Advertisement

Coronary Drugs

  • Michael Gralinski
  • Liomar A. A. Neves
  • Olga Tiniakova
Living reference work entry

Abstract

The isolated heart–lung of the dog was introduced by Knowlton and Starling (1912). Since then, the dog model has been used for many physiological and pharmacological studies (Krayer 1931; Krayer and Mendez 1942; Somani and Blum 1966; Takeda et al. 1973; Ishikawa et al. 1978, 1983; Ono and O’Hara 1984; Ono et al. 1984; Caffrey et al. 1986; Hausknecht et al. 1986; Fessler et al. 1988; Seifen et al. 1987, 1988; Naka et al. 1989). More recently, the rat model has been preferred (Dietz 1984, 1987; Onwochei et al. 1987; Onwochei and Rapp 1988; Kashimoto et al. 1987, 1990, 1994, 1995; Fukuse et al. 1995).

Keywords

Infarct Size Left Anterior Descend Ischemic Precondition Left Coronary Artery Transcutaneous Electrical Nerve Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

Heart–Lung Preparation

  1. Beaconsfield P, Oakley C, Carpi A, Rainsbury R, del Basso P (1974) Cardiac effect of delta-9-tetrahydrocannabinol on a heart-lung preparation and on the intact animal. Eur J Cardiol 2:167–173Google Scholar
  2. Beaufort AM, Wierda JMKH, Houwertjes MC, Kleef UW, Meijer DKF (1993) The isolated heart-lung preparation in the cat. An in situ model to study the role of the lungs in the disposition of drugs. J Pharmacol Toxicol Methods 29:147–156PubMedGoogle Scholar
  3. Caffrey JL, Wooldridge CB, Gaugl JF (1986) Naloxone enhances myocardial responses to isoproterenol in dog isolated heart-lung. Am J Physiol 250(Heart Circ Physiol 19):H749–H754PubMedGoogle Scholar
  4. Capri A, Oliverio A (1965) Effect of reserpine on the heart-lung preparation of guinea pig. Arch Int Pharmacodyn Ther 157:470–486Google Scholar
  5. Dietz JR (1984) Release of natriuretic factor from rat heart-lung preparation by atrial distension. Am J Physiol 247(Regulatory Integrative Comp Physiol 16):R1093–R1096PubMedGoogle Scholar
  6. Dietz JR (1987) Control of atrial natriuretic factor release from a rat heart-lung preparation. Am J Physiol 252(Regulatory Integrative Comp Physiol 21):R498–R502PubMedGoogle Scholar
  7. Fessler HE, Brower RG, Wise RA, Permutt S (1988) Mechanism of reduced LV afterload by systolic and diastolic positive pleural pressure. J Appl Physiol 65:1244–1250PubMedGoogle Scholar
  8. Fukuse T, Albes JM, Takahashi Y, Brandes H, Hausen B, Schäfers HJ (1995) Influence of red blood cells in an ex vivo rat heart-lung model. J Surg Res 59:399–404PubMedGoogle Scholar
  9. Hausknecht MJ, Wise RA, Brower RG, Hassapoyannes C, Weisfeldt ML, Suzuki J, Permutt S (1986) Effects of lung inflation on blood flow during cardiopulmonary resuscitation in the canine isolated heart-lung preparation. Circ Res 59:676–683PubMedGoogle Scholar
  10. Iizuka H (1983) Cardiac effects of acetylcholine and its congeners as assessed in canine heart-lung preparation. Folia Pharmacol Jpn 81:441–449Google Scholar
  11. Imai S, Shigei T, Hashimoto K (1961) Cardiac actions of methoxamine with special reference to its antagonistic action to epinephrine. Circ Res 9:552–560PubMedGoogle Scholar
  12. Ishikawa N, Taki K, Hojo Y, Hagino Y, Shigei T (1978) Direct recording of cardiac output- and venous return-curves in the dog heart-lung preparation for a graphical analysis of the effects of cardioactive drugs. Jpn Heart J 19:775–782PubMedGoogle Scholar
  13. Ishikawa N, Taki K, Hojo Y, Hagino Y, Shigei T (1983) Graphical analysis of drug effects in the dog heart-lung preparation – with particular reference to the pulmonary circulation and effects of norepinephrine and 5-hydroxytryptamine. Jpn J Pharmacol 33:785–794PubMedGoogle Scholar
  14. Jerusalem E, Starling EH (1910) On the significance of carbon dioxide for the heart beat. J Physiol 40:279–294PubMedCentralPubMedGoogle Scholar
  15. Kashimoto S, Tsuji Y, Kumazawa T (1987) Effects of halothane and enflurane on myocardial metabolism during postischaemic reperfusion in the rat. Acta Anaesth Scand 31:44–47PubMedGoogle Scholar
  16. Kashimoto S, Kume M, Kumazawa T (1990) Functional and metabolic effects of bupivacaine and lignocaine in the rat heart-lung preparation. Br J Anaesth 65:521–526PubMedGoogle Scholar
  17. Kashimoto S, Nakamura T, Kume M, Nonaka A, Kumazawa T (1994) Effects and interaction of nicardipine and volatile anesthetics in the rat heart-lung preparation. J Anesth 8:78–83Google Scholar
  18. Kashimoto S, Namakura T, Furuya A, Kume M, Kumazawa T (1995) Alteration of cardiac function and metabolism in the rat heart-lung preparation by methyl methacrylate and their protection by ulinastatin. Jpn J Anesth 44:1477–1481Google Scholar
  19. Kissling G, Blickle B, Pascht U (2000) Modified heart-lung preparation for the evaluation of systolic and diastolic coronary flow in rats. Am J Physiol Heart Circ Physiol 278(1):H277–H284PubMedGoogle Scholar
  20. Knowlton FP, Starling EH (1912) The influence of variations in temperature and blood pressure on the performance of the isolated mammalian heart. J Physiol 44:206–219PubMedCentralPubMedGoogle Scholar
  21. Kontos GJ Jr, Borkon AM, Adachi H, Baumgartner WA, Hutchins GM, Brawn J, Reitz BA (1987) Successful extended cardiopulmonary preservation in the autoperfused working heart-lung preparation. Surgery 102:269–276PubMedGoogle Scholar
  22. Kontos GJ Jr, Borkon AM, Baumgartner WA, Fonger JD, Hutchins GM, Adachi H, Galloway E, Reitz BA (1988) Improved myocardial and pulmonary preservation by metabolic substrate enhancement in the autoperfused working heart-lung preparation. J Heart Transplant 7:140–144PubMedGoogle Scholar
  23. Krayer O (1931) Versuche am isolierten Herzen. Naunyn-Schmiedeberg’s Arch Exp Pathol Pharmakol 162:1–28Google Scholar
  24. Krayer O, Mendez R (1942) Studies on veratrum alkaloids. I. The action of veratrine upon the isolated mammalian heart. J Pharmacol Exper Ther 74:350–364Google Scholar
  25. Merin RG (1988) The isolated heart preparation. Br J Anesth 60:28S–34SGoogle Scholar
  26. Muskett AD, Burton NA, Gay WA, Miller M, Rabkin MS (1986) Preservation in the rabbit autoperfusing heart-lung preparation: a potential role of indomethacin. Surg Forum 37:252–254Google Scholar
  27. Muskett AD, Burton NA, Grossman M, Gay WA Jr (1988) The rabbit autoperfusing heart-lung preparation. J Surg Res 44:104–108PubMedGoogle Scholar
  28. Naka Y, Hirose H, Matsuda H, Nakano S, Shirakura R, Kawaguchi A, Miyamoto Y, Miyagawa S, Fukushima N, Kawashima Y (1989) Prevention of pulmonary edema in autoperfusing heart-lung preparations by FUT-175 and leukocyte depletion. Transplant Proc 21:1353–1356PubMedGoogle Scholar
  29. Namakura J, Zhang S, Ishikawa N (1987) Role of pulmonary innervation in canine in situ lung-perfusion preparation: a new model of neurogenic pulmonary edema. Clin Exp Pharmacol Physiol 14:535–543Google Scholar
  30. Ono H, O’Hara N (1984) A study of the cardiodepressant action of a β-blocking agent carteolol in heart-lung preparation of the dog. Jpn Circ J 86:1030–1044Google Scholar
  31. Ono H, Kanazawa Y, O’Hara N, Hashimoto K (1984) Estimation of cardiodepressant potency of nadolol, alprenololol, propranolol and pindolol, β-blocking agents, in heart-lung preparation and blood-perfused excised papillary muscle preparation of the dog. Jpn J Pharmacol 36:507–517PubMedGoogle Scholar
  32. Onwochei MO, Rapp JP (1988) Biochemically stimulated release of atrial natriuretic factor from heart-lung preparation in Dahl rats. Proc Soc Exp Biol Med 188:395–404PubMedGoogle Scholar
  33. Onwochei MO, Snajdar RM, Rapp JP (1987) Release of atrial natriuretic factor from heart-lung preparations of inbred Dahl rats. Am J Physiol 253(Heart Circ Physiol 22):H1044–H1052PubMedGoogle Scholar
  34. Riveron FA, Ross JH, Schwartz KA, Casey G, Sanders ON, Eisiminger R, Magilligan DJ Jr (1988) Energy expenditure of autoperfusing heart-lung preparation. Circulation 78:II Suppl III-103–III-109Google Scholar
  35. Robicsek F, Masters TN, Duncan GD, Denyer MH, Rise HE, Etchison M (1985) An autoperfused heart-lung preparation: metabolism and function. Heart Transplant 4:334–338Google Scholar
  36. Seifen E, Seifen AB, Kennedy RH, Bushman GA, Loss GE, Williams TG (1987) Comparison of cardiac effects of enflurane, isoflurane, and halothane in the dog heart-lung preparation. J Cardiothorac Anesth 1:543–553PubMedGoogle Scholar
  37. Seifen E, Kennedy RH, Seifen AB (1988) Interaction of BAY K-8644 with effects of digoxin in the dog heart-lung preparation. Eur J Pharmacol 158:109–117PubMedGoogle Scholar
  38. Shigei T, Hashimoto K (1960) Study on the mechanism of the heart failure induced by pentobarbital, quinine, fluoroacetate and dinitrophenol in dog’s heart-lung preparation and effects of sympathomimetic amines and ouabain on it. Jpn J Pharmacol 9:109–122Google Scholar
  39. Somani P, Blum BK (1966) Blockade of epinephrine- and ouabain-induced cardiac arrhythmias in the dog heart-lung preparation. J Pharmacol Exp Ther 152:235–242PubMedGoogle Scholar
  40. Takeda K, Iizuka K, Imai S (1973) Cardiac actions of oxprenolol as studied in dog heart-lung preparations. Arzneim Forsch/Drug Res 23:1446–1450Google Scholar
  41. Wollenberger A (1947) On the energy-rich phosphate supply of the failing heart. Am J Physiol 150:733–745PubMedGoogle Scholar

Isolated Heart According to Langendorff

  1. Avkiran M, Curtis MJ (1991) Independent dual perfusion of left and right coronary arteries in isolated rat hearts. Am J Physiol 261(Heart Circ Physiol 30):H2082–H2090PubMedGoogle Scholar
  2. Balderston SM, Johnson KE, Reiter MJ (1991) Electrophysiologic evaluation of cardiovascular agents in the isolated intact rabbit heart. J Pharmacol Methods 25:205–213PubMedGoogle Scholar
  3. Bardenheuer H, Schrader J (1983) Relationship between myocardial oxygen consumption, coronary flow, and adenosine release in an improved isolated working heart preparation of guinea pigs. Circ Res 51:263–271Google Scholar
  4. Barr RL, Lopaschuk GD (1997) Direct measurement of energy metabolism in the isolated rat heart. J Pharmacol Toxicol Methods 38:11–17PubMedGoogle Scholar
  5. Bittner HB, Chen EP, Peterseim DS, Van Trigt P (1996) A work-performing heart preparation for myocardial performance analysis in murine hearts. J Surg Res 64:57–62PubMedGoogle Scholar
  6. Bratkovsky S, Aasum E, Birkeland CH, Riemersma RA, Myrhe ESP, Larsen TS (2004) Measurement of coronary flow reserve in isolated hearts from mice. Acta Physiol Scand 181:167–172PubMedGoogle Scholar
  7. Broadley KJ (1979) The Langendorff heart preparation – reappraisal of its role as a research and teaching model for coronary vasoactive drugs. J Pharmacol Methods 2:143–156Google Scholar
  8. Brooks WW, Apstein CS (1996) Effect of treppe on isovolumic function in the isolated blood-perfused mouse heart. J Mol Cell Cardiol 28:1817–1822PubMedGoogle Scholar
  9. Brown TG, Lands AM (1964) Cardiovascular activity of sympathomimetic amines. In: Laurence DR, Bacharach AL (eds) Evaluation of drug activities: pharmacometrics. Academic Press, London/New York, pp 353–368Google Scholar
  10. Burn HJ, Goodford PJ (1957) Effect of lack of glucose and of lack of oxygen on ventricular fibrillation. J Physiol 137:20P–21PGoogle Scholar
  11. Burn HJ, Hukovic S (1960) Anoxia and ventricular fibrillation: with a summary of evidence on the cause of fibrillation. Br J Pharmacol 15:67–70Google Scholar
  12. Chevalier B, Mouas C, Mansier P, Aumont MC, Swynghedauw B (1987) Screening of inotropic drugs on isolated rat and guinea pig hearts. J Pharmacol Methods 17:313–326PubMedGoogle Scholar
  13. Dhein S, Müller A, Klaus W (1989) The potential of epicardial activation mapping in isolated hearts for the assessment of arrhythmogenic and antiarrhythmic drug activity. J Pharmacol Methods 22:197–206PubMedGoogle Scholar
  14. Döring HJ (1990) The isolated perfused warm-blooded heart according to LANGENDORFF. Technique – function – application. Physiologie Bohemoslov 39:481–496Google Scholar
  15. Flynn SB, Gristwood RW, Owen DAA (1978) Characterization of an isolated, working heart guinea-pig heart including effects of histamine and noradrenaline. J Pharmacol Methods 1:183–195Google Scholar
  16. Garlick PP, Radda GK, Seeley PJ, Chance B (1977) Phosphorus NMR studies on perfused heart. Biochem Biophys Res Commun 74:1256–1262PubMedGoogle Scholar
  17. Gottlieb R, Magnus R (1904) Digitalis und Herzarbeit. Nach Versuchen an überlebenden Warmblüterherzen. Naunyn-Schmiedeberg’s Arch Exp Pathol Pharmakol 51:30–63Google Scholar
  18. Hannan RL, John MC, Kouretas PC, Hack BD, Matherne GP, Laubach VE (2000) Deletion of endothelial nitric oxidase exacerbates myocardial stunning in an isolated mouse heart model. J Surg Res 93:127–132PubMedGoogle Scholar
  19. Hendrikx M, Mubagawa K, Verdonk F, Overloop K, Van Hecke P, Vanstapel F, Van Lommel A, Verbeken E, Lauweryns J, Flameng W (1994) Na+-H+ exchange inhibitor HOE 694 improves postischemic function and high-energy phosphate resynthesis and reduces Ca2+ overload in isolated perfused rabbit heart. Circulation 89:2787–2798PubMedGoogle Scholar
  20. Hollis DP, Nunnally RL, Taylor GJ, Weisfeldt ML, Jacobus WE (1978) Phosphorus NMR studies of heart physiology. J Magn Reson 29:319–330Google Scholar
  21. Hukovic S, Muscholl E (1962) Die Noradrenalin-Abgabe aus dem isolierten Kaninchenherzen bei sympathischer Nervenreizung und ihre pharmakologische Beeinflussung. Naunyn-Schmiedeberg’s Arch Exp Pathol Pharmakol 244:81–96Google Scholar
  22. Igic R (1996) The isolated perfused “working” rat heart: a new method. J Pharmacol Toxicol Methods 35:63–67Google Scholar
  23. Ishiu R, Abe Y, Onishi K, Ueda Y, Sekioka K, Nakano T (1996) Changes in calcium transient and left ventricular function during inotropic stimulation and myocardial ischemia in indo-1-loaded beating guinea pig heart. J Pharmacol Toxicol Methods 35:55–61Google Scholar
  24. Jacobus WE, Taylor GJ, Hollins DP, Nunnally RL (1977) Phosphorus nuclear magnetic resonance of perfused working rat hearts. Nature 265:756–758PubMedGoogle Scholar
  25. Krzeminski T, Kurcok A, Kapustecki J, Kowalinski J, Slowinski Z, Brus R (1991) A new concept of the isolated heart preparation with on-line computerized data evaluation. J Pharmacol Methods 25:95–110PubMedGoogle Scholar
  26. Lamontagne D, König A, Bassenge E, Busse R (1992) Prostacyclin and nitric oxide contribute to the vasodilator action of acetylcholine and bradykinin in the intact rabbit coronary bed. J Cardiovasc Pharmacol 20:652.657PubMedGoogle Scholar
  27. Langendorff O (1895) Untersuchungen am lebenden Säugethierherzen. Pflüger’s Arch Ges Physiol 61:291–332Google Scholar
  28. Lindner E (1963) Untersuchungen über die flimmerwidrige Wirkung des N-(3′-phenylpropyl-(2′))-1,1-diphenylpropyl-(3)-amins (Segontin). Arch Int Pharmacodyn 146:485–500PubMedGoogle Scholar
  29. Lindner E, Grötsch H (1973) Methode zur graduellen Bestimmung hypoxischer Schädigung am isolierten Meerschweinchenherzen nach Langendorff. Arzneim Forsch/Drug Res 23:926–929Google Scholar
  30. Lindner E, Hajdu P (1968) Die fortlaufende Messung des Kaliumverlustes des isolierten Herzens zur Bestimmung der Wirkungsstärke digitalisartiger Körper. Arch Int Pharmacodyn 175:365–372PubMedGoogle Scholar
  31. Linz W, Schölkens BA, Han YF (1986) Beneficial effects of the converting enzyme inhibitor, ramipril, in ischemic rat hearts. J Cardiovasc Pharmacol 8(Suppl 10):S91–S99Google Scholar
  32. Linz W, Martorana PA, Schölkens BA (1990) Local inhibition of bradykinin degradation in ischemic hearts. J Cardiovasc Pharmacol 15(Suppl 6):S99–S109PubMedGoogle Scholar
  33. Matthews PM, Radda GK (1984) Applications of nuclear magnetic resonance to the study of myocardial metabolism and pharmacology. In: Schwartz A (ed) Methods in pharmacology. Myocardial biology, vol 5. Plenum Press, New York/London, pp 175–228Google Scholar
  34. Michio F, Hideo I, Tetsuya A (1985) In vitro assessment of myocardial function using a working rabbit heart. J Pharmacol Methods 14:49–60PubMedGoogle Scholar
  35. Mouren S, Vicaut E, Lamhaut L, Riou B, Ouattara A (2010) Crystalloid versus red blood cell-containing medium in the Langendorff-perfused isolated heart preparation. Eur J Anaesthesiol 27(9):780–787PubMedGoogle Scholar
  36. Neely JR, Liebermeister H, Batterbsy EJ, Morgan HE (1967) Effect of pressure development on oxygen consumption by isolated rat heart. Am J Physiol 212:804–814PubMedGoogle Scholar
  37. Plumier JCL, Ross BM, Currie RW, Angelidis CA, Kazlaris H, Kollias G, Pagoulatos GN (1995) Transgenic mice expressing the human heart heat shock protein 70 have improved postischemic myocardial recovery. J Clin Invest 95:1854–1860PubMedCentralPubMedGoogle Scholar
  38. Ross BD (1972) Chapter 5: Heart and skeletal muscle. In: Perfusion techniques in biochemistry. A laboratory manual in the use of isolated perfused organs in biochemical experimentation. Clarendon Press, Oxford, pp 258–320Google Scholar
  39. Ross SA, Rorabaugh BR, Chalothorn D, Yun J, Gonzalez-Cabrera PJ, McCune DF, Piasik MT, Perez DM (2003) The α 1B-adrenergic receptor decreases the inotropic response in the mouse Langendorff heart model. Cardiovasc Res 60:598–607PubMedGoogle Scholar
  40. Rothaul AL, Broadley KJ (1982) Measurements of oxygen tension in perfusates from guinea pig isolated hearts and the demonstration of coronary vasodilator material. J Pharmacol Methods 7:91–103PubMedGoogle Scholar
  41. Sakai K, Akima M, Tsuyama K (1983) Evaluation of the isolated perfused heart of mice, with special reference to vasoconstriction caused by intracoronary acetylcholine. J Pharmacol Methods 10:263–270PubMedGoogle Scholar
  42. Sheikh F, Sontag DP, Fandrich RR, Kardami E, Cattini PA (2001) Overexpression of FGF-2 increases cardiac myocyte viability after injury in isolated mouse hearts. Am J Physiol Heart Circ Physiol 280:H1030–H1050Google Scholar
  43. Sumaray MS, Yellon DM (1998a) Characterization and validation of a murine model of global ischaemia-reperfusion injury. Mol Cell Biochem 186:61–68Google Scholar
  44. Sumaray MS, Yellon DM (1998b) Ischemic preconditioning reduces infarct size following global ischemia in the murine myocardium. Basic Res Cardiol 93:384–390Google Scholar
  45. Sutherland FJ, Shattock MJ, Baker KE, Hearse DJ (2003) Mouse isolated perfused heart: characteristics and cautions. Clin Exp Pharmacol Physiol 30:867–898PubMedGoogle Scholar
  46. Takeo S, Tanonaka K, Liu JX, Ohtsuka Y (1992) Protective effects of antiarrhythmic agents on oxygen-deficiency-induced contractile dysfunction of isolated perfused hearts. In: Yasuda H, Kawaguchi H (eds) New aspects in the treatment of failing heart. Springer, Tokyo/Berlin/Heidelberg, pp 13–219Google Scholar
  47. Tejero-Taldo MI, Gursoy E, Zhao TC, Kukreja RC (2002) α-Adrenergic receptor stimulation produces late preconditioning through inducible nitric oxide synthase in mouse heart. J Mol Cell Cardiol 34:185–195PubMedGoogle Scholar
  48. Wang QD, Swärdh A, Sjöquist PO (2001) Relationship between ischemic time and ischemia/reperfusion injury in isolated Langendorff-perfused mouse hearts. Act Physiol Scand 171:123–128Google Scholar
  49. Xiang JZ, Linz W, Becker H, Ganten D, Lang RE, Schölkens B, Unger T (1985) Effects of converting enzyme inhibitors: ramipril and enalapril on peptide action and neurotransmission in the isolated heart. Eur J Pharmacol 113:215–223PubMedGoogle Scholar
  50. Zander B, Euler H (1976) Concentration measurements of physically dissolved oxygen by the classical van Slyke principle. In: Deng H, Balslen J, Brook R (eds) Measurement of oxygen. Elsevier Scientific Publ. Co, Amsterdam, pp 271–276Google Scholar
  51. Zegner M, Podesser B, Koci G, Weisser J, Hallström S, Schima H, Wollenek GH (1996) Evaluation of the influences of ramiprilat on the reperfusion – Studied on the isolated working heart model. Acta Chir Austriatica 28:343–346Google Scholar

Coronary Artery Ligation in Isolated Working Rat Heart

  1. Grupp IL, Grupp G (1984) Isolated heart preparations perfused or superfused with balanced salt solutions. In: Schwartz A (ed) Methods in pharmacology. Myocardial biology, vol 5. Plenum Press, New York/London, pp 111–128Google Scholar
  2. Igic R (1996) The isolated perfused “working” rat heart: a new method. J Pharmacol Toxicol Methods 35:63–67Google Scholar
  3. Kannengieser GJ, Lubbe WF, Opie LH (1975) Experimental myocardial infarction with left ventricular failure in the isolated perfused rat heart. Effects of isoproterenol and pacing. J Mol Cell Cardiol 7:135–151Google Scholar
  4. Lee HC, Mohabir R, Smith N, Franz MR, Clusin WT (1988) Effect of ischemia on calcium-dependent fluorescence transients in rabbit hearts containing indo 1. Correlation with monophasic action potentials and contraction. Circulation. 78(4):1047–59.PubMedGoogle Scholar
  5. Linz W, Schölkens BA, Han YF (1986a) Beneficial effects of the converting enzyme inhibitor, ramipril, in ischemic rat hearts. J Cardiovasc Pharmacol 8(Suppl 10):S91–S99Google Scholar
  6. Linz W, Schölkens BA, Manwen J, Wilhelm M, Ganten D (1986b) The heart as a target for converting enzyme inhibitors: studies in ischaemic isolated working hearts. J Hypertens 4(Suppl 6):S477–S479Google Scholar
  7. Linz W, Schölkens BA, Kaiser J, Just M, Bei-Yin Q, Albus U, Petry P (1989) Cardiac arrhythmias are ameliorated by local inhibition of angiotensin formation and bradykinin degradation with the converting-enzyme inhibitor ramipril. Cardiovasc Drugs Ther 3:873–882PubMedGoogle Scholar
  8. Linz W, Wohlfart P, Schoelkens BA, Becker RHA, Malinski T, Wiemer G (1999) Late treatment with ramipril increases survival in old spontaneously hypertensive rats. Hypertension 34:291–295PubMedGoogle Scholar
  9. Martorana PA, Linz W, Göbel H, Petry P, Schölkens BA (1987) Effects of nicainoprol on reperfusion arrhythmia in the isolated working rat heart and on ischemia and reperfusion arrhythmia and myocardial infarct size in the anesthetized rat. Eur J Pharmacol 143:391–401PubMedGoogle Scholar
  10. Pepe S, McLennan PL (1993) A maintained afterload model of ischemia in erythrocyte-perfused isolated working hearts. J Pharmacol Toxicol Methods 29:203–210PubMedGoogle Scholar
  11. Rajagopalan R, Ghate AV, Subbarayan P, Linz W, Schoelkens BA (1993) Cardiotonic activity of the water soluble forskolin derivative 8,13-epoxy-6β-(piperidinoacetoxy)-1α,7β,9α-trihydro-xy-labd-14-en-11-one. Arzneim Forsch/Drug Res 43:313–319Google Scholar
  12. Schölkens BA, Linz W, Lindpaintner K, Ganten D (1987) Angiotensin deteriorates but bradykinin improves cardiac function following ischaemia in isolated rat hearts. J Hypertens 5(Suppl 5):S7–S9Google Scholar
  13. Scholz W, Albus U, Linz W, Martorana P, Lang HJ, Schölkens BA (1992) Effects of Na+/H+ exchange inhibitors in cardiac ischaemia. J Mol Cell Cardiol 24:731–740PubMedGoogle Scholar
  14. Scholz W, Albus U, Lang HJ, Linz W, Martorana PA, Englert HC, Schölkens BA (1993) Hoe 694, a new Na+/H+ exchange inhibitor and its effects in cardiac ischemia. Br J Pharmacol 109:562–568PubMedCentralPubMedGoogle Scholar
  15. van Gilst WH, de Graeff PA, Wesseling H, de Langen CDJ (1986) Reduction of reperfusion arrhythmias in the ischemic isolated rat heart by angiotensin converting enzyme inhibitors: a comparison of captopril, enalapril, and HOE 498. J Cardiovasc Pharmacol 8:722–728Google Scholar
  16. Vleeming W, van der Wouw PA, van Rooij HH, Wemer J, Porsius AJ (1989) In vitro method for measurement of cardiac performance and responses to inotropic drugs after experimentally induced myocardial infarction in the rat. J Pharmacol Methods 21:95–102PubMedGoogle Scholar
  17. Vogel WM, Lucchesi BR (1980) An isolated, blood perfused, feline heart preparation for evaluating pharmacological interventions during myocardial ischemia. J Pharmacol Methods 4:291–303PubMedGoogle Scholar

Isolated Working Heart Model in Infarcted Rat Heart

  1. Holm S (1979) A simple sequential rejective multiple test procedure. Scand J Stat 6:65–70Google Scholar
  2. Itter G, Jung W, Juretschke P, Schölkens BA, Linz W (2004a) A model of chronic heart failure in spontaneous hypertensive rats (SHR). Lab Anim 38:138–148PubMedGoogle Scholar
  3. Itter G, Jung W, Schölkens BA, Linz W (2004b) The isolated working heart model in infarcted rat hearts. Lab Anim 39:178–193Google Scholar

Relaxation of Bovine Coronary Artery

  1. Dusting GJ, Moncada S, Vane JR (1977) Prostacyclin (PGX) is the endogenous metabolite responsible for relaxation of coronary arteries induced by arachidonic acid. Prostaglandins 13:3–15PubMedGoogle Scholar
  2. Gilmore N, Vane JR, Wyllie JH (1968) Prostaglandins released by the spleen. Nature 218:1135–1140PubMedGoogle Scholar
  3. Li J, Matsuura JE, Waugh DJJ, Adrian TE, Abel PW, Manning MC, Smith DD (1997) Structure – activity studies on position 14 of human α-calcitonin gene-related peptide. J Med Chem 40:3071–3076PubMedGoogle Scholar

Isoproterenol Induced Myocardial Necrosis in Rats

  1. Bhargava AS, Preus M, Khater AR, Günzel P (1990) Effect of iloprost on serum creatine kinase and lactate dehydrogenase isoenzymes after isoprenaline-induced cardiac damage in rats. Arzneim Forsch/Drug Res 40:248–252Google Scholar
  2. Brodowicz GR, Lamb DR (1991) Exercise training, indomethacin, and isoproterenol-induced myocardial necrosis in rats. Basic Res Cardiol 86:40–48PubMedGoogle Scholar
  3. Campell JD, Paul RJ (1993) Effects of diltiazem on force, [Ca2+]i, and energy metabolism in porcine coronary artery. J Cardiovasc Pharmacol 22:408–415Google Scholar
  4. Ciplea AG, Kretschmar R, Heimann W, Kirchengast M, Safer A (1988) Protective effect of the new calcium antagonist Anipamil against isoprenaline-induced cardionecrosis in rats. Arzneim-Forsch/Drug Res 38:215–221Google Scholar
  5. Classen L, Michalsky G, Kammermeier H (1993) Catecholamine-induced cardiac necroses: protective effect of leucocytopenia, influence of an S2 antagonist, thromboxansynthetase inhibitor and prostacyclin analogue. Basic Res Cardiol 88:52–59PubMedGoogle Scholar
  6. Ferrans VJ, Hibbs RG, Black WC, Weilbaecher DG (1964) Isoproterenol-induced myocardial necrosis. A histochemical and electron microscopic study. Am Heart J 68:71–90PubMedGoogle Scholar
  7. Genovese A, Chiariello M, de Alfieri W, Latte S, Ferro G, Condorelli M (1982) Quantitative assessment of infarct size in isoproterenol-infarcted rats. Jpn Heart J 23:997–1006PubMedGoogle Scholar
  8. Handforth CP (1962) Isoproterenol-induced myocardial infarction in animals. Arch Pathol 73:161–165PubMedGoogle Scholar
  9. Joseph X, Bloom S, Pledger G, Balazs T (1983) Determinants of resistance to the cardiotoxicity of isoproterenol in rats. Toxicol Appl Pharmacol 69:199–205PubMedGoogle Scholar
  10. Knufman NMJ, van der Laarse A, Vliegen HW, Brinkman CJJ (1987) Quantification of myocardial necrosis and cardiac hypertrophy in isoproterenol-treated rats. Res Commun Chem Pathol Pharmacol 57:15–32PubMedGoogle Scholar
  11. Meijer AEFH, Hettwer H, Ciplea AG (1988) An enzyme histochemical study of isoproterenol-induced myocardial necroses in rats. Histochem J 20:697–707Google Scholar
  12. Preus M, Bhargava AS, Khater AER, Günzel P (1988) Diagnostic value of serum creatine kinase and lactate dehydrogenase isoenzyme determinations for monitoring early cardiac damage in rats. Toxicol Lett 42:225–253PubMedGoogle Scholar
  13. Rona G (1967) Experimental drug-induced myocardial infarction for animal pharmacologic screening. In: Siegeler PE, Moyer JH (eds) Animal and clinical pharmacologic techniques in drug evaluation, vol II. Year Book Medical, Chicago, pp 464–470Google Scholar
  14. Rona G, Chappel CI, Balazs T, Gaudry R (1959) An infarct-like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat. Arch Pathol 76:443–455Google Scholar
  15. Rona G, Chappel CI, Kahn DS (1963) The significance of factors modifying the development of isoproterenol-induced myocardial necrosis. Am Heart J 66:389–395PubMedGoogle Scholar
  16. Vértesi C, Knopf E, Gaál KPS (1991) Comparison of the cardioprotective effects of nitroglycerin, molsidomine, and SIN-1 in rats. J Cardiovasc Pharmacol 17(Suppl 3):S141–S144Google Scholar
  17. Wexler BC (1985) Prolonged protective effects following propranolol withdrawal against isoproterenol-induced myocardial infarction in normotensive and hypertensive rats. Br J Exp Pathol 66:143–154PubMedCentralPubMedGoogle Scholar
  18. Yang J, Zhao D, Chang YZ, Tin Q, Zhao YT, Shi XY, Zhang ZK, Tang CS (1996) Protective effect of adrenomedullin10–52 on isoproterenol-induced myocardial injury in rats. Chin Pharmacol Bull 12:530–533Google Scholar

Myocardial Infarction After Coronary Ligation in Rodents

  1. Azizi M, Rousseau A, Ezan E, Guyene TT, Michelet S, Grognet JM, Lefant M, Corvol P, Ménard J (1996) Acute angiotensin-converting enzyme inhibition increases the plasma level of the natural stem cell regulator N-acetylseryl-aspartyl-lysyl-proline. J Clin Invest 97:839–844PubMedCentralPubMedGoogle Scholar
  2. Azizi M, Ezan E, Nicolet L, Grognet JM, Ménard J (1997a) High plasma level of N-acetyl-seryl-aspartyl-lysyl-proline. A new marker of chronic angiotensin-converting enzyme inhibition. Hypertension 30:1015–1019PubMedGoogle Scholar
  3. Azizi M, Rousseau A, Ezan E, Guyene TT, Michelet S, Grognet JM, Lenfant M, Corvol P, Menard J (1997b) Acute angiotensin-converting enzyme inhibition increases the plasma level of the natural stem cell regulator N-acetylseryl-aspartyl-lysyl-proline. J Clin Invest 97:839–844Google Scholar
  4. Bäcklund T, Palojoki E, Saraste A, Eriksson A, Finkenberg P, Kytö V, Lakkisto P, Mervaala E, Voipio-Pulkki LM, Laine M, Tikkanen L (2004) Sustained cardiomyocyte apoptosis and left ventricular remodelling after myocardial infarction in experimental diabetes. Diabetologia 47:325–330PubMedGoogle Scholar
  5. Belichard P, Savard P, Cardinal R, Naddeau R, Gosselin H, Paradis P, Rouleau JL (1994) Markedly different effects on ventricular remodelling result in a decrease in inducibility of ventricular arrhythmias. J Am Coll Cardiol 23:505–513PubMedGoogle Scholar
  6. Bernauer W (1985) The effect of β-adrenoceptor blocking agents on evolving myocardial necrosis in coronary ligated rats with and without reperfusion. Naunyn-Schmiedeberg’s Arch Pharmacol 328:288–294Google Scholar
  7. Böhm M, Gierschik P, Jakobs KH, Pieske B, Schnabel P, Ungerer M, Erdmann E (1990) Increase of Giα in human hearts with dilated but not ischemic cardiomyopathy. Circulation 82:1249–1265PubMedGoogle Scholar
  8. Böhm M, Eschenhagen T, Gierschik P, Larisch K, Lensche H, Mende U, Schmitz W, Schnabel P, Scholz H, Steinfath M, Erdmann H (1994) Radioimmunochemical quantification of Giα in right and left ventricles from patients with ischemic and dilated cardiomyopathy and predominant left ventricular failure. J Mol Cell Cardiol 26:133–149PubMedGoogle Scholar
  9. Chen L, Chen CX, Gan XT, Beier N, Scholz W, Karmazyn M (2004) Inhibition and reversal of myocardial infarction-induced hypertrophy and heart failure by NHE-1 inhibition. Am J Physiol 286:H381–H387Google Scholar
  10. Chiariello M, Brevetti G, DeRosa G, Acunzo F, Petillo F, Rengo F, Condorelli M (1980) Protective effects of simultaneous alpha and beta adrenergic receptor blockade on myocardial cell necrosis after coronary arterial occlusion in rats. Am J Cardiol 46:249–254PubMedGoogle Scholar
  11. Colatsky TH (1989) Models of myocardial ischemia and reperfusion injury: role of inflammatory mediators in determining infarct size. In: Pharmacological methods in the control of inflammation. Alan R. Liss, New York, pp 283–320Google Scholar
  12. Fishbein MC, MacLean D, Maroko PR (1978) Experimental myocardial infarction in the rat. Qualitative and quantitative changes during pathologic evolution. Am J Pathol 90:57–70PubMedCentralPubMedGoogle Scholar
  13. Fishbein MC, Hare AC, Gissen SA, Spadaro J, MacLean D, Maroko PR (1980) Identification and quantification of histochemical border zones during the evolution of myocardial infarction in the rat. Cardiovasc Res 14:41–49PubMedGoogle Scholar
  14. Flaim SF, Zelis R (1981) Diltiazem pretreatment reduces experimental myocardial infarct size in rat. Pharmacology 23:281–286PubMedGoogle Scholar
  15. Gargiulo S, Greco A, Gramanzini M, Petretta MP, Ferro A, Larobina M, Panico M, Brunetti A, Cuocolo A (2012) PET/CT imaging in mouse models of myocardial ischemia. J Biomed Biotechnol 2012:541872PubMedCentralPubMedGoogle Scholar
  16. Gomoll AW, Lekich RF (1990) Use of the ferret for a myocardial ischemia/salvage model. J Pharmacol Methods 23:213–223PubMedGoogle Scholar
  17. Gould KE, Taffet GE, Michael LH, Christie RM, Konkol DL, Pocius JS, Zachariah JP, Chaupin DF, Daniel SL, Sandusky GE Jr, Hartley CJ, Entman ML (2001) Heart failure and greater infarct expansion in middle-aged mice: a relevant model for postinfarction failure. Am J Physiol 282:H615–H621Google Scholar
  18. Guo Y, Wu WJ, Qiu Y, Tang XL, Yang Z, Bolli R (1998) Demonstration of an early and a late phase of ischemic preconditioning in mice. Am J Physiol 275:H1375–H1387PubMedCentralPubMedGoogle Scholar
  19. Guo Y, Stein AB, Wu WJ, Zhu X, Tan W, Li Q, Bolli R (2005) Late preconditioning induced by NO donors, adenosine A1 receptor agonists, and δ 1-opioid receptor agonists is mediated by iNOS. Am J Physiol 289:H2251–H2257Google Scholar
  20. Innes IR, Weisman H (1981) Reduction in the severity of myocardial infarction by sulfinpyrazone. Am Heart J 102:153–157PubMedGoogle Scholar
  21. Janssens S, Pokreisz P, Schoonjans L, Pellens M, Vermeersch P, Tjwa M, Jans P, Scherrer-Crosbie M, Picard MH, Szelid Z, Gillijns H, Van de Werf F, Collen D, Bloch KD (2004) Cardiomyocyte-specific overexpression of nitric oxide synthase 3 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction. Circ Res 94:1256–1262PubMedGoogle Scholar
  22. Johns TNP, Olson BJ (1954) Experimental myocardial infarction. I. A method of by coronary occlusion in small animals. Ann Surg 140:675–682PubMedCentralPubMedGoogle Scholar
  23. Jones SP, Lefer DJ (2001) Cardioprotective actions of acute HMG-CoA reductase inhibition in the setting of myocardial infarction. Acta Physiol Scand 173:139–143PubMedGoogle Scholar
  24. Kajstura J, Zhang X, Reiss K, Szoke E, Li P, Lagastra C, Cheng W, Darzynkiewicz Z, Olivetti G, Anversa P (1994) Myocyte cellular hyperplasia and myocyte cellular hypertrophy contribute to chronic ventricular remodeling in coronary artery narrowing-induced cardiomyopathy in rats. Circ Res 74:382–400Google Scholar
  25. Kanno S, Kovacs A, Yamada KA, Saffitz JE (2003) Connexin43 as a determinant of myocardial infarct size following coronary occlusion in mice. J Am Coll Cardiol 41:681–686PubMedGoogle Scholar
  26. Kaufman N, Gavan TL, Hill RW (1959) Experimental myocardial infarction in the rat. Arch Pathol 57:482–488Google Scholar
  27. Kim DY, Kim HJ, Yu KH, Min JJ (2012) Synthesis of 18F-labeled (2-(2-fluoroethoxy)ethyl) triphenylphosphonium cation as a potential agent for myocardial imaging using positron emission tomography. Bioorg Med Chem Lett 22:319–322PubMedGoogle Scholar
  28. Kim DY, Kim HS, Jang HY, Kim JH, Bom HS, Min JJ (2014) Comparison of the cardiac microPET images obtained using [(18)F]FPTP and [(13)N]NH3 in rat myocardial infarction models. ACS Med Chem Lett 5(10):1124–1128PubMedGoogle Scholar
  29. Kouchi I, Zolk O, Jockenhövel F, Itter G, Linz W, Cremers B, Böhm M (2000) Increase in Giα protein accompanies progression of post-infarction remodelling in hypertensive cardiomyopathy. Hypertension 36:42–47PubMedGoogle Scholar
  30. Kuhlmann MT, Kirchhof P, Klocke R, Hasib L, Stypmann J, Fabritz L, Stelljes M, Tian W, Zwiener M, Mueller M, Kienast J, Breithardt G, Nikol S (2006) G-CSF/SCF reduces inducible arrhythmias in the infracted heart potentially via increased connexin43 expression and arteriogenesis. J Exp Med 203:87–97PubMedCentralPubMedGoogle Scholar
  31. LaPointe MC, Mendez M, Leung A, Tao Z, Yang XP (2004) Inhibition of cyclooxygenase-2 improves cardiac function after myocardial infarction in the mouse. Am J Physiol 286:H1416–H1424Google Scholar
  32. Le Meur Y, Aldigier JC, Praloran V (1998) Is plasma Ac-SDKP level is a reliable marker of chronic angiotensin-converting enzyme inhibition in hypertensive patients? Hypertension 31:1201–1202PubMedGoogle Scholar
  33. Leprán I, Koltai M, Szekeres L (1981) Effect of non-steroid antiinflammatory drugs in experimental myocardial infarction in rats. Eur J Pharmacol 69:235–238PubMedGoogle Scholar
  34. Linz W, Wiemer G, Schmidts HL, Ulmer W, Ruppert D, Schölkens BA (1996) ACE inhibition decreases postoperative mortality in rats with left ventricular hypertrophy and myocardial infarction. Clin Exp Hypertens 18:691–712PubMedGoogle Scholar
  35. Liu YH, Yang XP, Nass O, Sabbah HN, Peterson E, Carretero OA (1997) Chronic heart failure induced by coronary artery ligation in Lewis inbred rats. Am J Physiol 272(2 Pt2):H722–H727PubMedGoogle Scholar
  36. Lutgens E, Daemen MJ, de Muinck ED, Debets J, Leenders P, Smits JF (1999) Chronic myocardial infarction in the mouse: cardiac structural and functional changes. Cardiovasc Res 41:586–593PubMedGoogle Scholar
  37. MacLean D, Fishbein MC, Braunwald E, Maroko PR (1978) Long-term preservation of ischemic myocardium after experimental coronary artery occlusion. J Clin Invest 61:541–551PubMedCentralPubMedGoogle Scholar
  38. Michael LH, Entman ML, Hartley CJ, Youker KA, Zhu J, Hall SR, Hawkins HK, Berens K, Balantyne CM (1995) Myocardial ischemia and reperfusion: a murine model. Am J Physiol 269(Heart Circ Physiol 38):H2147–H2154PubMedGoogle Scholar
  39. Michael LH, Ballantyne CM, Zachariah JP, Gould KE, Pocius JS, Taffet GE, Hartley CJ, Pham TT, Daniel SL, Funk E, Entman ML (1999) Myocardial infarction and remodeling in mice: effect of reperfusion. Am J Physiol 277:H660–H668PubMedGoogle Scholar
  40. Nguyen T, Salibi EE, Rouleau JL (1998) Postinfarction survival and inducibility of ventricular arrhythmias in the spontaneously hypertensive rat. Effects of ramipril and hydralazine. Circulation 98:2074–2080PubMedGoogle Scholar
  41. Pfeffer JM, Pfeffer MA, Braunwald E (1985) Influence of chronic captopril therapy on the infarcted left ventricle of the rat. Circ Res 57:84–95PubMedGoogle Scholar
  42. Porzio S, Masseroli M, Messori A, Forloni G, Olivetti G, Jeremic G, Riva E, Luvara G, Latini R (1995) A simple, automatic method for morphometric analysis of the left ventricle in rats with myocardial infarction. J Pharmacol Toxicol Methods 33:221–229PubMedGoogle Scholar
  43. Rasoul S, Carretero OA, Peng H, Cavasin MA, Zhuo J, Sanchez-Mendoza A, Brigstock DR, Rhaleb NE (2004) Antifibrotic effect of Ac-SDKP and angiotensin converting enzyme inhibition in hypertension. J Hypertens 22:593–603PubMedGoogle Scholar
  44. Roberts CS, MacLean D, Braunwald E, Maroko PR, Kloner RA (1983) Topographic changes in the left ventricle after experimentally induced myocardial infarction in the rat. Am J Cardiol 51:873–876Google Scholar
  45. Sakai K, Akima M, Aono J (1981) Evaluation of drug effects in a new experimental model of angina pectoris in the intact anesthetized rat. J Pharmacol Methods 5:325–336PubMedGoogle Scholar
  46. Scherrer-Crosbie M, Steudel W, Ullrich R, Hunziker PR, Liel-Cohen N, Newell J, Zaroff J, Zapol WM, Picard MH (1999) Echocardiographic determination of risk area in a murine model of myocardial ischemia. Am J Physiol 277:H986–H992PubMedGoogle Scholar
  47. Scholz W, Albus U, Counillon L, Gögelein H, Lang HJ, Linz W, Weichert A, Schölkens BA (1995) Protective effects of HOE 642, a selective sodium-hydrogen exchange subtype 1 inhibitor, on cardiac ischemia and reperfusion. Cardiovasc Res 29:260–268PubMedGoogle Scholar
  48. Selye H, Bajusz E, Grasso S, Mendell P (1960) Simple techniques for the surgical occlusion of coronary vessels in the rat. Angiology 11:398–407PubMedGoogle Scholar
  49. Shibuya K, Kanasaki K, Isono M, Sato H, Omata M, Sugimoto T, Araki SI, Isshiki K, Kashiwagi A, Haneda M, Koya D (2005) N-Acetyl-seryl-aspartyl-lysine-proline prevents renal insufficiency and matrix expansion in diabetic db/db mice. Diabetes 54:838–845PubMedGoogle Scholar
  50. Sia YT, Lapointe N, Parker TG, Tsoporis JN, Deschepper CP, Calderose A, Pourdjabbar A, Jasmin JF, Sarrazin JF, Liu P, Asam A, Butany J, Rouleau JL (2002) Beneficial effects of long-term use of the antioxidant probucol in heart failure in the rat. Circulation 105:2549–2555PubMedGoogle Scholar
  51. Teunissen BEJ, Jongsma HJ, Bierhuizen MFA (2004) Regulation of myocardial connexins during hypertrophic remodelling. Eur Heart J 25:1979–1989PubMedGoogle Scholar
  52. Walker MJA, MacLeod BA, Curtis MJ (1991) Myocardial ischemia and infarction. Comp Pathol Bull 23:3–4Google Scholar
  53. Weinberg EO, Scherrer-Crosbie M, Picard MH, Nasseri BA, MacGillivray C, Gannon J, Lian Q, Bloch KD, Lee RT (2005) Rosuvastatin reduces experimental left ventricular infarct size after ischemia-reperfusion injury but not total coronary occlusion. Am J Physiol 288:H1802–H1809Google Scholar
  54. Yang XP, Sabbah HN, Liu YH, Sharov VG, Mascha EJ, Alwan I, Carretero OA (1992) Ventriculographic evaluation in three rat models of cardiac dysfunction. Am J Physiol 265(6 Pt 2):H1946–H1952Google Scholar
  55. Yang F, Yang XP, Liu YH, Xu J, Cingolani O, Rhaleb NE, Carretero OA (2004) Ac-SDKP reverses inflammation and fibrosis in rats with heart failure after myocardial infarction. Hypertension 43:229–236PubMedCentralPubMedGoogle Scholar
  56. Yang Z, Day YJ, Toufektsian MC, Ramos SI, Marshall M, Wang XQ, French BA, Linden J (2005) Infarct-sparing effect of A2A-adenosine receptor activation is due primarily to its action on lymphocytes. Circulation 111:2190–2197PubMedGoogle Scholar
  57. Ytrehus K, Liu Y, Tsuchida A, Miura T, Liu GS, Yang XM, Herbert D, Cohen MV, Downey JM (1994) Rat and rabbit heart infarction: effects of anesthesia, perfusate, risk zone, and method of infarct sizing. Am J Physiol 267(Heart Circ Physiol 36):H2383–H2390PubMedGoogle Scholar

Occlusion of Coronary Artery in Anesthetized Dogs and Pigs

  1. Abendroth RR, Meesmann W, Stephan K, Schley G, Hübner H (1977) Effects of the β-blocking agent Atenolol on arrhythmias especially ventricular fibrillation and fibrillation threshold after acute experimental coronary artery occlusion. Z Kardiol 66:341–350PubMedGoogle Scholar
  2. Black SC, Gralinski MR, Friedrichs GS, Kilgore KS, Drsicoll EM, Lucchesi BR (1995) Cardioprotective effects of heparin or N-acetylheparin in an in vivo model of myocardial and ischemic reperfusion injury. Cardiovasc Res 29:629–636PubMedGoogle Scholar
  3. Chiariello M, Gold HL, Leinbach RC, Davis MA, Maroko PR (1976) Comparison between the effects of nitroprusside and nitroglycerin on ischemic injury during acute myocardial infarction. Circulation 54:766–773PubMedGoogle Scholar
  4. Etoh T, Joffs C, Deschamps AM, Davis J, Dowdy K, Hendrick J, Baicu S, Mukherjee R, Manhaini M, Spinale FG (2001) Myocardial and interstitial matrix metalloproteinase activity after acute myocardial infarction in pigs. Am J Physiol 281:H987–H994Google Scholar
  5. Garcia-Dorado D, Ganzález MA, Barrabés JA, Ruiz-Meana M, Solares J, Lidon RM, Blanco J, Puigfel Y, Piper HM, Soler-Soler J (1997) Prevention of ischemic rigor contracture during coronary occlusion by inhibition of Na+-H+ exchange. Cardiovasc Res 35:80–89PubMedGoogle Scholar
  6. Hartman JC, Warltier DC (1990) A model of multivessel coronary artery disease using conscious, chronically instrumented dogs. J Pharmacol Methods 24:297–310PubMedGoogle Scholar
  7. Holmborn B, Näslund U, Eriksson A, Virtanen I, Thornell LE (1993) Comparison of triphenyltetrazolium chloride (TTC) staining versus detection of fibronectin in experimental myocardial infarction. Histochemistry 99:265–275Google Scholar
  8. Klein HH, Pich S, Bohle RM, Wollenweber J, Nebendahl K (1995) Myocardial protection by Na+/H+ exchange inhibition in ischemic, reperfused porcine hearts. Circulation 92:912–917PubMedGoogle Scholar
  9. Klein HH, Bohle RM, Pich S, Lindert-Heimberg S, Wollenweber J, Nebendahl K (1997) Time delay of cell death by Na+/H+ exchange inhibition in regionally ischemic, reperfused porcine hearts. J Cardiovasc Pharmacol 30:235–240PubMedGoogle Scholar
  10. Li T, Wei X, Watkins AC, Sanchez PG, Wu ZJ, Griffith BP (2013) Prophylactic amiodarone and lidocaine improve survival in an ovine model of large size myocardial infarction. J Surg Res 185(1):152–158PubMedCentralPubMedGoogle Scholar
  11. Lukács E, Magyari B, Tóth L, Petrási Z, Repa I, Koller A, Horváth I (2012) Overview of large animal myocardial infarction models. Acta Physiol Hung 99(4):365–381PubMedGoogle Scholar
  12. Lukács E, Magyari B, Tóth L, Petneházy Ö, Petrási Z, Simor T, Gyöngyösi M, Repa I, Koller Á, Rőth E, Horváth IG (2013) Evaluation of experimental myocardial infarction models via electromechanical mapping and magnetic resonance imaging. Can J Physiol Pharmacol 91(8):617–624PubMedGoogle Scholar
  13. Martorana PA, Göbel H, Kettenbach B, Nitz RE (1982) Comparison of various methods for assessing infarct-size in the dog. Basic Res Cardiol 77:301–308PubMedGoogle Scholar
  14. Martorana PA, Kettenbach B, Breipohl G, Linz W (1990) Reduction of infarct size by local angiotensin-converting enzyme inhibition is abolished by a bradykinin antagonist. Eur J Pharmacol 182:395–396PubMedGoogle Scholar
  15. McCall FC, Telukuntla KS, Karantalis V, Suncion VY, Heldman AW, Mushtaq M, Williams AR, Hare JM (2012) Myocardial infarction and intramyocardial injection models in swine. Nat Protoc 7(8):1479–1496PubMedCentralPubMedGoogle Scholar
  16. Nachlas MN, Shnitka TK (1963) Macroscopic identification of early myocardial infarcts by alterations in dehydrogenase activity. Am J Pathol 42:379–396PubMedCentralPubMedGoogle Scholar
  17. Raberger G, Krumpl G, Mayer N (1986) A model of transient myocardial dysfunction in conscious dogs. J Pharmacol Methods 16:23–37PubMedGoogle Scholar
  18. Reimer KA, Jennings RB, Cobb FR, Murdock RH, Greenfield JC, Becker LC, Bulkley BH, Hutchins GM, Schwartz RP, Bailey KR, Passamani ER (1985) Animal models for protecting ischemic myocardium: results of the NHLBI cooperative study. Comparison of unconscious and conscious dog models. Circ Res 56:651–665PubMedGoogle Scholar
  19. Scherlag BJ, El-Sherif N, Hope R, Lazzara R (1974) Characterization and localization of ventricular arrhythmias resulting from myocardial ischemia and infarction. Circ Res 35:372–383PubMedGoogle Scholar
  20. Schaper W, Frenzel H, Hort W (1979) Experimental coronary artery occlusion. I. Measurement of infarct size. Basic Res Cardiol 74:46–53PubMedGoogle Scholar
  21. Spata T, Bobek D, Whitson BA, Parthasarathy S, Mohler PJ, Higgins RS, Kilic A (2013) A nonthoracotomy myocardial infarction model in an ovine using autologous platelets. Biomed Res Int 2013:938047PubMedCentralPubMedGoogle Scholar
  22. Symons JD, Correa SD, Schaefer S (1998) Na-H exchange inhibition with cariporide limits functional impairment due to repetitive ischemia. J Cardiovasc Pharmacol 32(6):853–862PubMedGoogle Scholar

Acute Ischemia by Injection of Microspheres in Dogs

  1. Gorodetskaya EA, Dugin SF, Medvedev OS, Allabergenova AE (1990) A simple method to produce acute heart failure by coronary vessel embolization in closed chest rats with microspheres. J Pharmacol Methods 24:43–51PubMedGoogle Scholar
  2. Rooke GA, Feigl EO (1982) Work as a correlate of canine left ventricular oxygen consumption, and the problem of catecholamine oxygen wasting. Circ Res 50:273–286PubMedGoogle Scholar
  3. Schölkens BA, Martorana PA, Göbel H, Gehring D (1986) Cardiovascular effects of the converting enzyme inhibitor ramipril (Hoe 498) in anesthetized dogs with acute ischemic left ventricular failure. Clin Exp Theory Pract A8(6):1033–1048Google Scholar
  4. Smiseth OA (1983) Effects of the β-adrenergic receptor agonist pirbuterol on cardiac performance during acute ischaemic left ventricular failure in dogs. Eur J Pharmacol 87:379–386PubMedGoogle Scholar
  5. Smiseth OA, Mjøs OD (1982) A reproducible and stable model of acute ischemic left ventricular failure in dogs. Clin Physiol 2:225–239PubMedGoogle Scholar

Influence on Myocardial Preconditioning

  1. Baxter GF, Marber MS, Patel VC, Yellon DM (1994) Adenosine receptor involvement in a delayed phase of myocardial protection 24 h after ischemic preconditioning. Circulation 90:2993–3000PubMedGoogle Scholar
  2. Garcia-Dorado D, Théroux P, Elizaga J, Galiñanes M, Solares J, Riesgo M, Gomez MJ, Garcia-Dorado A, Aviles FF (1987) Myocardial reperfusion in the pig heart model: infarct size and duration of coronary occlusion. Cardiovasc Res 21:537–544PubMedGoogle Scholar
  3. Gho BC, Schoemaker RG, van der Lee C, Sharma HS, Verdouw PC (1994) Myocardial infarct size limitation in rat by transient renal ischemia. Circulation 90:I-476/2557Google Scholar
  4. Gross JG, Auchampach JA (1992) Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res 70:223–233PubMedGoogle Scholar
  5. Hoff PT, Tamura Y, Lucchesi BR (1990) Cardioprotective effects of amlodipine on ischemia and reperfusion in two experimental models. Am J Cardiol 66:10H–16HPubMedGoogle Scholar
  6. Kharbanda RK, Mortensen UM, White PA, Kristiansen SB, Schmidt MR, Hoschtitzky JA, Vogel M, Sorensen K, Redington AN, MacAllister R (2002) Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation 106:2881–2883PubMedGoogle Scholar
  7. Li GC, Vasquez JA, Gallagher KP, Lucchesi BR (1990) Myocardial protection with preconditioning. Circulation 82:609–619PubMedGoogle Scholar
  8. Linz W, Wiemer G, Schölkens BA (1992) ACE-inhibition induces NO-formation in cultured bovine endothelial cells and protects isolated ischemic rat hearts. J Mol Cell Cardiol 24:909–919PubMedGoogle Scholar
  9. Linz W, Wiemer G, Gohlke P, Unger T, Schölkens BA (1994) Kardioprotektive Effekte durch Ramipril nach Ischämie und Reperfusion in tierexperimentellen Studien. Z Kardiol 83(Suppl 4):53–56PubMedGoogle Scholar
  10. Liu GS, Thornton J, Van Winkle DM, Stanley WH, Olsson RA, Downey JM (1991) Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation 84:350–356PubMedGoogle Scholar
  11. Merlocco AC, Redington KL, Disenhouse T, Strantzas SC, Gladstone R, Wei C, Tropak MB, Manlhiot C, Li J, Redington AN (2014) Transcutaneous electrical nerve stimulation as a novel method of remote preconditioning: in vitro validation in an animal model and first human observations. Basic Res Cardiol 109(3):406PubMedGoogle Scholar
  12. Mickelson JK, Simpson PJ, Lucchesi BR (1989) Streptokinase improves reperfusion blood flow after coronary artery occlusion. Int J Cardiol 23:373–384PubMedGoogle Scholar
  13. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischaemia: a delay of lethal cell injury in ischaemic myocardium. Circulation 74:1124–1136PubMedGoogle Scholar
  14. Parratt JR (1994) Protection of the heart by ischemic preconditioning: mechanisms and possibilities for pharmacological exploitation. TIPS 15:19–25PubMedGoogle Scholar
  15. Parratt J, Vegh A (1994) Pronounced antiarrhythmic effects of ischemic preconditioning. Cardioscience 5:9–18PubMedGoogle Scholar
  16. Shimizu M, Tropak M, Diaz RJ, Suto F, Surendra H, Kuzmin E, Li J, Gross G, Wilson GJ, Callahan J, Redington AN (2009) Transient limb ischaemia remotely preconditions through a humoral mechanism acting directly on the myocardium: evidence suggesting cross-species protection. Clin Sci (Lond) 117:191–200Google Scholar
  17. Simpson PJ, Fantone JC, Mickelson JK, Gallagher KP, Lucchesi BR (1988) Identification of a time window for therapy to reduce experimental canine myocardial injury: suppression of neutrophil activation during 72 h of reperfusion. Circ Res 63:1070–1079PubMedGoogle Scholar
  18. Sun JZ, Tang XL, Knowton AA, Park SW, Qiu Y, Bolli R (1995) Late preconditioning against myocardial stunning. An endogenous protective mechanism that confers resistance to post-ischemic dysfunction 24 h after brief ischemia in conscious pigs. J Clin Invest 95:388–403PubMedCentralPubMedGoogle Scholar
  19. Szekeres L, Szilvássy Z, Fernandy P, Nagy I, Karcsu S, Scáti S (1997) Delayed cardiac protection against harmful consequences of stress can be induced in experimental atherosclerosis in rabbits. J Mol Cell Cardiol 29:1977–1983PubMedGoogle Scholar
  20. Szilvássy Z, Fernandy P, Bor P, Jakab I, Lonovics J, Koltai M (1994) Ventricular overdrive pacing-induced anti-ischemic effect: a conscious rabbit model of preconditioning. Am J Physiol 266(Heart Circ Physiol 35):H2033–H2041PubMedGoogle Scholar
  21. Szilvássy Z, Fernandy P, Szilvássy J, Nagy I, Karcsu S, Lonovics J, Dux L, Koltai M (1995) The loss of pacing-induced preconditioning in atherosclerotic rabbits: role of hypercholesterolaemia. J Mol Cell Cardiol 27:2559–2569PubMedGoogle Scholar
  22. Tamura Y, Chi L, Driscoll EM, Hoff PT, Freeman BA, Gallagher KP, Lucchesi BR (1988) Superoxide dismutase conjugated to polyethylene glycol provides sustained protection against myocardial ischemia/reperfusion injury in canine heart. Circ Res 63:944–959PubMedGoogle Scholar
  23. Toombs CF, McGee DS, Johnston WE, Vinten-Johansen J (1993) Protection from ischaemic-reperfusion injury with adenosine pretreatment is reversed by inhibition of ATP sensitive potassium channels. Cardiovasc Res 27:623–629PubMedGoogle Scholar
  24. van Gilst WH, de Graeff PA, Wesseling H, de Langen CDJ (1986) Reduction of reperfusion arrhythmias in the ischemic isolated rat heart by angiotensin converting enzyme inhibitors: a comparison of captopril, enalapril, and HOE 498. J Cardiovasc Pharmacol 8:722–728Google Scholar
  25. Vegh A, Szekeres L, Parrat JR (1990) Protective effects of preconditioning of the ischaemic myocardium involve cyclooxygenase products. Cardiovasc Res 24:1020–1023PubMedGoogle Scholar
  26. Volovsek A, Subramanian R, Reboussin D (1992) Effects of duration of ischaemia during preconditioning on mechanical function, enzyme release and energy production in the isolated working rat heart. J Mol Cell Cardiol 24:1011–1019PubMedGoogle Scholar
  27. Wiemer G, Schölkens BA, Becker RHA, Busse R (1991) Ramiprilat enhances endothelial autacoid formation by inhibiting breakdown of endothelium-derived bradykinin. Hypertension 18:558–563PubMedGoogle Scholar
  28. Yang XM, Baxter GF, Heads RJ, Yellon DM, Downey JM, Cohen MV (1996) Infarct limitation of the second window of protection in a conscious rabbit model. Cardiovasc Res 31:777–783Google Scholar
  29. Yao Z, Gross GJ (1994) A comparison of adenosine-induced cardioprotection and ischemic preconditioning in dogs. Efficacy, time course, and role of KATP channels. Circulation 89:1229–1236PubMedGoogle Scholar

MRI Studies of Cardiac Function

  1. Al-Shafei AIM, Wise RG, Gresham GA, Bronns G, Carpenter TA, Hall LD, Huang CHL (2002a) Non-invasive magnetic resonance assessment of myocardial changes and the effects of angiotensin-converting enzyme inhibition in diabetic rats. J Physiol (Lond) 538:541–553PubMedCentralGoogle Scholar
  2. Al-Shafei AIM, Wise RG, Gresham GA, Carpenter TA, Hall LD, Huang CHL (2002b) Magnetic resonance imaging analysis of cardiac cycle events in diabetic rats: the effect of angiotensin-converting enzyme inhibition. J Physiol (Lond) 538:555–572PubMedCentralGoogle Scholar
  3. Ballon D, Graham MC, Midownik S, Koutcher JA (1990) A 64 MHz half-birdcage resonator for clinical imaging. J Magn Reson 90:131–140Google Scholar
  4. Bryant D, Becker L, Richardson J, Shelton J, Franco F, Peshock R, Thompson M, Giroir B (1998) Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-α. Circulation 97:1375–1381PubMedGoogle Scholar
  5. Franco F, Thomas GD, Giroir B, Bryant D, Bullock MC, Chwialkowski MC, Victor RG, Peshock RM (1999) Magnetic resonance imaging and invasive evaluation of development of heart failure in transgenic mice with myocardial expression of tumor necrosis factor-α. Circulation 99:448–454PubMedGoogle Scholar
  6. Itter G, Jung W, Juretschke P, Schölkens BA, Linz W (2004c) A model of chronic heart failure in spontaneous hypertensive rats (SHR). Lab Anim 38:138–146PubMedGoogle Scholar
  7. Kraitchman DL, Sampath S, Castillo E, Derbyshire JA, Boston RC, Bluemke DA, Gerber BL, Pronce JL, Osman NF (2003) Quantitative ischemia detection during cardiac magnetic resonance stress testing by use of FastHARP. Circulation 107:2025–2030PubMedGoogle Scholar
  8. Pelzer T, Jazbutyte V, Hu K, Segerer S, Nahrendorf M, Nordbeck P, Bonz AW, Muck J, Fritzemeier KH, Hegele-Hartung C, Ertl G, Neyses L (2005) The estrogen receptor-α agonist 16α-LE2 inhibits cardiac hypertrophy and improves hemodynamic function in estrogen-deficient spontaneously hypertensive rats. Cardiovasc Res 67:604–612PubMedGoogle Scholar
  9. Peshock RM, Willet DL, Sayad DE, Hundley WG, Chwialkowski MC, Clarke GD, Parkey RW (1996) Quantitative MR imaging of the heart. Magn Reson Imaging Clin N Am 4:267–305Google Scholar
  10. Reddy VY, Malchano ZJ, Holmvang G, Schmidt EJ, d’Avila A, Houghtaling C, Chan RC (2004) Integration of cardiac magnetic resonance imaging with three-dimensional electroanatomic mapping to guide left ventricular catheter manipulation. Feasibility of a porcine model of healed myocardial infarction. J Am Coll Cardiol 44:2202–2213PubMedGoogle Scholar
  11. Wiesmann F, Frydrychowicz A, Rautenberg J, Illinger R, Rommel E, Haase A, Neubauer S (2002) Analysis of right ventricular function in healthy mice and a murine model of heart failure by in vivo MRI. Am J Physiol 283:H1065–H1071Google Scholar

MRI Studies After Heart and Lung Transplantation

  1. Dodd SJ, Williams M, Suhan JP et al (1999) Detection of single mammalian cells by high-resolution magnetic resonance imaging. Biophys J 76:103–109PubMedCentralPubMedGoogle Scholar
  2. Gellissen J, Axmann C, Prescher A et al (1999) Extra- and intracellular accumulation of ultrasmall superparamagnetic iron oxides (USPIO) in experimentally induced abscesses of the peripheral soft tissues and their effects on magnetic resonance imaging. Magn Reson Imaging 17:557–567PubMedGoogle Scholar
  3. Kanno S, Lee PC, Dodd SJ et al (2000) A novel approach using magnetic resonance imaging for the detection of lung allograft rejection. J Thorac Cardiovasc Surg 120:923–934PubMedGoogle Scholar
  4. Kanno S, Wu YJ, Lee PC, Dodd SJ, Williams M, Griffith HP, Ho C (2001) Macrophage accumulation associated with rat cardiac allograft rejection detected by magnetic resonance imaging with ultrasmall superparamagnetic iron oxide particles. Circulation 104:934–938PubMedGoogle Scholar
  5. Palmacci S, Josephson L (1993) Synthesis of polysaccharide covered superparamagnetic oxide colloids. US Patent 5,262,176 Example 1, 16 Nov 1993Google Scholar

Plastic Casts from Coronary Vasculature Bed

  1. Boor PJ, Reynolds ES (1977) A simple planimetric method for determination of left ventricular mass and necrotic myocardial mass in postmortem hearts. Am J Clin Pathol 68:387–392PubMedGoogle Scholar
  2. Kadatz R (1969) Sauerstoffdruck und Durchblutung im gesunden und koronarinsuffizienten Myocard des Hundes und ihre Beeinflussung durch koronarerweiternde Pharmaka. Arch Kreislaufforsch 58:263–293PubMedGoogle Scholar
  3. Kadatz R (1971) Agents acting on coronary blood vessels. In: Turner RA, Hebborn P (eds) Screening methods in pharmacology, vol II. Academic Press, New York/London, pp 41–60Google Scholar
  4. Lumb G, Hardy LB. (1963) Collateral circulation in the heart. N C Med J. 24:456–60.PubMedGoogle Scholar
  5. Meesman W (1982) Early arrhythmias and primary ventricular fibrillation after acute myocardial ischemia in relation to pre-existing collaterals. In: Parratt JR (ed) Early arrhythmias resulting from myocardial ischemia. Mechanisms and prevention by drugs. McMillan, London, pp 93–112Google Scholar
  6. Meesmann W, Bachmann GW (1966) Pharmakodynamisch induzierte Entwicklung von Koronar-Kollateralen in Abhängigkeit von der Dosis. Arzneim Forsch 16:501–509Google Scholar
  7. Meesmann W, Schulz FW, Schley G, Adolphsen P (1970) Überlebensquote nach akutem experimentellem Coronarverschluß in Abhängigkeit von Spontankollateralen des Herzens. Z Ges Exp Med 153:246–264Google Scholar
  8. Schaper W, Xhonneux R, Jageneau AHM (1965) Stimulation of the coronary collateral circulation by Lidoflazine (R 7904). Naunyn-Schmiedeberg’s Arch Exp Pathol Pharmakol 252:1–8Google Scholar
  9. Schmidt HD, Schmier J (1966) Eine Methode zur Herstellung anatomischer Korrosionspräparate – dargestellt am Koronargefäßsystem des Hundes. Zschr Kreislaufforsch 55:297–305PubMedGoogle Scholar
  10. Vineberg AM, Chari RS, Pifarré R, Mercier C (1962) The effect of Persantin on intercoronary collateral circulation and survival during gradual experimental coronary occlusion. Can Med Assoc J 87:336–345PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Michael Gralinski
    • 1
  • Liomar A. A. Neves
    • 1
  • Olga Tiniakova
    • 1
  1. 1.CorDynamics, Inc.ChicagoUSA

Personalised recommendations