Inhibition of Lipid Oxidation

  • Philippe Boucher
  • Hans Gerhard Vogel
Living reference work entry


Oxidative modification of the low-density lipoproteins (LDL) has been shown to cause accelerated degradation of LDL via the scavenger receptor pathway. Under conditions of high serum LDL levels, LDL particles can migrate into the subendothelial space where oxidation of LDL can occur (Heinecke 1998; Jiang et al. 2011). The actual oxidation process is believed to begin with lipid peroxidation, followed by fragmentation to result in short-chain aldehydes. These aldehydes can form adducts with the lysine residues of apo B, creating a new epitope which is recognized by the scavenger receptor of macrophages.


Watanabe Heritable Hyperlipidemic Rabbit Human Histiocytic Lymphoma Cell Line Watanabe Rabbit Scavenger Receptor Pathway Rabbit Aortic Endothelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

General Considerations

  1. Bruckdorfer KR (1990) Free radicals, lipid peroxidation and atherosclerosis. Curr Opin Lipidol 1:529–535CrossRefGoogle Scholar
  2. Esterbauer H, Rotheneder M, Striegl G, Waeg G, Ashy A, Sattler W, Jürgens G (1989) Vitamin E and other lipophilic anti-oxidants protect LDL against oxidation. Fat Sci Technol 91:316–324Google Scholar
  3. Hussain MM, Strickland DK, Bakillah A (1999) The mammalian low-density lipoprotein receptor family. Annu Rev Nutr 19:141–172CrossRefPubMedGoogle Scholar
  4. Jürgens G (1989) Modified serum lipoproteins and atherosclerosis. Ann Rep Med Chem 25:169–176Google Scholar
  5. McCarthy PA (1993) New approaches to atherosclerosis: an overview. Med Res Rev 13:139–159CrossRefPubMedGoogle Scholar
  6. Parthasarathy S, Wieland E, Steinberg D (1989) A role for endothelial cell lipoxygenase in the oxidative modification of low density lipoprotein. Proc Natl Acad Sci U S A 86:1046–1050CrossRefPubMedCentralPubMedGoogle Scholar
  7. Rankin SM, Parthasarathy S, Steinberg D (1991) Evidence for a dominant role of lipoxygenase(s) in the oxidation of LDL by mouse peritoneal macrophages. J Lipid Res 32:449–456PubMedGoogle Scholar
  8. Steinberg D (1990) Arterial metabolism of lipoproteins in relation to atherogenesis. In: Lee KT, Onodera K, Tanaka K (eds) Atherosclerosis II: recent progress in atherosclerosis research, vol 598, Annals of the New York academy of sciences. pp 188–193Google Scholar
  9. Steinbrecher UP (1987) Oxidation of human low density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid peroxide decomposition products. J Biol Chem 262:3603–3608PubMedGoogle Scholar
  10. Steinbrecher UP (1990) Oxidatively modified lipoproteins. Curr Opin Lipidol 1:411–415CrossRefGoogle Scholar
  11. Steinbrecher UP, Witztum JL, Parthasarathy S, Steinberg D (1987) Decrease in reactive amino groups during oxidation or endothelial cell modification of LDL. Arteriosclerosis 7:135–143CrossRefPubMedGoogle Scholar
  12. Steinbrecher UP, Zhang H, Lougheed M (1990) Role of oxidatively modified LDL in atherosclerosis. Free Rad Biol Med 9:155–158CrossRefPubMedGoogle Scholar
  13. Witztum JL, Steinberg D (1991) Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 88:1785–1792CrossRefPubMedCentralPubMedGoogle Scholar

Inhibition of Lipid Peroxidation of Isolated Plasma Low-Density Lipoproteins

  1. Asakawa T, Matsushita S (1980) Coloring conditions of thiobarbituric acid test for detecting lipid hydroperoxides. Lipids 15:137–140CrossRefGoogle Scholar
  2. Barnhart RL, Busch SJ, Jackson RL (1989) Concentration-dependent antioxidant activity of probucol in low density lipoproteins in vitro: probucol degradation precedes lipoprotein oxidation. J Lipid Res 30:1703–1710PubMedGoogle Scholar
  3. Bernheim F, Bernheim MLC, Wilbur KM (1948) The reaction between thiobarbituric acid and the oxidation products of certain lipids. J Biol Chem 174:257–264PubMedGoogle Scholar
  4. Braughler JM, Pregenzer JF, Chase RL, Duncan LA, Jacobsen EJ, McCall JM (1987) Novel 21-amino steroids as potent inhibitors of iron-dependent lipid peroxidation. J Biol Chem 262:10438–10440PubMedGoogle Scholar
  5. Carew TE, Schwenke DC, Steinberg D (1987) Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc Natl Acad Sci U S A 84:7725–7729CrossRefPubMedCentralPubMedGoogle Scholar
  6. Dresel HA, Deigner HP, Frübis J, Strein K, Schettler G (1990) LDL-metabolism of the arterial wall – new implications for atherogenesis. Z Kardiol 79(Suppl 3):9–16PubMedGoogle Scholar
  7. Gallagher PJ, Nanjee MN, Richards T, Roche WR, Miller NE (1988) Biochemical and pathological features of a modified strain of Watanabe heritable hyperlipidemic rabbits. Atherosclerosis 71:173–183CrossRefPubMedGoogle Scholar
  8. Heinecke JW (1998) Oxidants and antioxidants in the pathogenesis of atherosclerosis: implications for the oxidized low density lipoprotein hypothesis. Atherosclerosis 141:1–15CrossRefPubMedGoogle Scholar
  9. Jiang X, Yang Z, Chandrakala AN, Pressley D, Parthasarathy S (2011) Oxidized low density lipoproteins–do we know enough about them? Cardiovasc Drugs Ther 25:367–377CrossRefPubMedGoogle Scholar
  10. Kita T (1991) Oxidized lipoproteins and probucol. Curr Opin Lipidol 2:35–38CrossRefGoogle Scholar
  11. Kita T, Nagano Y, Yokode M, Ishii K, Kume N, Ooshima A, Yoshida H, Kawai C (1987) Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia. Proc Natl Acad Sci U S A 84:5928–5931CrossRefPubMedCentralPubMedGoogle Scholar
  12. Mansuy D, Sassi A, Dansette PM, Plat M (1986) A new potent inhibitor of lipid peroxidation in vitro and in vivo, the hepatoprotective drug anisyldithiolthione. Biochem Biophys Res Commun 135:1015–1021CrossRefPubMedGoogle Scholar
  13. Mao SJT, Patton JG, Badimon JJ, Kottke BA, Alley MC, Cardin AD (1983) Monoclonal antibodies to human plasma low-density lipoproteins. I. Enhanced binding of 125I-labeled low-density lipoproteins by combined use of two monoclonal antibodies. Clin Chem 29:1890–1897PubMedGoogle Scholar
  14. Mao SJT, Yates MT, Rechtin AN, Jackson RL, Van Sickle WA (1991) Antioxidant activity of probucol and its analogues in hypercholesterolemic Watanabe rabbits. J Med Chem 34:298–302CrossRefPubMedGoogle Scholar
  15. McLean LR, Hagaman KA (1989) Effect of probucol on the physical properties of low-density lipoproteins oxidized by copper. Biochemistry 28:321–327CrossRefPubMedGoogle Scholar
  16. Parthasarathy S, Young SG, Witztum JL, Pittman RC, Steinberg D (1986) Probucol inhibits oxidative modification of low density lipoprotein. J Clin Invest 77:641–644CrossRefPubMedCentralPubMedGoogle Scholar
  17. Steinberg D, Parthasaraty S, Carew TE (1988) In vivo inhibition of foam cell development by probucol in Watanabe rabbits. Am J Cardiol 62:6B–12BCrossRefPubMedGoogle Scholar
  18. Yamamoto A, Takaishi S, Hara H, Nishikawa O, Yokoyama S, Yamamura T, Yamaguchi T (1986) Probucol prevents lipid storage in macrophages. Atherosclerosis 62:209–217CrossRefPubMedGoogle Scholar
  19. Yoshioka T, Fujita T, Kanai T, Aizawa Y, Kurumada T, Hasegawa K, Horikoshi H (1989) Studies with hindered phenols and analogues. 1. Hypolipidemic and hypoglycemic agents with ability to inhibit lipid peroxidation. J Med Chem 32:421–428CrossRefPubMedGoogle Scholar
  20. Zhang H, Basra HJK, Steinbrecher UP (1990) Effects of oxidatively modified LDL on cholesterol esterification in cultured macrophages. J Lipid Res 31:1361–1369PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Physiology, UMR CNRS 7213Université de StrasbourgIllkirchFrance
  2. 2.Johann Wolfgang Goethe-Universität Frankfurt am MainFrankfurt am MainGermany

Personalised recommendations