Scholar
  6. Miki S, Cohen BI, Mikami T, Mosbach EH (1993) Metabolism and choleretic activity of homochenodeoxycholic acid in the hamster. J Lipid Res 34:915–921PubMedGoogle Scholar
  7. Paglietti G, Sanna P, Carta A, Sparatore F, Vazzana I, Peana A, Satta M (1994) Choleretic activity of 3-[ring substituted benzotriazol-1(2)yl]alkanoic and alkenoic acids. Farmaco 49:693–702Google Scholar
  8. Peana A, Satta M, Luigi-Moretti MD, Orecchioni M (1994) A study on choleretic activity of Salvia desoleana essential oil. Planta Med 60:478–479PubMedCrossRefGoogle Scholar
  9. Pesson M, Salle J, Auffret C (1959) Activités cholérétique et cholagogue des dérivés del l’acide cinnamique et de l’acide a-phénylcinnamique. Arch Int Pharmacodyn Ther 119:443–482PubMedGoogle Scholar
  10. Roda A, Aldini R, Grigolo B, Simoni P, Roda E, Pellicciari R, Lenzi PL, Natalini B (1988) 23-Methyl-3a,7b-dihydroxy-5b-cholan-24-oic acid: dose–response study of biliary secretion in rat. Hepatology 8:1571–1576PubMedCrossRefGoogle Scholar
  11. Trabace L, Avato P, Mazzoccoli M, Siro-Brigiani G (1994) Choleretic activity of Thapsia chem I, II and III in rats: comparison with terpenoid constituents and peppermint oil. Phytother Res 8:305–307CrossRefGoogle Scholar
  12. Tripodi AS, Contos S, Germogli R (1993) Pharmacological studies on taurohyodeoxycholic acid. Arzneim Forsch/Drug Res 43:877–887Google Scholar
  13. Vahlensieck U, Hahn R, Winterhoff H, Gumbinger GH, Nahrstedt A, Kemper FH (1995) The effect of Chelidonium majus herb extract on choleresis in the isolated perfused rat liver. Planta Med 61:267–271PubMedCrossRefGoogle Scholar

Chronic Bile Fistula in Rats

  1. Castilho LN, Sipahi AM, Bettarello A, Quintão ECR (1990) Bile acids do not regulate the intestinal mucosal cholesterol synthesis: studies in the chronic bile duct-ureter fistula rat model. Digestion 45:147–152PubMedCrossRefGoogle Scholar
  2. Duane WC, Gilberstadt ML, Wiegand DM (1979) Diurnal rhythms of bile acid production in the rat. Am J Physiol 236:R175–R179PubMedGoogle Scholar
  3. Gebhard RL, Prigge WF (1992) Thyroid hormone differentially augments biliary sterol secretion in the rat. II. The chronic bile fistula model. J Lipid Res 33:1467–1473PubMedGoogle Scholar
  4. Pandak WM, Vlahcevic ZR, Heuman DM, Hylemon PB (1990) Regulation of bile acid synthesis. V. Inhibition of conversion of 7-dehydrocholesterol to cholesterol is associated with down-regulation of cholesterol 7a-hydroxylase activity and inhibition of bile acid synthesis. J Lipid Res 31:2149–2158PubMedGoogle Scholar
  5. Remie R, Rensema JW, van Wunnik GHJ, van Dongen JJ (1990) Permanent double bile fistula (with intact enterohepatic circulation). In: van Dongen JJ, Remie R, Rensema JW, van Wunnik GHJ (eds) Manual of microsurgery on the laboratory rat, vol I. Elsevier, Amsterdam, pp 201–212Google Scholar
  6. Remie R, Rensema JW, Havinga R, Kuipers F (1991) The permanent bile fistula rat model. Progr Pharmacol Clin Pharmacol 8:127–145Google Scholar

Chronic Bile Fistula in Dogs

  1. Boldyreff WN (1925) Surgical method in the physiology of digestion. Description of the most important operations on digestive system. Ergeb Physiol Biol Chem Exp Pharmakol 24:399–444CrossRefGoogle Scholar
  2. Herrera F, Kemp DR, Tsukamoto M, Woodward ER, Dragstedt LR (1968) A new cannula for the study of pancreatic function. J Appl Physiol 25:207–209PubMedGoogle Scholar

Prevention of Experimental Cholelithiasis

  1. Afdhal NH, Gong D, Niu N, Turner B, LaMont JT, Offner GT (1993) Cholesterol cholelithiasis in the prairie dog. Role of mucin and nonmucin glycoproteins. Hepatology 17:693–700PubMedCrossRefGoogle Scholar
  2. Broughton G, Tseng A, Fitzgibbons R, Tyndall S, Stanislav G, Rongone EL (1991) The prevention of cholelithiasis with infused sodium chenodeoxycholate in the prairie dog (Cynomys ludovicianus). Comp Biochem Physiol A Comp Physiol 99:609–613PubMedCrossRefGoogle Scholar
  3. Chapman WC, Fisk J, Schot D, Debelak JP, Washington MK, Bluth RF, Pierce D, Williams RF (1998) Establishment and characterization of primary gallbladder epithelial cell cultures in the prairie dog. J Surg Res 80:35–43PubMedCrossRefGoogle Scholar
  4. Chen CY, Shiesh SC, Lin XZ (1999) Biliary sludge and pigmented stone formation in bile duct-ligated guinea pigs. Dig Dis Sci 44:203–209PubMedCrossRefGoogle Scholar
  5. Cohen BI, Mosbach EH, Matoba N, Suh SO, McSherry CK (1990) The effect of alfalfa-corn diets on cholesterol metabolism and gallstones in prairie dogs. Lipids 25:143–148PubMedCrossRefGoogle Scholar
  6. Cohen BI, Mikami T, Ayyad N, Ohshima A, Infante R, Mosbach EH (1995) Hydrophilic bile acids: prevention and dissolution experiments in two animal models of cholesterol cholelithiasis. Lipids 30:855–861PubMedCrossRefGoogle Scholar
  7. Conter RL, Roslyn J, Pitt HA, DenBesten L (1986) Carbohydrate diet-induced calcium bilirubinate sludge and pigment gall stones in the prairie dog. J Surg Res 40:580–587PubMedCrossRefGoogle Scholar
  8. Davis KG, Wertin TM, Schriver JP (2003) The use of simvastatin for the prevention of gallstones in the lithogenic prairie dog model. Obes Surg 13:865–868PubMedCrossRefGoogle Scholar
  9. Fridhandler TM, Davison JS, Shaffer EA (1983) Defective gallbladder contractility in the ground squirrel and prairie dog during early stages of cholesterol gallstone formation. Gastroenterology 85:830–836PubMedGoogle Scholar
  10. Holzbach RT (1984) Animal models of cholesterol gallstone disease. Hepatology 4(Suppl 5):191S–198SPubMedCrossRefGoogle Scholar
  11. Kam DM, Webb PA, Sandman G, Chugh A, Ma V, Scheeres DE (1996) A novel 5-lipoxygenase inhibitor prevents gallstone formation in a lithogenic prairie dog model. Am Surg 62:551–556PubMedGoogle Scholar
  12. MacPherson BR, Pemsingh RS (1997) Ground squirrel model for cholelithiasis: role of epithelial glycoproteins. Microsc Res Tech 3:39–55CrossRefGoogle Scholar
  13. MacPherson BR, Pemsingh RS, Scott GW (1987) Experimental cholelithiasis in the ground squirrel. Lab Invest 56:138–145PubMedGoogle Scholar
  14. Matoba N, Cohen BI, Mosbach EH, Stenger RJ, Kuroki S, Une M, McSherry CK (1989) 7-Methyl bile acids: effects of chenodeoxycholic acid, cholic acid, and their 7-α-methyl analogues on the formation of cholesterol gallstones in the prairie dog. Gastroenterology 96:178–185PubMedGoogle Scholar
  15. Pekow CA, Weller RE, Schulte SJ, Lee SP (1995) Dietary induction of cholesterol gallstones in the owl monkey: preliminary findings in a new animal model. Lab Anim Sci 45:657–662PubMedGoogle Scholar
  16. Saunders KD, Cates JA, Abedin MZ, Rege S, Festekdjian SF, Howard W, Roslyn JJ (1991) Lovastatin inhibits gallstone formation in the cholesterol-fed prairie dog. Ann Surg 214:149–154PubMedCentralPubMedCrossRefGoogle Scholar
  17. Schwaier A (1979) Tupaias (tree shrews) – a new animal model for gallstone research. I. First observation of gallstones. Res Exp Med (Berl) 176:15–24CrossRefGoogle Scholar
  18. Schwaier A, Weis HJ, van der Linden J (1979) Tupaias (tree shrews) – a new animal model for gallstone research. II. Influence of fat, sugar, and cholesterol on bile composition. Exp Med (Berl) 176:157–172CrossRefGoogle Scholar
  19. Stone BG, Udani M, Sanghvi A, Warty V, Plocki K, Bedetti CD, Van Thiel DH (1987) Cyclosporin-A-induced cholestasis. The mechanism in a rat model. Gastroenterology 93:344–351PubMedGoogle Scholar

Gall Bladder Motility

  1. Cabrini DA, Silva AM, Calixto JB (1995) Mechanisms of bradykinin-induced contraction of the guinea-pig gall bladder in vitro. Br J Pharmacol 114:1549–1556PubMedCentralPubMedCrossRefGoogle Scholar
  2. Chowdhury JR, Berkowitz JM, Praissman M, Fara JW (1975) Interaction between octapeptide-cholecystokinin, gastrin, and secretin on cat gall bladder in vitro. Am J Physiol 229:1311–1315PubMedGoogle Scholar
  3. Eltze M, König H, Ullrich B, Grebe T (1997) Contraction of guinea-pig gallbladder: muscarinic M3 or M4 receptors? Eur J Pharmacol 332:77–87PubMedCrossRefGoogle Scholar
  4. Fara JW, Erde SM (1978) Comparison of in vivo and in vitro responses to sulfated and non-sulfated ceruletide. Eur J Pharmacol 47:359–363Google Scholar

Gallbladder Motility in Dogs

  1. Ryan J, Cohen S (1976) Gallbladder pressure-volume response to gastrointestinal hormones. Am J Physiol 230:1461–1465PubMedGoogle Scholar

Cholecystokinin Activity (Isolated Gallbladder or Intestine)

  1. Amer MS, Becvar WE (1969) A sensitive in vitro method for the assay of cholecystokinin. J Endocrinol 43:637–642PubMedCrossRefGoogle Scholar
  2. Barthol L, Holzer P (1987) Evaluation of a new and potent cholecystokinin antagonist on motor response of the guinea pig intestine. Br J Pharmacol 90:753–761CrossRefGoogle Scholar
  3. Chang RS, Lotti VJ (1984) Biochemical and pharmacological characterization of an extremely potent and selective nonpeptide cholecystokinin antagonist. Proc Natl Acad Sci U S A 83:4923–4926CrossRefGoogle Scholar
  4. Fara JW, Erde SM (1978) Comparison of in vivo and in vitro responses to sulfated and non-sulfated ceruletide. Eur J Pharmacol 47:359–363Google Scholar
  5. Fukamizu Y, Nakajima T, Kimura K, Kanda H, Fujii M, Saito T, Kasai H (1998) Biochemical and pharmacological profile of loxiglumide, a novel cholecystokinin-A antagonist. Arzneim Forsch/Drug Res 48:58–64Google Scholar
  6. Henke BR, Aquino CJ, Birkemo LS, Croom DK, Dougherty RW Jr, Ervin GN, Grizzle MK, Hirst GC, James MK, Johnson MF, Queen KL, Sherill RG, Sugg EE, Suh EM, Szewczyk JW, Unwalla RJ, Yingling J, Wilson TM (1997) Optimization of 3-(1H-indazol-3-ylmethyl)-1,5-benzodiazepines as potent, orally active CCK-A agonists. J Med Chem 40:2706–2725PubMedCrossRefGoogle Scholar
  7. Makovec F, Revel L, Rovati L, Setnikar I (1986) In vivo anti-spasmotic activity on the gall bladder of the mouse of new glutamic acid derivatives with CCK-antagonistic activity. Gastroenterology 90:1531Google Scholar
  8. Paton WDM, Zar MA (1968) The origin of acetylcholine released from guinea-pig intestine and longitudinal muscle strips. J Physiol Lond 194:13–33PubMedCentralPubMedCrossRefGoogle Scholar
  9. Singh L, Field MJ, Hill DR, Horwell DC, McKnight AT, Roberts E, Tang KW, Woodruff GN (1995) Peptoid CCK receptor antagonists: pharmacological evaluation of CCKA, CCKB and mixed CCKA/B receptor antagonists. Eur J Pharmacol 286:185–191PubMedCrossRefGoogle Scholar
  10. Tachibana I, Kanagawa K, Yamamoto Y, Otsuki M (1996) Pharmacological profile of a new serine derivative cholecystokinin receptor antagonist TP-680 on pancreatic, biliary and gastric function. J Pharmacol Exp Ther 279:1404–1412PubMedGoogle Scholar
  11. Zetler G (1984) Ceruletide, ceruletide analogues and cholecystokinin octapeptide (CCK-8): effects on isolated intestinal preparations and gallbladders of guinea pigs and mice. Peptides 5:729–736PubMedCrossRefGoogle Scholar
  12. Zetler G, Cannon D, Powell D, Skrabanek P, Vanderhaeghen JJ (1979) A cholecystokinin-like peptide in crude substance P from human and bovine brain. Arch Int Pharmacodyn Ther 238:128–141Google Scholar

Relaxation of Sphincter of Oddi In Vitro

  1. Allescher HD, Daniel EE, Classen M (1993) Nitric oxide as putative nonadrenergic noncholinergic inhibitory transmitter in the opossum sphincter of Oddi. Can J Physiol Pharmacol 71:525–530PubMedCrossRefGoogle Scholar
  2. Baker RA, Saccone GTP, Costi D, Thune A, Toouli J (1992) Motilin and erythromycin enhance the in vitro contractile activity of the sphincter of Oddi of the Australian brush-tailed possum. Naunyn-Schmiedeberg’s Arch Pharmacol 345:71–77CrossRefGoogle Scholar
  3. Baker RA, Wilson TC, Padbury RTA, Toouli J, Saccone GTP (1996) Galanin modulates sphincter of Oddi function in the Australian brush-tailed possum. Peptides 17:933–941PubMedCrossRefGoogle Scholar
  4. Gocer F, Yaris E, Tuncer M, Kayaalp SO (1995) Effect of vasodilators on the rhythmic contractions of guinea-pig isolated sphincter of Oddi. Arzneim Forsch/Drug Res 45:809–812Google Scholar
  5. Harrington K, Bomzon A, Sharkey KA, Davison JS, Shaffer EA (1992) Differential sensitivities of the sphincter Oddi and gallbladder to cholecystokinin in the guinea pig: their role in transsphincteric bile flow. Can J Physiol Pharmacol 70:1336–1341PubMedCrossRefGoogle Scholar
  6. Jia L, Stamler JS (1999) Dual actions of S-nitrosylated derivative of vasoactive intestinal peptide as a vasoactive intestinal peptide-like mediator and a nitric oxide carrier. Eur J Pharmacol 366:79–86PubMedCrossRefGoogle Scholar
  7. Lonovics J, Jacab I, Szilvássy J, Szilvássy Z (1994) Regional differences in nitric oxide-mediated relaxation in the rabbit sphincter of Oddi. Eur J Pharmacol 255:117–122PubMedCrossRefGoogle Scholar
  8. Lu XQ, Zhang F, Huang M (1997) Effects of dihydroetorphine hydrochloride on contraction and electric discharge of Oddi’ sphincter. Chin J Pharmacol Toxicol 11:275–277Google Scholar
  9. Pauletzki JG, Sharkey KA, Davison JS, Bomzon A, Shaffer EA (1993) Involvement of l-arginine-nitric oxide pathways in the neural relaxation of the sphincter of Oddi. Eur J Pharmacol 232:263–270PubMedCrossRefGoogle Scholar
  10. Perodi JR, Cho N, Zenilman ME, Barteau JA, Soper NJ, Becker JM (1990) Substance P stimulates the opossum sphincter of Oddi in vitro. J Surg Res 49:197–204CrossRefGoogle Scholar
  11. Sari R, Szilvássy Z, Jacab I, Nagy I, Lonovics J (1998) Cross tolerance between nitroglycerine and neural relaxation of the rabbit sphincter of Oddi. Pharmacol Res 37:505–512PubMedCrossRefGoogle Scholar
  12. Slivka A, Chuttani R, Carr-Locke DL, Kobzik L, Bredt DS, Loscalzo J, Stamler JS (1994) Inhibition of sphincter Oddi function by the nitric oxide carrier S-nitroso-N-acetylcysteine in rabbits and humans. J Clin Invest 94:1792–1798PubMedCentralPubMedCrossRefGoogle Scholar
  13. Szilvássy Z, Sari R, Nemeth J, Nagy I, Csati S, Lonovics J (1998) Improvement of nitrergic relaxation by farnesol of the sphincter of Oddi from hypercholesterolaemic rabbits. Eur J Pharmacol 353:75–78PubMedCrossRefGoogle Scholar

Function of Sphincter of Oddi In Vivo

  1. Ahrendt SA, Ahrendt GM, Lillemoe KD, Pitt HA (1992) Effect of octreotide on sphincter of Oddi and gallbladder motility in prairie dogs. Am J Physiol 262(Gastrointest Liver Physiol 25):G909–G914PubMedGoogle Scholar
  2. Baker RA, Saccone GTP, Toouli J (1990) Cisapride inhibits motility of the sphincter of Oddi in the Australian possum. Dig Dis Sci 35:711–715PubMedCrossRefGoogle Scholar
  3. Calabuig R, Weems WA, Moody FG (1990) Choledochoduodenal flow: effect of the sphincter of Oddi in opossums and cats. Gastroenterology 99:1641–1646PubMedGoogle Scholar
  4. Chiu JH, Lui WY, Chen YL, Hong CY (1998) Local somatothermal stimulation inhibits the motility of sphincter of Oddi in cats, rabbits and humans through nitrergic neural release of nitric oxide. Life Sci 63:413–428PubMedCrossRefGoogle Scholar
  5. Cox MR, Padbury RT, Snellin TL, Schloithe AC, Harvey JR, Toouli J, Saccone GTP (1998a) Gastrin-releasing peptide stimulates gall bladder motility but not sphincter of Oddi motility in Australian brush-tailed possum. Dig Dis Sci 43:1275–1284PubMedCrossRefGoogle Scholar
  6. Cox MR, Padbury RT, Harvey JR, Baker RA, Toouli J, Saccone GTP (1998b) Substance P stimulates sphincter of Oddi motility and inhibits trans-sphincteric flow in the Australian brush-tailed possum. Neurogastroenterol Motil 10:165–173PubMedCrossRefGoogle Scholar
  7. Cullen JJ, Conklin JL, Murray J, Ledlow A, Rosenthal G (1996) Effect of recombinant human hemoglobin on opossum sphincter of Oddi motor function in vivo and in vitro. Dig Dis Sci 41:289–294PubMedCrossRefGoogle Scholar
  8. Elbrønd H, Ostergaard L, Huniche B, Skovgaard Larsen L, Andersen MB (1994) Rabbit sphincter Oddi and duodenal pressure and slow-wave activity. Scand J Gastroenterol 29:537–544PubMedCrossRefGoogle Scholar
  9. Hanyu N, Dodds WJ, Layman RD, Hogan WJ (1990) Cholecystokinin-induced contraction of opossum sphincter of Oddi. Mechanism of action. Dig Dis Sci 35:567–576PubMedCrossRefGoogle Scholar
  10. Herrmann BW, Cullen JJ, Ledlow A, Murray JA, Conklin JL (1999) The effect of peroxynitrite on sphincter of Oddi. J Surg Res 81:55–58PubMedCrossRefGoogle Scholar
  11. Huang J, Padbury RTA, Schloithe AC, Cox MR, Simula ME, Harvey JR, Baker RA, Toouli J, Saccone GTP (1998) Somatostatin stimulates the brush-tailed possum sphincter of Oddi in vitro and in vivo. Gastroenterology 115:672–679PubMedCrossRefGoogle Scholar
  12. Kaufman HS, Ahrendt SA, Pitt HA, Lillemoe KD (1993) The effect of erythromycin on motility of the duodenum, sphincter of Oddi, and gallbladder in the prairie dog. Surgery 114:543–548PubMedGoogle Scholar
  13. Kobayashi T, Hosoba T, Mori M, Mimura H, Miyake J, Hamazaki K, Tsuge H, Orita K, Yamasato T, Neya T, Mizutani M, Nakayama S (1994) Effects of gastrectomy on motility, perfusion pressure, and caerulein-induced relaxation of sphincter of Oddi in dogs. Jpn J Smooth Muscle Res 30:85–96CrossRefGoogle Scholar
  14. Matsumara T, Yada S, Miyoshi Y, Komi N (1991) Effect of synthetic protease inhibitor on the sphincter of Oddi function in dogs. Jpn J Gastroenterol 88:2663–2670Google Scholar
  15. Nakamura M (1996) Effects of prostaglandins on motility of rabbit sphincters of Oddi in vivo. J Osaka City Med Cent 45:29–41Google Scholar
  16. Pasricha PJ, Tietjen TG, Kalloo AN (1995) Biliary manometry in swine: an unique endoscopic model for teaching and research. Endoscopy 27:70–72PubMedCrossRefGoogle Scholar
  17. Pozo MJ, Salido GM, Madrid JA (1990) Action of cholecystokinin on the dog sphincter of Oddi: influence of anticholinergic agents. Arch Int Physiol Biochim 98:353–360PubMedCrossRefGoogle Scholar
  18. Saccone GTP, Liu YF, Thune A, Harvey JR, Baker RA, Toouli J (1992) Erythromycin and motilin stimulate sphincter of Oddi motility and inhibit trans-sphincteric flow in the Australian possum. Naunyn-Schmiedeberg’s Arch Pharmacol 346:701–706CrossRefGoogle Scholar
  19. Sarles JC (1986) Hormonal control of sphincter of Oddi. Dig Dis Sci 31:208–212PubMedCrossRefGoogle Scholar
  20. Shima Y, Mori M, Harano M, Tsuge H, Tanak N, Yamazato T (1998) Nitric oxide mediates cerulein-induced relaxation of canine sphincter of Oddi. Dig Dis Sci 43:547–553PubMedCrossRefGoogle Scholar
  21. Thierney S, Qian Z, Burrow C, Lipsett PA, Pitt HA, Lillemoe KD (1994) Estrogen inhibits sphincter of Oddi motility. J Surg Res 57:69–73CrossRefGoogle Scholar
  22. Thune A, Jivegård L, Pollard H, Moreau J, Schwartz JC, Svanvik J (1992) Location of enkephalinase and functional effects of [Leu5]enkephalin and inhibition of enkephalinase in the feline main pancreatic and bile duct sphincters. Clin Sci 82:169–173PubMedGoogle Scholar
  23. Thune A, Delbro DS, Nilsson B, Friman S, Svanvik J (1995) Role of nitric oxide in motility and secretion of the feline hepatobiliary tract. Scand J Gastroenterol 30:715–720PubMedCrossRefGoogle Scholar
  24. Wang HJ, Tanaka M, Konomi H, Toma H, Yokohata K, Pasricha PJ, Kalloo AN (1998) Effect of local injection of botulinum toxin on sphincter of Oddi cyclic motility in dogs. Dig Dis Sci 43:694–701PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Sanofi-Aventis Deutschland GmbHFrankfurtGermany

Personalised recommendations