Pharmacological Effects on Intestinal Functions

  • Andreas W. Herling
Living reference work entry


Laxatives of the sennoside type act mainly by acceleration of large intestine transit and inhibition of fluid absorption in the colon (Leng-Peschlow 1986).


Inflammatory Bowel Disease Gastric Emptying Experimental Colitis Trinitrobenzene Sulfonic Acid Spasmolytic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

Laxative Activity in Rats

  1. Leng-Peschlow E (1986a) Acceleration of large intestine transit time in rats by sennosides and related compounds. J Pharm Pharmacol 38:369–373PubMedGoogle Scholar
  2. Leng-Peschlow E (1986b) Dual effect of orally administered sennosides on large intestine transit and fluid absorption in the rat. J Pharm Pharmacol 38:606–610PubMedGoogle Scholar
  3. Ogunti EO, Elujoba AA (1993) Laxative activity of Cassia alata. Fitoterapia 64:437–439Google Scholar

Enteropooling Test

  1. Beubler E, Badhri P (1990) Comparison of the antisecretory effects of loperamide and loperamide oxide in the jejunum and the colon of rats in vivo. J Pharm Pharmacol 42:689–692PubMedGoogle Scholar
  2. Pillai NR (1992) Anti-diarrhoeal activity of Punica granatum in experimental animals. Int J Pharmacognosy 30:201–204Google Scholar
  3. Robert A, Nezamis JE, Lancaster C, Hanchar AJ, Klepper MS (1976) Enteropooling assay: a test for diarrhea produced by prostaglandins. Prostaglandins 11:809–828PubMedGoogle Scholar
  4. Shook JE, Burks TF, Wasley JWF, Norman JA (1989) Novel calmodulin antagonist CGS 9343B inhibits secretory diarrhea. J Pharmacol Exp Ther 251:247–252Google Scholar

Inhibition of Chloride Secretion in Rabbit Colon

  1. Binder HJ, Sandle GI (1987) Electrolyte absorption and secretion in the mammalian colon. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven, New York, pp 1389–1418Google Scholar
  2. Frizzell RA, Koch MJ, Schultz SG (1976) Ion transport by rabbit colon. I. Active and passive components. J Membr Biol 27:297–316PubMedGoogle Scholar
  3. Greger R, Schlatter E, Gögelein H (1985) Cl channels in the apical cell membrane of the rectal gland “induced” by cAMP. Pflugers Arch 403:446–448PubMedGoogle Scholar
  4. Koefoed-Johnsen V, Ussing HH (1958) The nature of the frog skin potential. Acta Physiol Scand 42:298–308PubMedGoogle Scholar
  5. Warhurst G, Higgs NB, Fakhoury H, Warhurst AC, Garde J, Coy DH (1996) Somatostatin receptor subtype 2 mediates somatostatin inhibition of ion secretion in rat distal colon. Gastroenterology 111:325–333PubMedGoogle Scholar

Castor Oil-Induced Diarrhea

  1. Ammon HV, Thomas PJ, Phillips S (1974) Effects of oleic and ricinoleic acids on net jejunal water and electrolyte movement. J Clin Invest 53:374–379PubMedCentralPubMedGoogle Scholar
  2. Awouters F, Megens A, Verlinden M, Schuurkes J, Niemegeers C, Janssen PAJ (1993) Loperamide. Survey on mechanisms of its antidiarrheal activity. Dig Dis Sci 38:977–995PubMedGoogle Scholar
  3. Bianchi C, Goi A (1977) On the antidiarrhoeal and analgesic properties of diphenoxylate, difenoxine and loperamide in mice and rats. Arzneim Forsch/Drug Res 27:1040–1043Google Scholar
  4. Dajani EZ, Bianchi RG, East PF, Bloss JL, Adelstein GW, Yen CH (1977) The pharmacology of SC-27166: a novel anti-diarrheal agent. J Pharmacol Exp Ther 203:512–526PubMedGoogle Scholar
  5. Fioramonti J, Buéno L (1977) Effects of loperamide hydrochloride in experimental diarrhea and gastrointestinal myoelectrical activity in calves. Am J Vet Res 48:415–419Google Scholar
  6. Iwao I, Terada Y (1962) On the mechanism of diarrhea due to castor oil. Jpn J Pharmacol 12:137–145PubMedGoogle Scholar
  7. Megens AAHP, Canters LLJ, Awouters FHL, Niemegeers CJE (1990) Normalization of small intestinal propulsion with loparamide-like antidiarrheals in rats. Eur J Pharmacol 17:357–364Google Scholar
  8. Niemegeers CJE, Lenaerts FM, Janssen PAJ (1974) Loperamide (R 18 553), a novel type of antidiarrheal agent. Part 1: In vivo oral pharmacology and acute toxicity. Comparison with morphine, codeine, diphenoxylate and difenoxine. Arzneim Forsch/Drug Res 24:1633–1635Google Scholar
  9. Niemegeers CJE, Colpaert FC, Awouters FHL (1981) Pharmacology and antidiarrheal effect of Loperamide. Drug Dev Res 1:1–20Google Scholar
  10. Niemegeers CJE, Awouters F, Janssen PAJ (1984) The castor oil test in rats: an in vivo method to evaluate antipropulsive and antisecretory activity of antidiarrheals? Drug Dev Res 4:223–227Google Scholar
  11. Pillai NR (1992) Anti-diarrhoeal activity of Punica granatum in experimental animals. Int J Pharmacognosy 30:201–204Google Scholar
  12. Shook JE, Burks TF, Wasley JWF, Norman JA (1989a) Novel calmodulin antagonist CGS 9343B inhibits secretory diarrhea. J Pharmacol Exp Ther 251:247–252Google Scholar
  13. Shook JE, Lemcke PK, Gehring CA, Hruby VJ, Burks TF (1989b) Antidiarrheal properties of supraspinal mu, delta and kappa opioid receptors: Inhibition of diarrhea without constipation. J Pharmacol Exp Ther 249:83–90Google Scholar
  14. Théodorou V, Fioramonti J, Hachet T, Buéno L (1991) Absorptive and motor components of the antidiarrheal action of loperamide: an in vivo study in pigs. Gut 32:1335–1359Google Scholar
  15. Van Nuetten JM, Schuurkes JAJ (1988) Pharmakologie der Motilitätstherapeutika. Z Gastroenterologie 26(Suppl 4):4–8Google Scholar
  16. Watson WC, Gordon RS (1962) Studies on the digestion, absorption and metabolism of castor oil. Biochem Pharmacol 11:229–236PubMedGoogle Scholar

Antidiarrheal Effect in Cecectomized Rats

  1. Ambuhl S, Williams VJ, Senior W (1979) Effects of cecectomy in the young adult female rat on digestibility of food offered ad libitum and in restricted amounts. Aust J Biol Sci 32:205–213PubMedGoogle Scholar
  2. Dharmsathaphorn K, Yamshiro DJ, Lindeborg D, Mandel KG, McRoberts J, Ruffolo RR (1984) Effects of structure-activity relationships of a-adrenergic compounds on electrolyte transport in the rabbit ileum and rat colon. Gastroenterology 86:120–128PubMedGoogle Scholar
  3. DiJoseph JF, Taylor JA, Nabi Mir G (1984) Alpha-2 receptors in the gastrointestinal system: a new therapeutic approach. Life Sci 35:1031–1042PubMedGoogle Scholar
  4. Doherty NS, Hancock AA (1983) Role of alpha-2-adrenergic receptors in the control of diarrhea and intestinal motility. J Pharmacol Exp Ther 225:269–274PubMedGoogle Scholar
  5. Fondacaro JD, McCafferty GP, Kolpak DC, Smith PL (1989) Antidiarrheal activity of alpha-2 adrenoceptor agonist SK&F 35886. J Pharmacol Exp Ther 249:221–228PubMedGoogle Scholar
  6. Fondacaro JD, Kolpak DC, Burnham DB, McCafferty GP (1990) Cecectomiced rat. A model of experimental secretory diarrhea in conscious animals. J Pharmacol Meth 24:59–71Google Scholar
  7. Magnus R (1915) Die stopfende Wirkung des Morphins. Pflügers Arch ges Physiol 115:316–330Google Scholar
  8. Nakaki T, Nakadate T, Yamamoto S, Kato R (1982) Alpha-2-adrenergic inhibition of intestinal secretion induced by prostaglandin E1, vasoactive intestinal peptide, and dibutyryl cyclic AMP in rat jejunum. J Pharmacol Exp Ther 220:637–641PubMedGoogle Scholar
  9. Williams VJ, Senior W (1982) Effects of caecetomy on the digestibility of food and rate of passage of digesta in the rat. Aust J Biol Sci 35:373–379PubMedGoogle Scholar

Evaluation of Antidiarrheal Effect in Cold-Restrained Rats

  1. Barone FC, Deegan JF, Price WJ, Fowler PJ, Fondacaro JD, Ormsbee HS III (1990) Cold-restraint stress increases rat fecal output and colonic transit. Am J Physiol Gastrointest Liver Physiol 258:G329–G337Google Scholar
  2. Ikeda K, MiYata K, Orita A, Kubota H, Yamata T, Tomioka K (1995) RP67580, a neurokinin1 receptor antagonist, decreased restraint stress-induced defecation in rats. Neurosci Lett 198:103–106PubMedGoogle Scholar
  3. Kishibayashi N, Ichikawa S, Yokoyama T, Ishii A, Karasawa A (1993) Pharmacological properties of KF18259, a novel 5-HT3-receptor antagonist, in rats: inhibition of the distal colonic function. Jpn J Pharmacol 63:495–502PubMedGoogle Scholar
  4. Williams CL, Villar RG, Peterson JM, Burks TF (1988) Stress-induced changes in intestinal transit in the rat: a model for irritable bowel syndrome. Gastroenterology 94:611–621PubMedGoogle Scholar

Isolated Ileum (Magnus Technique)

  1. Barnette MS, Grous M, Manning CD, Callahan JF, Barone FC (1990) Inhibition of neuronally induced relaxation of canine lower esophageal sphincter by opioid peptides. Eur J Pharmacol 182:363–368PubMedGoogle Scholar
  2. Bickel M, Bal-Tembe S, Blumbach J, Dohadwalla AN, Lal B, Palm D, Rajagopalan R, Rupp RH, Schmidt D, Volz-Zang C (1990) HL 752, a new enteral active muscarinic receptor antagonist. Med Sci Res 18:877–879Google Scholar
  3. Chernaeva L, Mizhorkova Z (1995) Postnatal development of methionine-enkephalin modulation of cholinergic transmission in cat ileum. Mech Ageing Dev 83:117–124PubMedGoogle Scholar
  4. Coupar I, Liu L (1996) A simple method for measuring the effects of drugs on intestinal longitudinal and circular muscle. J Pharmacol Toxicol Meth 36:147–154Google Scholar
  5. De Graaf JS, de Vos CJ, Steenbergen HJ (1983) Fully automated experiments with isolated organs in vitro. J Pharmacol Meth 10:113–135Google Scholar
  6. Feniuk W, Dimech J, Humphrey PPA (1993) Characterization of somatostatin receptors in guinea-pig isolated ileum, vas deferens and right atrium. Br J Pharmacol 110:1156–1164PubMedCentralPubMedGoogle Scholar
  7. Furukuwa K, Nomoto T, Tonoue T (1980) Effects of thyrotropin-releasing hormone (TRH) on the isolated small intestine and taenia coli of the guinea pig. Eur J Pharmacol 64:2179–2287Google Scholar
  8. Goldenberg MM, Burns RH (1973) Effectiveness of a unique antispasmodic 3,4-dihydro-5-phenoxy-benzo[b][1,7naphtyridin-1(2H)-one EU-1086, in vivo and in vivo. Arch Int Pharmacodyn 203:55–66Google Scholar
  9. Griesbacher T, Lembeck F (1992) Analysis of the antagonistic actions of HOE 140 and other novel bradykinin analogues in the guinea-pig ileum. Eur J Pharmacol 211:393–398PubMedGoogle Scholar
  10. Hew RW et al (1990) Characterization of histamine H3-receptor in guinea pig ileum with H3-selective ligands. Br J Pharmacol 101:621–624PubMedCentralPubMedGoogle Scholar
  11. Kachur JF et al (1987) Bradykinin receptors: functional similarities in guinea pig muscle and mucosa. Regul Pept 17:63–70PubMedGoogle Scholar
  12. Kilbinger H, Gebauer A, Hass J, Ladinsky H, Rizzi CA (1995) Benzimidazoles and renzapride facilitate acetylcholine release from guinea pig myenteric plexus via 5-HT4 receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 351:229–236Google Scholar
  13. Koelle GB, Koelle ES, Friedenwald JD (1950) The effect of inhibition of specific and non-specific cholinesterase on the motility of the isolated ileum. J Pharm Exp Ther 100:180–191Google Scholar
  14. Kortezova N, Mizhorkova Z, Milusheva E, Coy DH, Vizi S, Varga G (1994) GRP-preferring bombesin receptor subtype mediates contractile activity in cat terminal ileum. Peptides 15:1331–1333PubMedGoogle Scholar
  15. Magnus R (1904) Versuche am überlebenden Dünndarm von Säugethieren. Pflugers Arch 102:123–151Google Scholar
  16. Moritoki H, Morita M, Kanbe T (1976) Effects of methylxanthines and imidazole on the contractions of guinea-pig ileum induced by transmural stimulation. Eur J Pharmacol 35:185–198PubMedGoogle Scholar
  17. Munro AF (1951) The effect of adrenaline on the guinea-pig intestine. J Physiol 112:84–94PubMedCentralPubMedGoogle Scholar
  18. Okwuasaba FK, Cook MA (1980) The effect of theophylline and other methylxanthines on the presynaptic inhibition of the longitudinal smooth muscle of the guinea pig ileum induced by purine nucleotides. J Pharmacol Exp Ther 215:704–709PubMedGoogle Scholar
  19. Paiva TB, Paiva ACM, Shimuta SI (1988) Role of sodium ions in angiotensin tachyphylaxis in the guinea-pig ileum and taenia coli. Naunyn-Schmiedeberg’s Arch Pharmacol 337:656–660Google Scholar
  20. Paton WDM (1957) The action of morphine and related substances on contraction and on acetylcholine output of coaxially stimulated guinea-pig ileum. Br J Pharmacol 12:119–127Google Scholar
  21. Paton WDM, Zar MA (1968) The origin of acetylcholine released from guinea-pig intestine and longitudinal muscle strips. J Physiol 194:13–33PubMedCentralPubMedGoogle Scholar
  22. Pencheva N, Radomirov R (1993) Biphasic GABA-A receptor-mediated effect on the spontaneous activity of the circular layer in cat terminal ileum. Gen Pharmacol 24:955–960PubMedGoogle Scholar
  23. Pencheva N, Itzev D, Milanov P (1999) Comparison of gamma-aminobutyric acid effects in different parts of the cat ileum. Eur J Pharmacol 368:49–56PubMedGoogle Scholar
  24. Radimirow R, Pencheva N, Stoyneva I, Lazowa L (1994) Opioid effects of short enkephalin fragments containing the Gly-Phe sequence on contractile responses of guinea pig ileum. Gen Pharmacol 25:303–309Google Scholar
  25. Rubin B, Laffan RJ, Kotler DG, O’Keefe EH, Demaio DA, Goldberg ME (1978) SQ 14,225 (D-3-mercapto-2-methylropanoyl-L-proline), a novel orally active inhibitor of angiotensin I-converting enzyme. J Pharmacol Exp Ther 204:71–280Google Scholar
  26. Van Rossum JM, Van den Brink F (1963) Cumulative dose-response curves. Arch Int Pharmacodyn 143:240–246PubMedGoogle Scholar
  27. Vassilev P, Radomirov R (1992) Contractile effects of prostaglandin E2 in rat rectum: sensitivity to the prostaglandin antagonists diphloretin and SC 19220. Prostaglandins 44:471–484PubMedGoogle Scholar
  28. Vassilev PP, Venkova K, Pencheva N, Staneva-Stoytcheva D (1993) Changes in the contractile responses to carbachol and in the inhibitory effects of verapamil and nitrendipine on isolated smooth muscle preparations from rats subchronically exposed to Co2+ and Ni2+. Arch Toxicol 67:330–337PubMedGoogle Scholar

Cascade Superfusion Technique

  1. Armitage AK, Vane JR (1964) A sensitive method for the assay of catecholamines. Br J Pharmacol 22:204–210Google Scholar
  2. Bult H, Parnham MJ, Bonta IL (1977) Bioassay by cascade superfusion using a highly sensitive laminar flow technique. J Pharm Pharmacol 29:369–370PubMedGoogle Scholar
  3. Elliott GR, Adolfs MJP (1984) Continuous monitoring of prostacyclin production by the isolated, intact, rat aorta using a bioassay technique. J Pharmacol Meth 11:253–261Google Scholar
  4. Ferreira SH, de Souza CF (1976) A laminar flow superfusion technique with much increased sensitivity for the detection of smooth muscle stimulating substances. Eur J Pharmacol 39:379–381PubMedGoogle Scholar
  5. Ferreira SH, Vane JR (1967) Prostaglandins: their disappearance from and release into the circulation. Nature (Lond) 216:868–876Google Scholar
  6. Fournau P, Bonnet P, Bourgue MF, Paris J (1984) Prostacyclin bioassays using inhibition of platelet aggregation and relaxation of rabbit coeliac artery. J Pharmacol Meth 11:53–60Google Scholar
  7. Gaddum JH (1953) The technique of superfusion. Br J Pharmacol 8:321–326Google Scholar
  8. Gilmore N, Vane JR, Wyllie JH (1968) Prostaglandins released by the spleen. Nature (Lond) 218:1135–1140Google Scholar
  9. Henman MC, Naylor IL, Leach GHD (1978) A critical evaluation of the use of a cascade superfusion technique for the detection and estimation of biological activity. J Pharmacol Meth 1:13–26Google Scholar
  10. Henman MC, Naylor IL, Leach GHD (1983) Comparison of bioassay methods for the estimation of wound-released prostaglandin-like activity. J Pharmacol Meth 9:77–82Google Scholar
  11. Hong E (1974) Differential pattern of activity of some prostaglandins in diverse superfused tissues. Prostaglandins 8:213–220PubMedGoogle Scholar
  12. Mombouli JV, Bissiriou I, Agboton VT, Vanhoutte PM (1996) Bioassay of endothelium-derived hyperpolarizing factor. Biochem Biophys Res Commun 221:484–488PubMedGoogle Scholar
  13. Naylor IL (1977) A simple and inexpensive piece of apparatus for cascade superfusion procedures. Br J Pharmacol 59:529PPubMedCentralPubMedGoogle Scholar
  14. Vane JR (1964) The use of isolated organs for detecting active substances in the circulating blood. Br J Pharmacol Chemother 23:360–373PubMedCentralPubMedGoogle Scholar

In Vivo Evaluation of Spasmolytic Activity in Rats

  1. Arunlakshana O, Schild HO (1959) Some quantitative use of drug antagonists. Br J Pharmacol 14:48–58Google Scholar
  2. Daly MJ, Flook JJ, Levy GP (1975) The selectivity of β-adrenoceptor antagonists on cardiovascular and bronchodilator responses to isoprenaline in the anaesthetized dog. Br J Pharmacol 53:173–181PubMedCentralPubMedGoogle Scholar
  3. Khairallah PA, Page LH (1961) Mechanism of action of angiotensin and bradykinin on smooth muscle in situ. Am J Physiol 200:51–54Google Scholar
  4. Litchfield JT, Wilcoxon F (1949) A simplified method of evaluating dose-effect experiments. J Pharm Exp Ther 96:99–113Google Scholar
  5. Maggi CA, Meli A (1982) An in vivo procedure for estimating spasmolytic activity in the rat by measuring smooth muscle contractions to topically applied acetylcholine. J Pharmacol Meth 8:39–46Google Scholar
  6. Straub W, Viaud P (1933) Studien über Darmmotilität. I. Methodik. Arch Exper Path Pharmakol 169:1–8Google Scholar

Colon Motility in Anesthetized Rats

  1. Bickel M (1983) Stimulation of colonic motility in dogs and rats by an enkephalin analogue pentapeptide. Life Sci 33(Suppl 1):469–472PubMedGoogle Scholar
  2. Bickel M, Bal-Tempe S, Blumbach J, Dohadwalla AN, Lal B, Palm D, Rajagopalan R, Rupp RH, Schmidt D, Volz-Zang C (1990) HL 752, a new enteral active muscarinic receptor antagonist. Med Sci Res 18:877–879Google Scholar
  3. Maggi CA, Meli A (1984) Eserine-induced hypertone of guinea pig distal colon in vivo: a new pharmacological procedure for testing smooth muscle relaxants. J Pharmacol Meth 12:91–96Google Scholar
  4. Raffa RB, Mathiasen JR, Jacoby HI (1987) Colonic bead expulsion time in normal and μ-opioid receptor deficient (CXBK) mice following central (icv) administration of μ- and δ-opioid agonists. Life Sci 41:2229–2234PubMedGoogle Scholar
  5. Théodorou V, Fioramonti J, Hachet T, Buéno L (1991) Absorptive and motor components of the antidiarrhoeal action of loperamide: an in vivo study in pigs. Gut 32:1355–1359Google Scholar

Continuous Recording of Electrical and Mechanical Activity in the Gut of the Conscious Rat

  1. Bueno L, Ferre JP, Ruckebusch M, Genton M, Pascaud X (1981) Continuous electrical and mechanical activity recording in the gut of the conscious rat. J Pharmacol Meth 6:129–136Google Scholar
  2. Fändriks L (1993) Measurements of duodenal wall motility, mucosal fluid transport and alkaline secretion. Description and evaluation of a methodological approach in the anesthetized cat. Acta Physiol Scand 149:59–66PubMedGoogle Scholar
  3. Jimenez M, Martinez V, Rodriguez-Membrilla A, Rodriguez-Sinovas A, Gonalons E, Vergara P (1994) Rhythmic oscillating complex: characterization, induction, and relationship to MMC in chickens. Am J Physiol 266 (Gastrointest Liver Physiol 29):G585–G595Google Scholar
  4. Martinez V, Jimenez M, Gonalons E, Vergara P (1993) Effects of cholecystokinin and gastrin on gastroduodenal motility and coordination in chickens. Life Sci 52:191–198PubMedGoogle Scholar
  5. Nakajima M, Sakai T, Mizumoto A, Itoh Z (1996) Development of a new telemetric system for measuring gastrointestinal contractile activity in unrestrained and conscious small animals. J Smooth Musc Res 32:1–7Google Scholar
  6. Pascaud XB, Genton MJH, Bass P (1978) A miniature transducer for recording intestinal motility in unrestrained chronic rats. Am J Physiol 235:E523–E538Google Scholar
  7. Ruckebusch M, Fioramonti J (1975) Electrical spiking activity and propulsion in small intestine in fed and fasted rats. Gastroenterology 68:1500–1508Google Scholar
  8. Stam R, Kroese ABA, Croiset G, Wiegant VM, Akkermans LM (1995) Computer analysis of the migrating motility complex of the small intestine recorded in freely moving rats. J Pharmacol Toxicol Meth 33:129–136Google Scholar
  9. Wright JW, Healy TEJ, Balfour TW, Hardcastle JD (1981) A method for long-term recording of intestinal mechanical and electrical activity in the unrestrained rat. J Pharmacol Meth 6:233–242Google Scholar

Propulsive Gut Motility in Mice

  1. Goldenberg MM, Burns RH (1973) Effectiveness of an unique antispasmotic 3,4-dihydro-5-phenoxy-benzol[b] [1,7naphthyridin-1(2H)-one EU-1086, in vivo and in vitro. Arch Int Pharmacodyn 203:55–66Google Scholar
  2. Leng-Peschlow E (1986) Acceleration of large intestine transit time in rats by sennosides and related compounds. J Pharm Pharmacol 38:369–373Google Scholar
  3. Lish PM, Peters EL (1957) Antagonism of insulin-induced gastrointestinal hypermotility in the rat. Proc Soc Exp Biol Med 94:664–668PubMedGoogle Scholar
  4. Macht DI, Barba-Gose J (1931) Two new methods for the pharmacological comparison of insoluble purgatives. J Am Pharm Ass 20:558–564Google Scholar
  5. Megens AAHP, Canters LLJ, Awouters FHL, Niemegeers CJE (1989) Is in vivo dissociation between the antipropulsive and antidiarrheal properties of opioids in rats related to gut selectivity? Arch Int Pharmacodyn 298:220–229PubMedGoogle Scholar
  6. Miller MS, Galligan JJ, Burks TF (1981) Accurate measurement of intestinal transit in the rat. J Pharmacol Meth 6:211–217Google Scholar
  7. Niemegeers CJE, Lenaerts FM, Janssen PAJ (1974) Loperamide (R18 553), a novel type of antidiarrheal agent. Part 2: In vivo parenteral pharmacology and acute toxicity in mice. Comparison with morphine, codeine and diphenoxylate. Arzneim Forsch/Drug Res 24:1636–1638Google Scholar
  8. Shook JE, Lemcke PK, Gehring CA, Hruby VJ, Burks TF (1989) Antidiarrheal properties of supraspinal mu, delta and kappa opioid receptors: inhibition of diarrhea without constipation. J Pharmacol Exp Ther 249:83–90Google Scholar

Nerve-Jejunum Preparation of the Rabbit

  1. Finkelman B (1930) On the nature of inhibition in the intestine. J Physiol 70:145–157Google Scholar

Motility of Gastrointestinal Tract in Dogs

  1. Fox DA, Bauer R, Bass P (1985) Use of gut cyclic motor activity to evaluate a stimulant (narcotic) and inhibitor (anticholinergic) of gastrointestinal-tract activity in the unanesthetized dog. J Pharmacol Meth 13:147–155Google Scholar
  2. Goldenberg MM, Burns RH (1973) Effectiveness of an unique antispasmotic 3,4-dihydro-5-phenoxy-benzol[b] [1,7naphthyridin-1(2H)-one EU-1086, in vivo and in vitro. Arch Int Pharmacodyn 203:55–66Google Scholar
  3. Mann FC, Bollman JL (1931) A method for making a satisfactory fistula at any level of the gastrointestinal tract. Ann Surg 93:794–797Google Scholar
  4. Tasaka K, Farrar JT (1976) Intraluminal pressure of the small intestine of the unanesthetized dog. Pflüger’s Arch 364:35–44Google Scholar

Thiry–Vella Fistula

  1. Anthone GJ, Zinner MJ, Yeo CJ (1993) Small bowel origin and caloric dependence of a signal for meal-induced jejunal absorption. Ann Surg 217:57–63PubMedCentralPubMedGoogle Scholar
  2. Ashton KA, Chang LK, Anthone GJ, Ortega AE, Simons AJ, Beart RW Jr (1996) Basal and meal-stimulated colonic absorption. Dis Colon Rectum 39:865–870PubMedGoogle Scholar
  3. Bárdos G, Nagy K (1995) A new method: double Thiry-Vella fistulas in rats to compare the effects of small and large intestinal stimulation on behaviour. Physiol Behav 57:591–593PubMedGoogle Scholar
  4. Barry MK, Maher MM, Gontarek JD, Jimenez RE, Yeo CJ (1995) Luminal dopamine modulates canine water and electrolyte transport. Dig Dis Sci 40:1738–1743PubMedGoogle Scholar
  5. Bastidas JA, Orandle MS, Zinner MJ, Yeo CJ (1990) Small-bowel origin of the signal for meal-induced jejunal absorption. Surgery 108:376–383PubMedGoogle Scholar
  6. Bastidas JA, Zinner MJ, Bastidas JA, Orandle MS, Yeo CJ (1992) Influence of meal composition on canine jejunal water and electrolyte absorption. Gastroenterology 102:486–492PubMedGoogle Scholar
  7. Bilchik AJ, Hines OJ, Adrian TE, McFadden DW, Berger JJ, Zinner MJ, Ashley SW (1993) Peptide YY is a physiological regulator of water and electrolyte absorption in the canine small bowel in vivo. Gastroenterology 105:1441–1448PubMedGoogle Scholar
  8. Boldyreff WN (1925) Surgical method in the physiology of digestion. Description of the most important operations on digestive system. Ergebn Physiol 24:399–444Google Scholar
  9. Chu KU, Higashide S-I, Evers BM, Ishikuza J, Townsend CM Jr, Thompson CJ, Jones RS, Souba WW Jr, Hanks JB, Fischer JE, Gadacz TR, Chu KU (1995) Bombesin stimulates mucosal growth in jejunal and ileal Thiry–Vella fistulas. Ann Surg 221:602–611PubMedCentralPubMedGoogle Scholar
  10. Gianotti L, Tchervenkov JI (1992) Stimulatory effect of intraluminal nutriment on burned guinea pig intestinal mucosa. Rivista Italiana Nutrizione Parent Enter 10:112–118Google Scholar
  11. Konturek SJ, Radecki T, Thor P (1974) Comparison of endogenous release of secretin and cholecystokinin in proximal and distal duodenum in the dog. Scand J Gastroenterol 9:153–157PubMedGoogle Scholar
  12. Liu CD, Hines OJ, Whang EE, Balasubramaniam A, Newton TR, Zinner MJ, Ashley SW, McFadden DW (1995) A novel synthetic analog of peptide YY, BIM-43004, given intraluminally, is proabsorptive. J Surg Res 59:80–84PubMedGoogle Scholar
  13. Liu CD, Adrian TE, Newton TR, Bilchik AJ, Zinner MJ, Ashley SW, McFadden DW (1996a) Peptide YY: a potential proabsorptive hormone for the treatment of malabsorptive disorders. Am Surg 62:232–236PubMedGoogle Scholar
  14. Liu CD, Hines OJ, Newton TR, Adrian TE, Zinner MJ, Ashley SW, McFadden DW (1996b) Cholecystokinin mediation of colonic absorption via peptide YY: foregut-hindgut axis. World J Surg 20:221–227PubMedGoogle Scholar
  15. McFadden DW, Jaffe BM, Ferrara A, Zinner MJ (1984) Jejunal absorptive response to a test meal and its modification by cholinergic and calcium channel blockade in the awake dog. Surg Forum 35:174–176Google Scholar
  16. Philpott DJ, Kirk DR, Butzner JD (1993) Luminal factors stimulate intestinal repair during refeeding of malnourished infant rabbits. Can J Physiol Pharmacol 71:650–656PubMedGoogle Scholar
  17. Remie R, Rensema JW, Van Dongen JJ (1990) Perfusion of the isolated gut in vivo. In: Van Dongen JJ, Rensema JW, Van Wunnik GHJ (eds) Manual of microsurgery in the rat. Part I. Elsevier Science, Amsterdam, pp 255–274Google Scholar
  18. Sarr MG, Kelly KA, Phillips SF (1981) Feeding augments canine jejunal absorption via a hormonal mechanism. Dig Dis Sci 26:961–965PubMedGoogle Scholar
  19. Silbart LK, McAleer F, Rasmussen MV, Goslinoski L, Keren DF, Finley A, Kruningen HJV, Winchell MJ (1996) Selective induction of mucosal immune response to 2-acetylaminofluorene. Anticancer Res 16:651–660PubMedGoogle Scholar
  20. Snoj M, Ar’Rajab A, Ahrén B, Bengmark S (1992) Effect of phosphatidylcholine on postoperative adhesions after small bowel anastomosis in the rat. Br J Surg 79:427–429PubMedGoogle Scholar
  21. Spannagel AW, Green GM, Guan D, Liddle RA, Faull K, Reeve JR Jr (1996) Purification and characterization of a luminal cholecystokinin-releasing factor from rat intestinal secretion. Proc Natl Acad Sci U S A 93:4415–4420PubMedCentralPubMedGoogle Scholar
  22. Thiry L (1864) über eine neue Methode, den Dünndarm zu isolieren. Natur Kl 50:77–79Google Scholar
  23. Tracy HJ, Gregory RA (1964) Physiological properties of a series of synthetic peptides structurally related to gastrin I. Nature 204:935–938PubMedGoogle Scholar
  24. Walters AM, Zinsmeister AR, Sarr MG (1994) Effect of a model of canine jejunoileal orthotopic autotransplantation on jejunal and ileal transport of water and electrolytes. Digest Dis Sci 39:843–850PubMedGoogle Scholar
  25. Yeo CJ, Bastidas JA, Schmieg RE, Zinner MJ (1990) Meal-stimulated absorption of water and electrolytes in canine jejunum. Am J Physiol 259:G402–G409PubMedGoogle Scholar

Continuous Recording of Mechanical and Electrical Activity in the Intestine of Conscious Dogs

  1. Bass P, Wiley JN (1972) Contractile force transducer for recording muscle activity in unanesthetized animals. J Appl Physiol 32:567–570PubMedGoogle Scholar
  2. Bickel M, Belz U (1985) Initiation of the interdigestive migrating motor complex by a synthetic enkephalin analogue in the dog. IRCS Med Sci 13:525–526Google Scholar
  3. Bickel M, Belz U (1988) Motilin and a synthetic enkephalin induce colonic motor complexes (CMC) in the conscious dog. Peptides 9:501–507PubMedGoogle Scholar
  4. Bickel M, Alpermann HG, Roche M, Schemann M, Ehrlein HJ (1985) Pharmacology of a gut motility stimulating enkephalin analogue. Arzneim Forsch/Drug Res 35:1417–1426Google Scholar
  5. Ehrlein HJ, Hiesinger E (1982) Computer analysis of mechanical activity of gastroduodenal junction in unanesthetized dogs. Quart J Exp Physiol 67:17–29Google Scholar
  6. Fioramonti J, Garcia-Villar R, Bueno L, Ruckebusch Y (1980) Colonic myoelectrical activity and propulsion in the dog. Digest Dis Sci 25:641–646PubMedGoogle Scholar
  7. Itoh Z, Honda R, Takeuchi S, Aizawa I, Takayanagi R (1977) An extraluminal force transducer for recording contractile motility of the gastrointestinal smooth muscle in conscious dogs: its construction and implantation. Gastroenterol Jpn 12:275–283PubMedGoogle Scholar
  8. Nagakura Y, Kamato T, Nishida A, Ito H, Yamano M, Miyata K (1996) Characterization of 5-hydroxytryptamine (5-HT) receptor subtypes influencing colonic motility in conscious dogs. Naunyn-Schmiedeberg’s Arch Pharmacol 353:489–498Google Scholar
  9. Nakada K (1995) Effect of gastrectomy on gallbladder motility: an experimental study. J Smooth Muscle Res 31:23–32PubMedGoogle Scholar
  10. Orihata M, Sarna SK (1994) Contractile mechanisms of action of gastroprokinetic agents: Cisapride, metoclopramide, and domperidone. Am J Physiol 266 (Gastrointest Liver Physiol 29):G665–G676Google Scholar
  11. Ormsbee HS III, Bass P (1976) Gastroduodenal motor gradients in the dog after pyloroplasty. Am J Physiol 230:389–397PubMedGoogle Scholar
  12. Ormsbee HS III, Telford GL, Suter CM, Wilson PD, Mason GR (1981) Mechanism of canine migrating motor complex – a reappraisal. Am J Physiol 240:G141–G146PubMedGoogle Scholar
  13. Sarna SK (1985) Cyclic motor activity migrating complex. Gastroenterology 89:894–913PubMedGoogle Scholar
  14. Sarna SK, Condon RE (1984) Morphine-initiated migrating myoelectric complexes in the fed state in dogs. Gastroenterology 86:662–669PubMedGoogle Scholar
  15. Sarna SK, Condon R, Cowles V (1984) Colonic migrating and nonmigrating motor complexes in dogs. Am J Physiol 246:G355–G360PubMedGoogle Scholar
  16. Schemann M, Ehrlein HJ, Sahyoun H (1985) Computerised method for pattern recognition of intestinal motility: functional significance of the spread of contractions. Med Biol Eng Comput 23:143–149PubMedGoogle Scholar
  17. Szurszewski JH (1969) A migrating electric complex of the canine small intestine. Am J Physiol 217:1757–1763PubMedGoogle Scholar

Everted Sac Technique

  1. Fujioka Y, Mizuno N, Morita E, Motozono H, Takahashi K, Yamanaka Y, Shinkuma D (1991) Effect of age on the gastrointestinal absorption of acyclovir in rats. J Pharm Pharmacol 43:465–469PubMedGoogle Scholar
  2. Goerg KJ, Wanitschke R, Diener M, Rummel W (1992) Inhibition of neuronally mediated secretion in rat colonic mucosa by prostaglandin D2. Gastroenterology 103:781–788PubMedGoogle Scholar
  3. Harnett KM, Walsh CT, Zhang L (1989) Effects of Bay o 2752, a hypocholesterolemic agent, on intestinal taurocholate absorption and cholesterol esterification. J Pharmacol Exp Ther 251:502–509PubMedGoogle Scholar
  4. Kitagawa S, Sato K, Sasaki M (1996) Absorption of methochlorpromazine in rat small intestinal everted sac. Biol Pharm Bull 19:998–1000PubMedGoogle Scholar
  5. Madar Z (1983) Demonstration of amino acid and glucose transport in chick small intestine everted sac as a student laboratory exercise. Biochem Educ 11:9–11Google Scholar
  6. Mizuma T, Ohta K, Hayashi M, Awazu S (1993) Comparative study of active absorption by the intestine and disposition of anomers of sugar-conjugated compounds. Biochem Phamacol 45:1520–1523Google Scholar
  7. Motozono H, Mizuno N, Morita E, Fujioka Y, Takahashi K (1994) Effect of age on gastrointestinal absorption of tobramycin in rats. Int J Pharm 108:39–48Google Scholar
  8. Sasaki I, Tanaka K, Fujita T, Murakami M, Yamamoto A, Muranishi S (1995) Intestinal absorption of azetirelin, a new thyrotropin-releasing hormone analogue. II. In situ and in vitro absorption characteristics of azetirelin from the rat intestine. Biol Pharm Bull 18:976–979PubMedGoogle Scholar
  9. Schilling RJ, Mitra AK (1990) Intestinal mucosal transport of insulin. Int J Pharm 62:53–64Google Scholar
  10. Tanaka K, Fuijita T, Yamamoto Y, Murakami M, Yamamoto A, Muranishi S (1996) Enhancement of intestinal transport of thyrotropin-releasing hormone via a carrier-mediated transport system by chemical modification with lauric acid. Biochim Biophys Acta Biomembr 1283:119–126Google Scholar
  11. Turner JC, Osborn PJ, McVeagh SM (1990) Studies on selenate and selenite absorption by sheep ileum using an everted sac method and an isolated, vascular perfused system. Comp Biochem Physiol A 95:297–301PubMedGoogle Scholar
  12. Tuskulkao C, Sutheerawattananon M, Piyachaturawat P (1995) Inhibitory effect of steviol, a metabolite of stevioside, on glucose absorption in everted hamster intestine in vitro. Toxicol Lett 80:153–159Google Scholar
  13. Wilson TH, Wiseman G (1954) The use of sacs of everted small intestine for the study of transfer of substances from the mucosal to the serosal surface. J Physiol 123:116–125PubMedCentralPubMedGoogle Scholar
  14. Witkowska D, Sendrowicz L, Oledzka R, Szablicka E, Garszel J (1992) The study of leucine and methionine transport in the gut of rats intoxicated with Thiram. Arch Toxicol 66:267–271PubMedGoogle Scholar

Stomach Emptying and Intestinal Absorption in Rats

  1. Bonnafous C, Lefevre P, Bueno L (1995) Benzodiazepine-withdrawal-induced gastric emptying disturbances in rats: evidence for serotonin receptor involvement. J Pharm Exp Ther 273:995–1000Google Scholar
  2. Briejer MR, Akkermans LMA, Schuurkes JAJ (1995) Gastrointestinal prokinetic benzamides: the pharmacology underlying stimulation of motility. Pharmacol Rev 47:631–651PubMedGoogle Scholar
  3. Brighton SW, Dormehl IC, du Pleussis M, Maree M (1987) The effect of an oral gold preparation on the gastrointestinal tract motility in two species of experimental animals. J Pharmacol Meth 17:185–188Google Scholar
  4. Costall B, Gunning SJ, Naylor RJ, Tyers MB (1987) The effect of GR 38032F, a novel 5-HT3 antagonist on gastric emptying in the guinea pig. Br J Pharmacol 91:263–264PubMedCentralPubMedGoogle Scholar
  5. Ding X-Q, Håkanson R (1996) Evaluation of the specificity and potency of a series of cholecystokinin-B/gastrin receptor antagonists in vivo. Pharmacol Toxicol 79:124–130PubMedGoogle Scholar
  6. Droppleman DA, Gregory RL, Alphin RS (1980) A simplified method for assessing drug effects on gastric emptying in rats. J Pharmacol Meth 4:227–230Google Scholar
  7. Gullikson GW, Löffler RF, Virña MA (1991) Relationship of serotonin-3 receptor antagonist activity on gastric emptying and motor-stimulating actions of prokinetic drugs in dogs. J Pharmacol Exp Ther 258:103–110PubMedGoogle Scholar
  8. Gullikson GW, Virña MA, Löffler RF, Yang DC, Goldstin B, Wang SX, Moummi C, Flynn DL, Zabrowski DL (1993) SC-49518 enhances gastric emptying of solid and liquid meals and stimulates gastric motility in dogs by a 5-hydroxytryptamine4 receptor mechanism. J Pharmacol Exp Ther 264:240–248PubMedGoogle Scholar
  9. Haga K, Asano K, Inaba K, Morimoto Y, Setoguchi M (1994) Effect of Y-25130, a selective 5-hydroxytryptamine3 receptor antagonist, on gastric emptying in mice. Arch Int Pharmacodyn 328:344–355PubMedGoogle Scholar
  10. Hegde SS, Wong AG, Perry MR, Ku P, Moy TM, Loeb M, Eglen RM (1995) 5-HT4 receptor mediated stimulation of gastric emptying in rats. Naunyn-Schmiedeberg’s Arch Pharmacol 351:589–595Google Scholar
  11. Lasheras B, Berjón A, Montañes R, Roca J, Romero G, Ramírez MJ, Del Rio J (1996) Pharmacological properties of quinoxaline derivatives as a new class of 5-HT3 receptor antagonists. Arzneim Forsch/Drug Res 46:401–406Google Scholar
  12. Megens AAHP, Canters LLJ, Awouters FHL, Niemegeers CJE (1990) Normalization of small intestinal propulsion with loperamide-like antidiarrheal agents. Eur J Pharmacol 17:357–364Google Scholar
  13. Reynell PC, Spray GH (1956) The simultaneous measurement of absorption and transit in the gastrointestinal tract of the rat. J Physiol 131:452–462PubMedCentralPubMedGoogle Scholar
  14. Varga G, Liehr RM, Scarpignato C, Coy DE (1995) Distinct receptors mediate gastrin-releasing peptide and neuromedin B-induced delay of gastric emptying of liquids in rats. Eur J Pharmacol 286:109–112PubMedGoogle Scholar
  15. Yegen BÇ, Gürbüz V, Coúkun T, Bozkurt A, Kurtel H, Alican I, Dockray GJ (1996) Inhibitory effects of gastrin releasing peptide on gastric emptying in rats. Regul Pept 61:175–180PubMedGoogle Scholar

Intestinal Drug Absorption

  1. Doluisio JT, Billups NF, Dittert LW, Sugita ET, Swintowsky JV (1969) Drug absorption I: an in situ rat gut technique yielding realistic absorption rates. J Pharm Sci 58:1196–1200PubMedGoogle Scholar
  2. Ochsenfahrt H (1979) The relevance of blood flow for the absorption of drugs in the vascularly perfused, isolated intestine of the rat. Naunyn-Schmiedeberg’s Arch Pharmacol 306:105–112Google Scholar
  3. Schilling RJ, Mitra AK (1992) Pharmacodynamics of insulin following intravenous and enteral administrations of porcine-zinc insulin to rats. Pharmaceut Res 9:1003–1009Google Scholar
  4. Schümann K, Hunder G (1996) A modified device for the differentiated study of intestinal transfer in isolated intestinal segments from mice and suckling rats in vitro. J Pharmacol Toxicol Meth 36:211–217Google Scholar

Cysteamine-Induced Duodenal Ulcers in Rats

  1. Drago F, Montoneri C, Varga C, Laszlo F (1999) Dual effect of female sex steroids on drug-induced gastroduodenal ulcers in the rat. Life Sci 64:2341–2350PubMedGoogle Scholar
  2. Dzan VJ, Haith LR Jr, Szabo S, Reynolds ES (1975) Effect of metiamide on the development of duodenal ulcers produced by cysteamine or propionitrile in rats. Clin Res 23:576AGoogle Scholar
  3. Evangelista S, Renzi D, Tramontana M, Surrenti C, Theodorsson E, Maggi CA (1992) Cysteamine induced-duodenal ulcers are associated with a selective depletion in gastric and duodenal calcitonin gene-related peptide-like immunoreactivity in rats. Regul Pept 39:19–28PubMedGoogle Scholar
  4. Herling AW, Weidmann K (1994) Gastric K+/H+-ATPase inhibitors. In: Ellis GP, Luscombe DK (eds) Progress in medicinal chemistry, vol 31. Elsevier Science BV, Amsterdam, pp 233–264Google Scholar
  5. Krantis A, Harding RK, McKay AE, Morris GP (1993) Effects of compound U74500A in animal models of gastric and duodenal ulceration. Dig Dis Sci 38:722–729PubMedGoogle Scholar
  6. Morimoto Y, Shimohara K, Tanaka K, Hara H, Sukamoto T (1994) 4-Methoxyphenyl-4-(3,4,5-trimethoxybenzyl)-1-piperazine-acetate monofumarate monohydrate (KB 5492), a new anti-ulcer agent with selective affinity for the sigma receptor, prevents cysteamine-induced duodenal ulcers in rats by a mechanism different from that of cimetidine. Jpn J Pharmacol 64:221–224PubMedGoogle Scholar
  7. Okabe S, Roth JL, Pfeiffer CJ (1971) A method for experimental, penetrating gastric and duodenal ulcers in rats. Am J Dig Dis 16:277–284PubMedGoogle Scholar
  8. Okabe S, Ishihara Y, Inoo H, Tanaka H (1982) Mepirizole-induced duodenal ulcers in rats and their pathogenesis. Dig Dis Sci 27:242–249PubMedGoogle Scholar
  9. Pascaud XB, Chovet M, Soulard P, Chevalier E, Roze C, Junien JL (1993) Effects of a new sigma ligand, JO 1784, on cysteamine ulcers and duodenal alkaline secretion in rats. Gastroenterology 104:427–434PubMedGoogle Scholar
  10. Pendley CE, Fitzpatrick LR, Capolino AJ, Davis MA, Esterline NJ, Jakubowska A, Bertrand P, Guyon C, Dubroeucq MC, Martin GE (1995) RP 73780, a gastrin/cholecystokininB receptor antagonist with potent anti-ulcer activity in the rat. J Pharmacol Exp Ther 273:1015–1022PubMedGoogle Scholar
  11. Robert A, Nezamis JE, Lancaster C, Badalamenti JM (1974) Cysteamine-induced duodenal ulcers: a new model to test anti-ulcer drugs. Digestion 11:199–214PubMedGoogle Scholar
  12. Roszkowski AP, Garay GL, Baker S, Schuler M, Carter H (1986) Gastric antisecretory and antiulcer properties of enprostil, (±)-11α,15α, dihydroxy-16-phenoxy-17,18,19,20-tetranor-9-oxoprosta-4,5,13(t)-trienoic acid methyl ester. J Pharmacol Exp Ther 239:382–389PubMedGoogle Scholar
  13. Satoh H, Inatomi M, Nagaya H, Inada I, Nohara A, Nakamura N, Maki Y (1989) Antisecretory and antiulcer activities of a novel proton pump inhibitor AG-1749 in dogs and rats. J Pharmacol Exp Ther 248:806–815PubMedGoogle Scholar
  14. Selye H, Szabo S (1973) Experimental model for production of perforating duodenal ulcer by cysteamine in the rat. Nature 244:458–459PubMedGoogle Scholar
  15. Sikiric P, Mikus D, Seiwerth S, Grabarevic Z, Rucman R, Petec M, Jagic V, Turkuvic B, Rotkvic I, Mise S, Zorocic I, Peric J, Konjevoda P, Perovic D, Jurina L, Hanzevacki M, Separovic J, Gjurasin M, Jadrijevic S, Jelovac N, Miklic P, Buljat G, Marovic A (1997) Pentadecapeptide BCP 157, cimetidine, ranitidine, bromocriptine, and atropine effect in cysteamine lesions in totally gastrectomized rats: a model for cytoprotection studies. Dig Dis Sci 42:1029–1037PubMedGoogle Scholar
  16. Szabo S (1978) Animal model: cysteamine-induced acute and chronic duodenal ulcer in the rat. Am J Pathol 93:273–276PubMedCentralPubMedGoogle Scholar
  17. Szabo S, Haith LR Jr, Reynolds ES (1979) Pathogenesis of duodenal ulceration produced by cysteamine or propionitrile. Influence of vagotomy, sympathectomy, histamine depletion, H-2 receptor antagonists and hormones. Dig Dis Sci 24:471–477PubMedGoogle Scholar
  18. Tanaka H, Takeuchi K, Okabe S (1989) The relation of intraduodenal pH and delayed gastric emptying in duodenal ulceration induced by mepirizole or cysteamine in rats. Jpn J Pharmacol 51:483–492PubMedGoogle Scholar
  19. Tanaka T, Morioka Y, Gebert U (1993) Effect of a novel xanthine derivative on experimental ulcers in rats. Arzneim Forsch/Drug Res 43:558–562Google Scholar

Experimental Ileitis

  1. Boyd AJ, Sherman IA, Saibil FG (1995) Effects of plain and controlled-ileal-release budesonide formulations in experimental ileitis. Scand J Gastroenterol 30:974–981PubMedGoogle Scholar
  2. Cantorna MT, Munsick C, Bemiss C, Mahon BD (2000) 1, 25-Dihydroxycholecalciferol prevents and ameliorated symptoms of experimental murine inflammatory bowel disease. J Nutr 130:2648–2652PubMedGoogle Scholar
  3. Goldhill JM, Sanders K, Shea-Donohue T, Sjogren R (1995) In vitro changes in neural control of muscle function in experimental ileitis. Am J Physiol 268:G823–G830PubMedGoogle Scholar
  4. Goldhill SM, Shea-Donohue T, Ali N, Piñeiro-Carrero VM (1997) Tachykinergic neurotransmission is enhanced in small intestinal circular muscle in a rabbit model of inflammation. J Pharmacol Exp Ther 282:1373–1378PubMedGoogle Scholar
  5. Gratz R, Becker S, Sokolowski N, Schumann M, Bass D, Malnick SD (2002) Murine monoclonal anti-TNF antibody administration has a beneficial effect on inflammatory bowel disease that develops in IL-10 knockout mice. Dig Dis Sci 47:1723–1727PubMedGoogle Scholar
  6. Izzo AA, Mascolo N, Capasso F (1998) Nitric oxide as a modulator of intestinal water and electrolyte transport. Dig Dis Sci 43:1605–1620PubMedGoogle Scholar
  7. Jijon HB, Churchill T, Malfair D, Wessler A, Jewell LD, Parsons HG, Madsen KL (2000) Inhibition of poly (ADP-ribose) polymerase attenuates inflammation in a model of chronic colitis. Am J Physiol 279:G641–G651Google Scholar
  8. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75:263–274PubMedGoogle Scholar
  9. Mazelin L, Theodorou V, More J, Edmonds-Alt X, Fioramonti J, Bueno L (1998) Comparative effects of nonpeptide tachykinin receptor antagonists on experimental gut inflammation in rats and guinea pigs. Life Sci 63:293–304PubMedGoogle Scholar
  10. Miller MJS, Zhang XJ, Barkemeyer B, Sadowska-Krowicka H, Eloby-Childress S, Gu X, Clark DA (1991) Potential role of monochloramine in a rabbit model of ileitis. Scand J Gastroenterol 26:852–858PubMedGoogle Scholar
  11. Miller MJS, Chotinaruemol S, Sadowska-Krowicka H, Zhang XJ, McIntyre JA, Clark DA (1993) Guinea pig ileitis is attenuated by the leumedin N-(fluorenyl-9-methoxycarbonyl)-leucine (NPC 15199). J Pharmacol Exp Ther 266:468–472PubMedGoogle Scholar
  12. Rachmilewitz D, Okon E, Karmell F (1997) Sulfhydryl blocker induced small intestinal inflammation in rats: a new model mimicking Crohn’s disease. Gut 41:358–365PubMedCentralPubMedGoogle Scholar
  13. Shibata Y, Taruishi M, Ashida T (1993) Experimental ileitis in dogs and colitis in rats with trinitrobenzene sulfonic acid – colonoscopic and histopathologic studies. Gastroenterol Jpn 28:518–527PubMedGoogle Scholar
  14. Sjogren RW, Colleton C, Shea-Donohue T (1994) Intestinal myoelectric response in two different models of acute enteric inflammation. Am J Physiol 30:G329–G337Google Scholar
  15. Sukumar P, Loo A, Magur E, Nandi J, Oler A, Levine RA (1997) Dietary supplementation of nucleotides and arginine promotes healing of small bowel ulcers in experimental ulcerative colitis. Dig Dis Sci 42:1530–1536PubMedGoogle Scholar
  16. Watanabe M, Yamazaki M, Kanai T (2003a) Mucosal T cells as a target for treatment of IBD. J Gastroenterol 38(Suppl 15):48–50PubMedGoogle Scholar
  17. Watanabe N, Ikuta K, Okazaki K, Nakase H, Tabata Y, Matsuura M, Tamaki H, Kawanami C, Honjo T, Chiba T (2003b) Elimination of local macrophages in intestine prevents chronic colitis in interleukin-10-deficient mice. Dig Dis Sci 48:408–414PubMedGoogle Scholar

Experimental Colitis

  1. Abraham R, Fabian RJ, Goldberg L, Coulston F (1974) Role of lysosomes in carrageenan-induced cecal ulceration. Gastroenterology 67:1169–1181PubMedGoogle Scholar
  2. Adler R, Hendrickx A, Rush J, Fondacaro JD (1990) Chronic colitis of juvenile rhesus macaques: mucosal tissue levels of interleukin-1 (IL-1) and leucotriene B4 (LTB-4). Gastroenterology 98:A436Google Scholar
  3. Aiko S, Conner EM, Fuseler JA, Grisham MB (1997) Effects of cyclosporine and FK506 in chronic colitis. J Pharmacol Exp Ther 280:1075–1084PubMedGoogle Scholar
  4. Antony D, Savage F, Boulos P, Hembry R, Sams V, Trevethick M (1997) Effect of methylprednisolone on the ulceration, matrix metalloproteinase distribution and eicosanoid production in a model of colitis in the rabbit. Int J Exp Pathol 78:411–419Google Scholar
  5. Aparigio-Pages MN, Verspaget HW, Pena AS, Weterman IT, de Bruin PA, Mierement-Ooms MA, van der Zon JM, van Tol EA, Lamers CB (1989) In vitro cellular cytotoxicity in Crohn’s disease and ulcerative colitis: relation with disease activity and treatment, and the effect of recombinant gamma interferon. J Clin Lab Immunol 29:119–124Google Scholar
  6. Axelsson LG, Ahlstedt S (1993) Actions of sulfosalazine and analogues in animal models of experimental colitis. Immunopharmacology 2:219–232Google Scholar
  7. Axelsson L-G, Landstrom E, Goldschmidt TJ, Gronberg A, Bylund-Fellenius AC (1996) Dextran sulfate sodium induced experimental colitis in immunodeficient mice. Inflamm Res 45:181–191PubMedGoogle Scholar
  8. Bach MK, Brashler JR, Jahnson MA (1985) Inhibition by sulfasalazine of LTC synthetase and of rat liver glutathione S-transferases. Biochem Pharmacol 34:2695–2704PubMedGoogle Scholar
  9. Benitz KF, Goldberg L, Coulston F (1973) Intestinal effects of carrageenan in the rhesus monkeys. Food Cosmet Toxicol 11:565–575PubMedGoogle Scholar
  10. Bregenholt S, Claesson MH (1998) Splenic T helper cell type 1 cytokine profile and extramedullary haematopoiesis in severe combined immunodeficient (scid) mice with inflammatory bowel disease (IBD). Clin Exp Immunol 111:166–172PubMedCentralPubMedGoogle Scholar
  11. Brogden RN, Sorkin EM (1989) Mesalazine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in chronic inflammatory bowel disease. Drugs 38:500–523PubMedGoogle Scholar
  12. Chalifoux LV, Bronson RT (1981) Colonic adenocarcinoma associated with chronic colitis in cotton-top marmosets, Saguinus oedipus. Gastroenterology 80:942–946PubMedGoogle Scholar
  13. Claesson MH, Rudolphi A, Kofoed S, Pulsen SS, Reimann J (1996) CD4+ T lymphocytes injected into severe combined immunodeficient (SCID) mice lead to an inflammatory and lethal bowel disease. Clin Exp Immunol 104:491–500PubMedCentralPubMedGoogle Scholar
  14. Cruz T, Galvez J, Ocete MA, Crespo ME, Sanchez de Medina LH, Zarzuelo A (1998) Oral administration of rutoside can ameliorate inflammatory bowel disease in rats. Life Sci 62:687–695PubMedGoogle Scholar
  15. Cuzzocrea S, Mazzon E, Di Paola R, Genovese T, Patel NSA, Muià C, Threadgill MD, de Sarro A, Thiemermann C (2004) 5-Aminoisoquinolinone reduces colon injury by experimental colitis. Naunyn-Schmiedebergs Arch Pharmacol 370:464–473PubMedGoogle Scholar
  16. Damms ETM, Oyen WJG, Boerman OC, Storm G, Laverman P, Koenders EB, Van der Meer JWM, Corstens FHM (1998) Technetium-99m-labeled liposomes to image experimental colitis in rabbits. J Nucl Med 39:2172–2178Google Scholar
  17. Dieleman LA, Peña AS, Meuwissen SGM, van Rees EP (1997) Role of animal models for the pathogenesis and treatment of inflammatory bowel disease. Scand J Gastroenterol 32(Suppl 223):99–104Google Scholar
  18. Ekstrom GM (1998) Oxazolone-induced colitis in rats: effects of butesonide, cyclosporine A, and 5-aminosalicylic acid. Scand J Gastroenterol 22:174–179Google Scholar
  19. Eliakim R, Karmeli F, Okon E, Rachmilewitz D (1995) Ketotifen ameliorates capsaicin-augmented acetic acid-induced colitis. Dig Dis Sci 40:503–509PubMedGoogle Scholar
  20. Fabia R, Ar’Rajab A, Willén R, Brattsand R, Erlansson M, Svensjö E (1994) Topical anticolitic efficacy and selectivity of the glucocorticoid budesonide in a new model of acetic acid-induced acute colitis in the rat. Aliment Pharmacol Ther 8:433–446PubMedGoogle Scholar
  21. Fiocchi C (1990) Immune events associated with inflammatory bowel disease. Gastroenterology 25(Suppl 172):4–12Google Scholar
  22. Fretland DJ, Widomski DL, Levin S, Gaginella TS (1990) Colonic inflammation in the rabbit induced by phorbol-12-myristate-13-acetate. Inflammation 14:143–150PubMedGoogle Scholar
  23. Fries W, Pagiaro E, Canova E, Carrato P, Gasprini G, Pomerri F, Martin A, Carlotto C, Mazzon E, Sturniolo GC, Longo G (1998) The effect of heparin on trinitrobenzene sulphonic acid-induced colitis in the rat. Aliment Pharmacol Ther 12:229–236PubMedGoogle Scholar
  24. Goldhill J, Pichat P, Roome N, Angel I, Arbilla S (1998) Effect of mizolastine on visceral sensory afferent sensitivity and inflammation during experimental colitis. Arzneim Forsch/Drug Res 48:179–184Google Scholar
  25. Hawkins JV, Emmel EL, Feuer JJ, Nedelman MA, Harvey CJ, Klein HJ, Rozmiarek H, Kennedy AR, Lichtenstein GR, Billings PC (1997) Protease activity in a hapten-induced model of ulcerative colitis in rats. Dig Dis Sci 42:1969–1980PubMedGoogle Scholar
  26. Hermiston ML, Gordon JI (1995) Inflammatory bowel disease and adenomas in mice expressing a dominant negative N-cadherin. Science 270:1203–1207PubMedGoogle Scholar
  27. Hesterberg PE, Wisnor-Hines D, Briskin MJ, Soler-Feran D, Merrill C, Mackay CR, Newman W (1996) Rapid solution of chronic colitis in the cotton-top tamarin with an antibody to a gut-homing integrin α4 β 7. Gastroenterology 111:1373–1380PubMedGoogle Scholar
  28. Higa A, Eto T, Nawa Y (1997) Evaluation of the role of neutrophils in the pathogenesis of acetic acid-induced colitis in mice. Scand J Gastroenterol 32:564–568PubMedGoogle Scholar
  29. Hodgson HJ, Potter BJ, Skinner J, Jewell DP (1978) Immune-complex mediated colitis in rabbits. An experimental model. Gut 19:225–232PubMedCentralPubMedGoogle Scholar
  30. Hogaboam CM, Muller MJ, Collins SM, Hunt RH (1996) An orally active non-selective endothelin receptor antagonist, bosentan, markedly reduces injury in a rat model of colitis. Eur J Pharmacol 309:261–269PubMedGoogle Scholar
  31. Jensen BH, Andersen JO, Poulsen SS, Olsen PS, Rasmussen SN (1984) The prophylactic effect of 5-aminosalicylic acid and salazosulphapyridine on degraded-carrageenan-induced colitis in guinea pigs. Scand J Gastroenterol 19:299–303PubMedGoogle Scholar
  32. Kanauchi O, Nakamura T, Agata K, Mitsuyama K, Iwanaga T (1998) Effects of germinated barley foodstuff on dextran sulfate sodium-induced colitis in rats. J Gastroenterol 801:179–188Google Scholar
  33. Kim HS, Berstadt A (1992) Experimental colitis in animal models. Scand J Gastroenterol 27:529–537PubMedGoogle Scholar
  34. Kirsner JB, Elchlepp JG, Goldgraber ME, Ablaza J, Ford H (1959) Production of an experimental ‘colitis’ in rabbits. Arch Pathol 68:392–408PubMedGoogle Scholar
  35. Kitano A, Matsumoto T, Tabata A, Obayashi M, Nakagawa M, Yasuda K, Watanabe Y, Okabe H, Kashima K, Fukushima R, Nakamura S, Oshitani N, Obata A, Okawa K, Kobayashi K (1994) Anti-inflammatory effect of bucillamine on carrageenan-induced colitis in the rabbit. Int J Immunotherapy 10:135–143Google Scholar
  36. Kitano A, Oshitani N, Okabe H, Hara J, Suzuki N, Aoki T, Adachi K, Watanabe Y, Yasuda K, Tabata A, Obayashi M, Nakamura S, Obata A, Matsumoto T, Okawa K, Kobayashi K (1996) Effect of bucillamine in the rat trinitrobenzene sulfonic acid induced model of colitis. Inflamm Res 45:491–493PubMedGoogle Scholar
  37. Kraft SC, Fitch FW, Kirsner JB (1963) Histologic and immunochemical features of ‘Auer’ colitis in rabbits. Am J Pathol 43:913–927PubMedCentralPubMedGoogle Scholar
  38. Kuroe K, Haga Y, Funakoshi O, Mizuki I, Kanazawa K, Yoshida Y (1996a) Extraintestinal manifestations of granulomatous enterocolitis induced in rabbits by long-term submucosal administration of muramyl dipeptide emulsified with Freund’s complete adjuvant. J Gastroenterol 31:199–206PubMedGoogle Scholar
  39. Kuroe K, Haga Y, Funakoshi O, Kanazawa K, Mizuki I, Yoshida Y (1996b) Pericholangitis in a rabbit colitis model induced by injection of muramyl dipeptide emulsified with a long-chain fatty acid. J Gastroenterol 31:347–352PubMedGoogle Scholar
  40. Leach MW, Bean AGD, Mauze S, Coffman RL, Powrie F (1996) Inflammatory bowel disease in C.B-17 scid mice reconstituted with the CD45RBhigh subset of CD+ T cells. Am J Pathol 148:1503–1515PubMedCentralPubMedGoogle Scholar
  41. LeDuc LE, Nast CC (1990) Chemotactic peptide-induced colitis in rabbits. Gastroenterology 98:929–935PubMedGoogle Scholar
  42. Lora L, Mazzon E, Martines D, Fries W, Muraca M, Martin A, D’Odorico A, Naccarato R, Citi S (1997) Hepatocyte tight-junctional permeability is increased in rat experimental colitis. Gastroenterology 113:1347–1354PubMedGoogle Scholar
  43. Lushbach C, Humason G, Clapp N (1985) Histology of colitis: Sanguinus oedipus and other marmosets. Dig Dis Sci 30(Suppl):45–51Google Scholar
  44. MacPherson B, Pfeiffer CJ (1976) Experimental colitis. Digestion 14:42–452Google Scholar
  45. MacPherson BR, Pfeiffer CJ (1978) Experimental production of diffuse colitis in rats. Digestion 17:136–150Google Scholar
  46. Madara JL, Podolsky DK, King NW, Sehgal PK, Moore R, Winter HS (1985) Characterization of spontaneous colitis in cotton-top tamarin (Saguinus oedipus) and its response to sulfasalazine. Gastroenterology 88:13–19PubMedGoogle Scholar
  47. Magnusson KE, Dahlgren C, Sjolander A (1985) Effect of N-formylated-methionyl-leucyl-phenylalanine on gut permeability. Inflammation 9:365–373PubMedGoogle Scholar
  48. Marcus R, Watt J (1969) Seaweeds and ulcerative colitis in laboratory animals. Lancet 2:489–490PubMedGoogle Scholar
  49. McKay DM, Philpott DJ, Perdue MH (1997) Review article: in vitro models in inflammatory bowel disease research – a critical review. Aliment Pharmacol Ther 11(Suppl 3):70–80PubMedGoogle Scholar
  50. Meenan J, Hommes DW, Mevissen M, Dijkhuizen S, Soule H, Moyle M, Buller HR, Ten Kate FW, Tytgat GNJ, Van Deventer SJH (1996) Attenuation of the inflammatory response in an animal colitis model by neutrophil inhibitory factor, a novel β 2-integrin antagonist. Scand J Gastroenterol 31:786–791PubMedGoogle Scholar
  51. Millar AD, Rampton DS, Chander CL, Claxson AWD, Blades S, Coumbe A, Panetta J, Morris CJ, Blake DR (1996) Evaluating the antioxidant potential of new treatments for inflammatory bowel disease using a rat model of colitis. Gut 39:407–415PubMedCentralPubMedGoogle Scholar
  52. Mitchell IC, Turk JL (1990) Effect of the immune modulating agents cyclophosphamide, methotrexate, hydrocortisone, and cyclosporin A on an animal model of granulomatous bowel disease. Gut 31:674–678PubMedCentralPubMedGoogle Scholar
  53. Morris CP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace HJ (1989) Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 96:795–803PubMedGoogle Scholar
  54. Myers BS, Dempsey DT, Ysar S, Martin JS, Parkman HP, Ryan JP (1997) Acute experimental distal colitis alters colonic transit in rats. J Surg Res 69(1):107–112PubMedGoogle Scholar
  55. Neurath MF, Pettersson S, Büschenfelde K-H M z (1996) Local administration of antisense phosphorothionate oligonucleotides to the p65 subunit of NF-kappaB abrogates established experimental colitis in mice. Nat Med 2:998–1004PubMedGoogle Scholar
  56. Neurath MF, Fuss I, Pasparakis M, Alexopoulou L, Haralambous S, Meyer zum Büschenfelde KH, Strober W, Kollias G (1997) Predominant pathogenic role of tumor necrosis factor in experimental colitis in mice. Eur J Immunol 27:1743–1750PubMedGoogle Scholar
  57. Norris AA (1989) Animal models of inflammatory bowel disease. In: Pharmacological methods in the control of inflammation. Alan R. Liss, New York, pp 321–342Google Scholar
  58. Norris AA, Lewis AJ, Zeitlein IJ (1982) Changes in colonic tissue levels of inflammatory mediators in a guinea-pig model of immune colitis. Agents Actions 12:239–242PubMedGoogle Scholar
  59. Oberle RL, Moore TJ, Krummel DAP (1995) Evaluation of mucosal damage of surfactants in rat jejunum and colon. J Pharmacol Toxicol Meth 33:75–81Google Scholar
  60. Ohkusa T (1985) Production of experimental ulcerative colitis in hamsters by dextran sulfate sodium and change in intestinal microflora. Jpn J Gastroenterol 82:1327–1336Google Scholar
  61. Okayasu I, Hatekeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R (1990) A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98:694–702PubMedGoogle Scholar
  62. Oyen WJG, Boerman OC, Dams ETM, Storm G, Van Bloois L, Koenders EB, Van Haelst UJGM, Van der Meer JWM, Cortens FHM (1997) Scintigraphic evaluation of experimental colitis in rabbits. J Nucl Med 38:1596–1600PubMedGoogle Scholar
  63. Palmen MJHJ, Dieleman LA, Soesatyo M, Peña AS, Meuwissen SGM, van Rees EP (1998) Effects of local butesonide treatment on cell-mediated immune response in acute and relapsing colitis in rats. Dig Dis Sci 43:2516–2525Google Scholar
  64. Patterson DJ, Colony PC (1983) Anti-secretory effect of sulphasalazine and 5-aminosalicylic acid in experimental colitis. Gastroenterology 84:1271Google Scholar
  65. Podolsky DK, Madara JL, King NW, Sehgal PK, Moore R, Winter HS (1988) Colonic mucin composition in primates: selective alterations associated with spontaneous colitis in the cotton-top tamarin. Gastroenterology 88:20–25Google Scholar
  66. Powrie F, Leach MW (1995) Genetic and spontaneous models of inflammatory bowel disease in rodents: evidence for abnormalities in mucosal immune regulation. Ther Immunol 2:115–123PubMedGoogle Scholar
  67. Pricolo VE, Madhere SM, Finkelstein SD, Reichner JS (1996) Effects of lambda-carrageenan induced experimental enterocolitis on splenocyte function and nitric oxide production. J Surg Res 66:6–11PubMedGoogle Scholar
  68. Ritzpatrick R, Bostwick JSD, Renzetti M, Pendleton RG, Decktor DL (1990) Antiinflammatory effects of various drugs on acetic acid induced colitis in the rat. Agents Actions 30:393–402Google Scholar
  69. Rosenberg EW, Fischer RW (1964) DNCB allergy in the guinea pig colon. Arch Dermatol 89:99–112PubMedGoogle Scholar
  70. Rudolphi A, Bonhagen K, Reimann J (1996) Polyclonal expansion of adoptively transferred CD4+ α β T cells in the colonic lamina propria of scid mice with colitis. Eur J Immunol 26:1156–1163PubMedGoogle Scholar
  71. Sartor RB (1997) Review article: how relevant to human inflammatory bowel disease are current animal models of intestinal inflammation? Aliment Pharmacol Ther 11 (Suppl 3):70–89–97Google Scholar
  72. Selve N, Wöhrmann T (1992) Intestinal inflammation in TNBS sensitized rats as a model of chronic inflammatory bowel disease. Mediators Inflamm 1:121–126PubMedCentralPubMedGoogle Scholar
  73. Shintani N, Nakajima T, Nakaburo H, Nagai H, Kagitani Y, Takizawa H, Asakura H (1997) Intravenous immunoglobulin (IVIG) treatment of experimental colitis induced by dextran sulfate in rats. Clin Exp Immunol 108:340–345PubMedCentralPubMedGoogle Scholar
  74. Stadnicki A, Sartor RB, Janardham R, Majluf-Cruz A, Kettner CA, Adam AA, Colman RW (1998) Specific inhibition of plasma kallikrein modulates chronic granulomatous intestinal and systemic inflammation in genetically susceptible rats. FASEB J 12:325–333PubMedGoogle Scholar
  75. Stein TA, Keegan L, Auguste LJ, Bailey B, Wise L (1993) Stress induced experimental colitis. Mediators Inflamm 2:253–256PubMedCentralPubMedGoogle Scholar
  76. Suzui M, Ushijama T, Yoshimi N, Nakagama H, Hara A, Sugimura T, Nagao M, Mori H (1997) No involvement of APC gene mutations in ulcerative colitis-associated rat colon carcinogenesis induced by 1-hydroxyanthraquinone and methylazoxymethanol acetate. Mol Carcinog 20:389–393PubMedGoogle Scholar
  77. Taniguchi T, Tsukada H, Nakamura H, Kodama M, Fukuda K, Tominaga M, Seino Y (1997) Effects of a thromboxane A2 receptor antagonist in an animal model of inflammatory bowel disease. Digestion 58:476–478PubMedGoogle Scholar
  78. Terzioglu T, Yalti T, Tezelman S (1997) The effect of prostaglandin E1 on experimental colitis in the rat. Int J Colorectal Dis 12:63–66PubMedGoogle Scholar
  79. von Herbay A, Gebbers JO, Otto HF (1990) Immunopathology of ulcerative colitis: a review. Hepato-Gastroenterol 37:99–107Google Scholar
  80. von Ritter C, Sekizuka E, Grisham MB, Granger DN (1988) The chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine increases mucosal permeability in the distal ileum of the rat. Gastroenterology 95:778–780Google Scholar
  81. Wallace JL, Le T, Carter L, Appleyard CB, Beck PL (1995) Hapten-induced chronic colitis in the rat: alternatives to trinitrobenzene sulfonic acid. J Pharmacol Toxicol Methods 33:237–239PubMedGoogle Scholar
  82. Wallace JL, McCafferty DM, Sharkey KA (1998) Lack of beneficial effect of a tachykinin receptor antagonist in experimental colitis. Regul Peptides 73:95–101Google Scholar
  83. Walsh LP, Zeitlin IJ (1987) Effect of salazopyrin, 5-aminosalicylic acid and prednisolone on an immune complex-mediated colitis in mice. Br J Pharmacol 92(Suppl):741PGoogle Scholar
  84. Warren BF (1996) Cytokines in the cotton top tamarin model of human ulcerative colitis. Aliment Pharmacol Ther 10(Suppl):45–47PubMedGoogle Scholar
  85. Watanabe M, Ueno Y, Yajima T, Okamoto S, Hayashi T, Yamazaki M, Iwao Y, Ishii H, Habu S, Uehira M, Nishimoto H, Ishikawa H, Hata JI, Hibi T (1998) Interleukin 7 transgenic mice develop chronic colitis with decreased interleukin 7 protein accumulation in the colonic mucosa. J Exp Med 187:389–402PubMedCentralPubMedGoogle Scholar
  86. Watt J, Marcus R (1972) Ulceration of the colon in rabbits fed sulfated amylopectin. J Pharm Pharmacol 24:68–69PubMedGoogle Scholar
  87. Watt J, Marcus R (1973) Progress report. Experimental ulcerative disease of the colon in animals. Gut 14:506–510PubMedCentralPubMedGoogle Scholar
  88. Yue G, Sun FF, Dunn C, Yin K, Wong PYK (1996) The 21-aminosteroid tirilazad mesylate can ameliorate inflammatory bowel disease in rats. J Pharmacol Exp Ther 276:265–270PubMedGoogle Scholar
  89. Zea-Ariarte W, Makiyama K, Itsuno M, Umene Y, Hara K (1994) Experimental induced colitis in rats by ethanolic solution of trinitrobenzene sulfonic acid and ethanol alone: a comparative study. Acta Med Nagasaki 39:1–10, 255–318Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Sanofi-Aventis Deutschland GmbHFrankfurtGermany

Personalised recommendations