Advertisement

Emetic and Antiemetic Activity

  • Andreas W. Herling
Living reference work entry

Abstract

Emesis comparable to man occurs only in a few animal species. Among laboratory animals, the dog is a suitable species to test antiemetic drugs. Apomorphine-induced emesis is also used to evaluate neuroleptic drugs (see “E.5.3.8”). Burkman (1982) described a technique relying upon the use of apomorphine either as a reference standard against which other emetics can be compared or as a challenging agent against which antiemetic compounds can be evaluated.

Keywords

Antiemetic Drug Antiemetic Effect Excitatory Amino Acid Receptor Emetic Episode Antiemetic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

Assessment of Emetic and Antiemetic Activity in Dogs

  1. Bigaud M, Elands J, Kastner PR, Bohnke RA, Emmert LW, Galvan M (1995) Pharmacology of the human metabolites of dolasetron, an antiemetic 5-HT3 receptor antagonist. Drug Dev Res 34:289–296CrossRefGoogle Scholar
  2. Burkman AM (1982) Assessment of emetic and antiemetic activity. J Pharmacol Methods 8:165–171CrossRefPubMedGoogle Scholar
  3. Gardner C, Perren M (1998) Inhibition of anesthetic-induced emesis by a NK1 or 5-HT3 receptor antagonist in the house musk shrew, Suncus murinus. Neuropharmacology 37:1643–1644Google Scholar
  4. Gardner CJ, Twissell DJ, Dale TJ, Gale DJ, Jordan CC, Kilpatrick GJ, Bountra C, Ward P (1995) The broad-spectrum anti-emetic activity of the novel non-peptide tachykinin NK1 receptor antagonist GR203040. Br J Pharmacol 116:3158–3163Google Scholar
  5. Göthert M, Hamon M, Barann M, Bönisch H, Gozlan H, Laguzzi R, Metzenauer P, Nickel B, Szelenyi I (1995) 5-HT3 receptor antagonism by anpirtoline, a mixed 5-HT1 receptor agonist/5-HT3 receptor antagonist. Br J Pharmacol 114:269–274CrossRefPubMedCentralPubMedGoogle Scholar
  6. Gupta YK, Sharma SS (1996) Antiemetic activity of antioxidants against cisplatin-induced emesis in dogs. Environ Toxicol Pharmacol 1:179–184CrossRefPubMedGoogle Scholar
  7. Gylys JA, Doran KM, Buyinski JP (1979) Antagonism of cisplatin-induced emesis in the dog. Res Commun Chem Pathol Pharmacol 23:61–68PubMedGoogle Scholar
  8. Gylys JA, Wright RN, Nicolosi WD, Buyniski JP, Crenshaw RR (1988) BMY 25801, an anti-emetic agent free of D2 dopamine antagonist properties. J Pharmacol Exp Ther 244:830–837Google Scholar
  9. Hagan RM, Ireland SJ, Jordan CC, Beresford IJ, Deal MJ, Ward P (1991) Receptor-selective, peptidase-resistant agonists at neurokinin NK-1 and NK-2 receptors: new tools for investigating neurokinin function. Neuropeptides 19:127–35.CrossRefPubMedGoogle Scholar
  10. Heaslip RJ, Evans DY (1995) Emetic, central nervous system, and pulmonary activities of rolipram in the dog. Eur J Pharmacol 286:281–290CrossRefPubMedGoogle Scholar
  11. Kwiatkowska M, Parker LA, Burton P, Mechoulam R (2004) A comparative analysis of the potential of cannabinoids and ondansetron to suppress cisplatin-induced emesis in Suncus murinus (house musk shrew). Psychopharmacology (Berl) 174:254–259CrossRefGoogle Scholar
  12. Szelenyi I, Herold H, Göthert M (1994) Emesis induced in domestic pigs: a new experimental tool for detection of antiemetic drugs and for evaluation of the emetogenic potential of new anticancer agents. J Pharmacol Toxicol Methods 32:109–116CrossRefPubMedGoogle Scholar
  13. Turconi M, Donetti A, Schiavone A, Sagrada A, Montagna E, Nicola M, Cesana R, Rizzi C, Micheletti R (1991) Pharmacological properties of a novel class of 5-HT3 receptor antagonists. Eur J Pharmacol 203:203–211CrossRefPubMedGoogle Scholar

Antiemetic Activity in Ferrets

  1. Andrews PLR, Bhandari P (1993) Resinferatoxin, an ultrapotent capsaicin analogue, has anti-emetic properties in the ferret. Neuropharmacology 32:799–806CrossRefPubMedGoogle Scholar
  2. Andrews PLR, Davis CJ, Bingham S, Davidson HIM, Hawthorn J, Maskell L (1990) The abdominal visceral innervation and the emetic reflex: pathways, pharmacology and plasticity. Can J Physiol Pharmacol 68:325–345CrossRefPubMedGoogle Scholar
  3. Beattie DT, Beresford IJ, Connor HE, Marshall FM, Hawcock AB, Hagan R, Bowers J, Birch PJ, Ward P (1995) The pharmacology of GR203040, a novel, potent and selective non-peptide tachykinin NK1 receptor antagonist. Br J Pharmacol 116:3149–3157CrossRefPubMedCentralPubMedGoogle Scholar
  4. Bingham S, Blower PR, Davey PT, King PD, Sanger GJ, Wardle KA, Nishioka Y (1994) Differences in the anti-emetic efficacies of the 5-HT3 receptor antagonists granisetron and azasetron in the conscious ferret. Pharmacometrics 47:21–28Google Scholar
  5. Bountra C, Bunce K, Dale T, Gardner C, Jordan C, Twissell D, Ward P (1993) Anti-emetic profile of a non-peptide neurokinin NK1 receptor antagonist, CP 99,994, in ferrets. Eur J Pharmacol 249:R3–R4CrossRefPubMedGoogle Scholar
  6. Cohen ML, Bloomquist W, Gidda JS, Lacefield W (1989) Comparison of the 5-HT3 receptor antagonist properties of ICS 205–930, GR38032 and zacopride. J Pharmacol Exp Ther 248:197–201PubMedGoogle Scholar
  7. Duplantier AJ, Biggers MS, Chambers RJ, Cheng JB, Cooper K, Damon DB, Eggler JF, Kraus KG, Marfat A, Masamune H, Pillar JS, Shirley JT, Umland JP, Watson JW (1996) Biarylcarboxylic acids and -amides: inhibition of phosphodiesterase type IV versus [3H]rolipram binding activity and their relationship to emetic behavior in the ferret. J Med Chem 39:120–125CrossRefPubMedGoogle Scholar
  8. Eglen RM, Lee CH, Smith WL, Johnson LG, Clark R, Whiting RL, Hedge SS (1995) Pharmacological characterization of RS 25259–197, a novel and selective 5-HT3 receptor antagonist, in vivo. Br J Pharmacol 114:860–866CrossRefPubMedCentralPubMedGoogle Scholar
  9. Fink-Jensen A, Judge ME, Hansen JB, Jacobsen B, Turski L, Olney J, Honoré T (1992) Inhibition of cisplatin-induced emesis in ferrets by non-NMDA receptor antagonists NBQX and CNQX. Neurosci Lett 137:173–177CrossRefPubMedGoogle Scholar
  10. Fitzpatrick LR, Lambert RM, Pendley CE, Martin GE, Bostwick JS, Gessner GW, Aitey JE, Youssefyeh RD, Pendeton RG, Decktor DL (1990) RG 12915, a potent hydroxytryptamine3 antagonist that is an orally effective inhibitor of cytotoxic drug-induced emesis in the ferret and dog. J Pharmacol Exp Ther 254:450–455PubMedGoogle Scholar
  11. Florczyk AP, Schurig JE, Bradner WT (1982) Cisplatin-induced emesis in the ferret: a new animal model. Cancer Treat Rep 66:187–189PubMedGoogle Scholar
  12. Gardner CJ, Twissell DJ, Dale TJ, Gale DJ, Jordan CC, Kilpatrick GJ, Bountra C, Ward P (1995) The broad-spectrum anti-emetic activity of the novel non-peptide tachykinin NK1 receptor antagonist GR203040. Br J Pharmacol 116:3158–3163Google Scholar
  13. Gonsalves S, Watson J, Ashton C (1996) Broad spectrum anti-emetic effects of CP-122,721, a tachykinin NK1 receptor antagonist, in ferrets. Eur J Pharmacol 305:181–185CrossRefPubMedGoogle Scholar
  14. Gylys JA, Wright RN, Nicolosi WD, Buyniski JP, Crenshaw RR (1988) BMY 25801, an anti-emetic agent free of D2 dopamine antagonist properties. J Pharmacol Exp Ther 244:830–837Google Scholar
  15. Mifflin SW (1993) Laryngeal afferent inputs to the nucleus of the solitary tract. Am J Physiol 265:R269–R276PubMedGoogle Scholar
  16. Miller RC, Galvan M, Gittos MW, van Giersbergen PLM, Moser PC, Fozard JR (1993) Pharmacological properties of dolasetron, a potent and selective antagonist at 5-HT3 receptors. Drug Dev Res 28:87–93CrossRefGoogle Scholar
  17. Robichaud A, Tattersall FD, Choudhury I, Rodger IW (1999) Emesis induced by inhibitors of type IV cyclic nucleotide phosphodiesterase (PDE IV) in the ferret. Neuropharmacology 38:289–297CrossRefPubMedGoogle Scholar
  18. Robichaud A, Savoie C, Stamatiou PB, Tattersall FD, Chan CC (2001) PDE4 inhibitors induce emesis in ferrets via a noradrenergic pathway. Neuropharmacology 40:262–269CrossRefPubMedGoogle Scholar
  19. Rudd JA, Jordan CC, Naylor RJ (1996) The action of the NK1 tachykinin receptor antagonist, CP 99,994 in antagonizing the acute and delayed emesis induced by cisplatin in the ferret. Br J Pharmacol 119:931–936CrossRefPubMedCentralPubMedGoogle Scholar
  20. Rupniak NMJ, Tattersall FD, Williams AR, Rycroft W, Carlson EJ, Cascieri MA, Sadowski S, Ber E, Hale JJ, Mills SG, McCoss M, Seward E, Huscroft I, Owen S, Swain CJ, Hill RG, Hargreaves RJ (1997) In vitro and in vivo predictors of the anti-emetic activity of tachykinin NK1 receptor antagonists. Eur J Pharmacol 326:201–209Google Scholar
  21. Watson JW, Gonsalves SF, Fossa AA, McLean S, Seeger T, Obach S, Andrews PLR (1995) The anti-emetic effects of CP-99,994 in the ferret and the dog: role of the NK1 receptor. Br J Pharmacol 115:84–94CrossRefPubMedCentralPubMedGoogle Scholar

Assessment of Emetic and Antiemetic Activity in Pigeons

  1. Chaney SG, Kare MR (1966) Emesis in birds. J Am Vet Med Assoc 149:938–943PubMedGoogle Scholar
  2. Hanzlik JP (1929) New method of estimating the potency of digitalis in pigeons: pigeon emesis. J Pharmacol Exp Ther 35:363–391Google Scholar
  3. Hudzik TJ (1991) Sigma ligand-induced emesis in the pigeon. Pharmacol Biochem Behav 41:215–217CrossRefGoogle Scholar
  4. Hudzik TJ, De Costa BR, McMillan DA (1993) Sigma receptor-mediated emetic response in pigeons. Agonists, antagonists, and modifiers. Eur J Pharmacol 236:279–287CrossRefPubMedGoogle Scholar
  5. Koster R (1957) Comparative studies of emesis in pigeons and dogs. J Pharmacol Exp Ther 119:406–417PubMedGoogle Scholar
  6. Preziosi P, D’Amato M, Del Carmine R, Martire M, Pozzoli G, Navarra P (1992) The effects of 5-HT3 receptor antagonists on cisplatin-induced emesis in the pigeon. Eur J Pharmacol 221:343–350CrossRefPubMedGoogle Scholar
  7. Wolff MC, Leander JD (1994) Antiemetic effects of 5-HT1A agonists in the pigeon. Pharmacol Biochem Behav 49:385–391CrossRefPubMedGoogle Scholar
  8. Wolff MC, Leander JD (1995) Comparison of the antiemetic effects of a 5-HT1A agonist, LY228729, and 5-HT3 antagonists in the pigeon. Pharmacol Biochem Behav 52:571–575CrossRefPubMedGoogle Scholar

Activity Against Motion-Induced Emesis

  1. Gardner C, Perren M (1998) Inhibition of anaesthetic-induced emesis by a NK1 or 5-HT3 receptor antagonist in the house musk shrew, Suncus murinus. Neuropharmacology 37:1643–1644Google Scholar
  2. Gardner CJ, Twissell DJ, Dale TJ, Gale DJ, Jordan CC, Kilpatrick GJ, Bountra C, Ward P (1995) The broad-spectrum anti-emetic activity of the novel non-peptide tachykinin NK1 receptor antagonist GR203040. Br J Pharmacol 116:3158–3163Google Scholar
  3. Lucot JB (1989) Blockade of 5-hydroxytryptamine3 receptors prevents cisplatin-induced but not motion- or xylazine-induced emesis in the cat. Pharmacol Biochem Behav 32:207–210CrossRefPubMedGoogle Scholar
  4. Okada F, Torii Y, Saito H, Matsuki N (1994) Antiemetic effects of serotonergic 5-HT1A-receptor agonists in Suncus murinus. Jpn J Pharmacol 64:109–114CrossRefPubMedGoogle Scholar
  5. Parker LA, Kwiatkowska M, Burton P, Mechoulam R (2004) Effect of cannabinoids on lithium-induced vomiting in the Suncus murinus (house musk shrew). Psychopharmacology (Berl) 171:156–161CrossRefGoogle Scholar
  6. Torii Y, Saito H, Matsuki N (1991) Selective blockade of cytotoxic drug-induced emesis by 5-HT3 receptor antagonists in Suncus murinus. Jpn J Pharmacol 55:107–113CrossRefPubMedGoogle Scholar
  7. Ueno S, Matsuki N, Saito H (1988) Suncus murinus as a new experimental model for motion sickness. Life Sci 43:413–420CrossRefPubMedGoogle Scholar

Foot Tapping in Gerbils

  1. Bristow LJ, Young L (1994) Chromodacryorrhea and repetitive hind paw tapping: models of peripheral and central tachykinin NK1 receptor activation in gerbils. Eur J Pharmacol 254:245–249CrossRefGoogle Scholar
  2. Graham EA, Turpin MP, Stubbs CM (1993) Characterization of the tachykinin-induced thumping response in gerbils. Neuropeptides 4:228CrossRefGoogle Scholar
  3. Rupniak NMJ, Williams AR (1994) Differential inhibition of foot tapping and chromodacryorrhea in gerbils by CNS penetrant and non-penetrant tachykinin NK1 receptor antagonists. Eur J Pharmacol 265:179–183CrossRefPubMedGoogle Scholar
  4. Rupniak NMJ, Tattersall FD, Williams AR, Rycroft W, Carlson EJ, Cascieri MA, Sadowski S, Ber E, Hale JJ, Mills SG, McCoss M, Seward E, Huscroft I, Owen S, Swain CJ, Hill RG, Hargreaves RJ (1997) In vitro and in vivo predictors of the anti-emetic activity of tachykinin NK1 receptor antagonists. Eur J Pharmacol 326:201–209 Google Scholar
  5. Vassout A, Schaub M, Gentsch C, Ofner S, Schilling W, Veenstra S (1994) CGP 49823, a novel NK1 receptor antagonist: behavioural effects. Neuropeptides 26(Suppl 1):38CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Sanofi-Aventis Deutschland GmbHFrankfurtGermany

Personalised recommendations