Methods to Induce Experimental Hypertension

  • Michael Gralinski
  • Liomar A. A. Neves
  • Olga Tiniakova
Living reference work entry

Abstract

Since the classical experiments of Goldblatt et al. (1934), there is clear evidence that the ischemia of the kidneys causes elevation of blood pressure by activation of the renin–angiotensin system. The principle can be used both for acute and chronic hypertension. In rats acute renal hypertension is induced by clamping the left renal artery for 4 h. After reopening of the vessel, accumulated renin is released into circulation. The protease renin catalyzes the first and rate-limiting step in the formation of angiotensin II leading to acute hypertension. The test is used to evaluate antihypertensive activities of drugs.

Keywords

Pulmonary Hypertension Portal Hypertension Renal Hypertension Neurogenic Hypertension Pharmacol Toxicol Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

Acute Renal Hypertension in Rats

  1. Berthold H, Scholtysik G, Engel G (1989) Inhibition of the 5-HT-induced cardiogenic hypertensive chemoreflex by the selective 5-HT3 receptor antagonist ICS 205-930. Naunyn Schmiedebergs Arch Pharmacol 339:259–262PubMedGoogle Scholar
  2. Boura ALA, Green AF (1964) Antihypertensive agents. In: Laurence DR, Bacharach AL (eds) Evaluation of drug activities: pharmacometrics. Academic, London/New York, pp 431–456Google Scholar
  3. Goldblatt H, Lynch J, Hanzal RF, Summerville WW (1934) Studies on experimental hypertension. I. The production of persistent evaluation of systolic blood pressure by means of renal ischemia. J Exp Med 59:347–379Google Scholar
  4. James TN, Isobe JH, Urthaler F (1975) Analysis of components in a cardiogenic hypertensive chemoreflex. Circulation 52:179–192PubMedGoogle Scholar

Chronic Renal Hypertension in Rats

  1. Boura ALA, Green AF (1964) Antihypertensive agents. In: Laurence DR, Bacharach AL (eds) Evaluation of drug activities: pharmacometrics. Academic, London/New York, pp 431–456Google Scholar
  2. Duan J, Jamarillo J, Jung GL, McLeod AL, Fernades BH (1996) A novel renal hypertensive guinea pig model for comparing different inhibitors of the renin-angiotensin system. J Pharmacol Toxicol Methods 35:83–89PubMedGoogle Scholar
  3. Goldblatt H, Lynch J, Hanzal RF, Summerville WW (1934) Studies on experimental hypertension. I. The production of persistent evaluation of systolic blood pressure by means of renal ischemia. J Exp Med 59:347–379Google Scholar
  4. Leite R, Salgado MCO (1992) Increased vascular formation of angiotensin II in one-kidney, one clip hypertension. Hypertension 19:575–581PubMedGoogle Scholar
  5. Schaffenburg CA (1959) Device to control constriction of main renal artery for production of hypertension in small animals. Proc Soc Exp Biol Med 101:676–677Google Scholar
  6. Zandberg P (1984) Animal models in experimental hypertension: relevance to drug testing and discovery. In: van Zwieten PA (ed) Handbook of hypertension. Pharmacology of antihypertensive drugs, vol 3. Elsevier, Amsterdam, pp 102–153Google Scholar

Chronic Renal Hypertension in Dogs

  1. Abrams M, Sobin S (1947) Latex rubber capsule for producing hypertension in rats by perinephritis. Proc Soc Exp Biol Med 64:412–416PubMedGoogle Scholar
  2. Goldblatt H, Lynch J, Hanzal RF, Summerville WW (1934) Studies on experimental hypertension. I. The production of persistent evaluation of systolic blood pressure by means of renal ischemia. J Exp Med 59:347–379Google Scholar
  3. Grollman A (1944) A simplified procedure for inducing chronic renal hypertension in the mammal. Proc Soc Exp Biol Med 57:102–104Google Scholar
  4. Schaffenburg CA (1959) Device to control constriction of main renal artery for production of hypertension in small animals. Proc Soc Exp Biol Med 101:676–677Google Scholar
  5. Sen S, Tarazi RC, Bumpus FM (1981) Reversal of cardiac hypertrophy in renal hypertensive rats: medical vs. surgical therapy. Am J Physiol 240:H408–H412PubMedGoogle Scholar
  6. Stanton HC (1971) Experimental hypertension. In: Schwartz A (ed) Methods in pharmacology, vol 1. Appleton-Century-Crofts/Meredith Corporation, New York, pp 125–150Google Scholar

Neurogenic Hypertension in Dogs

  1. Angell-James JE (1984) Neurogenic hypertension in the rabbit. In: de Jong W (ed) Handbook of hypertension. Experimental and genetic models of hypertension, vol 4. Elsevier Science, Amsterdam, pp 364–397Google Scholar
  2. Boura ALA, Green AF (1964) Antihypertensive agents. In: Laurence DR, Bacharach AL (eds) Evaluation of drug activities: pharmacometrics. Academic, London/New York, pp 431–456Google Scholar
  3. Grimson KS (1941) The sympathetic nervous system in neurogenic and renal hypertension. Arch Surg (Chicago) 43:284–305Google Scholar
  4. Krieger EM (1984) Neurogenic hypertension in the rat. In: de Jong W (ed) Handbook of hypertension. Experimental and genetic models of hypertension, vol 4. Elsevier Science, Amsterdam, pp 350–363Google Scholar
  5. Maxwell RA, Plummer AJ, Schneider F, Povalski H, Daniel AI (1960) Pharmacology of [2-(octahydro-1-azocinyi)-ethyl]-guanidine sulfate (SU-5864). J Pharmacol 128:22–29Google Scholar

DOCA-salt Induced Hypertension in Rats

  1. Bockman CS, Jeffries WB, Pettinger WA, Abei PW (1992) Enhanced release of endothelium-derived relaxing factor in mineralocorticoid hypertension. Hypertension 20:304–313PubMedGoogle Scholar
  2. Codde JP, Croft KD, Beilin LJ (1987) Dietary suppression of prostaglandin synthesis does not accelerate DOCA/salt hypertension in rats. Clin Exp Pharmacol Physiol 14:513–523PubMedGoogle Scholar
  3. Dardik BN, Di Bello PM, Chatelain RE (1988) Elevated arterial cyclic AMP levels during the development of one kidney, one clip and DOCA hypertension in rats. Eur J Pharmacol 158:139–143PubMedGoogle Scholar
  4. Friedman SM, McIndoe RA, Tanaka M (1988) The relation of cellular sodium to the onset of hypertension induced by DOCA-saline in the rat. J Hypertens 6:63–69PubMedGoogle Scholar
  5. Gross V, Lippoldt A, Bohlender J, Bader M, Hansson A, Luft FC (1998) Cortical and medullary hemodynamics in desoxycorticosterone acetate-salt hypertensive mice. J Am Soc Nephrol 9:346–354PubMedGoogle Scholar
  6. Gross V, Schneider W, Schunk WH, Mervaala E, Luft FC (1999) Chronic effects of lovastatin and bezafibrate on cortical and medullary hemodynamics in desoxycorticosterone acetate-salt hypertensive mice. J Am Soc Nephrol 10:1430–1439PubMedGoogle Scholar
  7. Hasnain Q, MacDonald G (1993) Metabolic studies of uridine in rats with DOCA-salt hypertension and on high sodium diet. Clin Exp Pharmacol Physiol 20:384–387PubMedGoogle Scholar
  8. Honeck H, Gross V, Erdmann B, Kärgel E, Neunaber R, Milia AF, Schneider W, Luft FC, Schunk WH (2000) Cytochrome P450-dependent renal arachidonic acid metabolism in desoxycorticosterone acetate-salt hypertensive mice. Hypertension 36:610PubMedGoogle Scholar
  9. King CM, Webb RC (1988) The endothelium partially obscures enhanced microvessel reactivity in DOCA hypertensive rats. Hypertension 12:420–427PubMedGoogle Scholar
  10. Li JS, Sventek P, Schiffrin EL (1996) Effect of antihypertensive treatment and N ω-nitro-l-arginine methyl ester on cardiovascular structure in deoxycorticosterone acetate-salt hypertensive rats. J Hypertens 14:1331–1339PubMedGoogle Scholar
  11. Majima M, Katori M, Hanazuka M, Mizogami S, Nakano T, Nakao Y, Mikami R, Uryu H, Okamura R, Mohsin SSJ, Oh-Ishi S (1991) Suppression of rat desoxycorticosterone-salt hypertension by the kallikrein-kinin system. Hypertension 17:806–813PubMedGoogle Scholar
  12. Majima M, Yoshida O, Mihara H, Muto T, Mitsogami S, Kuribayashi Y, Katori M, Oh-Ishi S (1993) High sensitivity to salt in kininogen-deficient Brown Norway Katholiek rats. Hypertension 22:705–714PubMedGoogle Scholar
  13. Opoku J, Kalimi M (1992) Role of the antiglucocorticoid RU 486 in the prevention of steroid-induced hypertension. Acta Endocrinol 127:258–261PubMedGoogle Scholar
  14. Ormsbee HS, Ryan CF (1973) Production of hypertension with desoxycorticosterone acetate-impregnated silicone rubber implants. J Pharmacol Sci 62:255–257Google Scholar
  15. Passmore JC, Jimenez AE (1990) Separate hemodynamic roles for chloride and sodium in deoxycorticosterone acetate-salt hypertension. Proc Soc Exp Biol Med 194:283–288PubMedGoogle Scholar
  16. Peng H, Carretero OA, Alfie ME, Masura JA, Rhaleb NE (2001) Effects of angiotensin-converting enzyme inhibitor and angiotensin type 1 receptor antagonist in deoxycorticosterone acetate-salt hypertensive mice lacking Ren-2 gene. Hypertension 37:974PubMedGoogle Scholar
  17. Peterfalvi M, Jequier R (1960) La 10-methoxy deserpidine. Étude pharmacoiogique. Arch Int Pharmacodyn 124:237–254PubMedGoogle Scholar
  18. Schenk J, McNeill JH (1992) The pathogenesis of DOCA-salt hypertension. J Pharmacol Toxicol Methods 27:161–170PubMedGoogle Scholar
  19. Stanton HC (1971) Experimental hypertension. In: Schwartz A (ed) Methods in pharmacology, vol 1. Appleton-Century-Crofts/Meredith Corporation, New York, pp 125–150Google Scholar
  20. Ullian ME (1997) The Wistar–Furth rat as a model of mineralocorticoid resistance. Kidney Int 52(Suppl 61):S10–S13Google Scholar

Fructose Induced Hypertension in Rats

  1. Brands MW, Hildebrandt DA, Mizelle HL, Hall JE (1991) Sustained hyperinsulinemia increases arterial pressure in conscious rats. Am J Physiol 260:R764–R768PubMedGoogle Scholar
  2. Brands MW, Hildebrandt DA, Mizelle HL, Hall JE (1992) Hypertension during chronic hyperinsulinemia in rats is not salt sensitive. Hypertension 19(Suppl I):I83–I89PubMedGoogle Scholar
  3. Dai S, McNeil JH (1995) Fructose-induced hypertension in rats is concentration- and duration-dependent. J Pharmacol Toxicol Methods 33:101–107PubMedGoogle Scholar
  4. Hall CE, Hall O (1966) Comparative effectiveness of glucose and sucrose in enhancement of hyperalimentation and salt hypertension. Proc Soc Exp Biol Med 123:370–374PubMedGoogle Scholar
  5. Hall JE, Brands MW, Zappe DH, Dixon WN, Mizeiie HL, Rein-hart GA, Hildebrandt DA (1995) Hemodynamic and renal responses to chronic hyperinsulinemia in obese, insulin-resistant dogs. Hypertension 25:994–1002PubMedGoogle Scholar
  6. Hwang IS, Ho H, Hoffman BB, Reaven GM (1987) Fructose-induced insulin resistance and hypertension in rats. Hypertension 10:512–516PubMedGoogle Scholar
  7. Hwang IS, Huang WC, Wu JN, Reaven GM (1989) Effect of fructose-induced hypertension on the renin-angiotensin-aldosterone system and atrial natriuretic factor. Am J Hypertens 2:424–427PubMedGoogle Scholar
  8. Preuss MB, Preuss HG (1980) The effects of sucrose and sodium on blood pressures in various substrains of wistar rats. Lab Invest 43:101–107PubMedGoogle Scholar
  9. Reaven GM, Ho H, Hoffman BB (1988) Attenuation of fructose-induced hypertension in rats by exercise training. Hypertension 12:129–132PubMedGoogle Scholar
  10. Reaven GM, Ho H, Hoffman BB (1989) Somatostatin inhibition of fructose-induced hypertension. Hypertension 14:117–120PubMedGoogle Scholar
  11. Tobey TA, Mondon CE, Zavaroni I, Reaven GM (1982) Mechanism of insulin resistance in fructose-fed rats. Metabolism 31:608–612PubMedGoogle Scholar
  12. Young JB, Landsberg L (1981) Effect of sucrose on blood pressure in the spontaneously hypertensive rat. Metabolism 30:421–424PubMedGoogle Scholar
  13. Zavaroni I, Sander S, Scott A, Reaven GM (1980) Effect of fructose feeding on insulin secretion and insulin action in the rat. Metabolism 29:970–973PubMedGoogle Scholar

Genetic Hypertension in Rats

  1. Ben-Ishay D (1984) The Sabra hypertension-prone and -resistant strain. In: de Jong W (ed) Handbook of hypertension. Experimental and genetic models of hypertension, vol 4. Elsevier Science, New York, pp 296–313Google Scholar
  2. Ben-Ishay D, Saliternik R, Welner A (1972) Separation of two strains of rats with inbred dissimilar sensitivity to DOCA-salt hypertension. Experientia 28:1321–1322PubMedGoogle Scholar
  3. Berthelot A (1991) Hypertension models and screening of antihypertensive drugs. In: 7th Freiburg focus on biomeasurement. Cardiovascular and respiratory in vivo studies. Biomesstechnik-Verlag March GmbH, March, Germany, pp 106–109Google Scholar
  4. Bianchi G, Fox U, Imbasciati E (1974) The development of a new strain of spontaneously hypertensive rats. Life Sci 14:339–347PubMedGoogle Scholar
  5. Bianchi G, Ferrari P, Barber BR (1984) The Milan hypertensive strain. In: de Jong W (ed) Handbook of hypertension. Experimental and genetic models of hypertension, vol 4. Elsevier, Amsterdam, pp 328–340Google Scholar
  6. Bianchi G, Ferrari P, Cusi D, Salardi S, Giudi E, Niutta E, Tripodi G (1986) Genetic and experimental hypertension in the animal model – similarities and dissimilarities to the development of human hypertension. J Cardiovasc Pharmacol 8(Suppl 5):S64–S70PubMedGoogle Scholar
  7. Bohlender J, Ménard J, Wagner J, Luft FC, Ganten D (1996) Développement chez le rat d’un modèle d’hypertension à la rénine humaine. Arch Mal Cœur 89:1009–1011PubMedGoogle Scholar
  8. Bohlener J, Fukamizu A, Lippoldt A, Nomura T, Dietz R, Ménard J, Muarakami K, Luft FC, Ganten D (1997) High human renin hypertension in transgenic rats. Hypertension 29(part 2):428–434Google Scholar
  9. Cicila GT, Rapp JP, Wang JM, Lezin ES, Ng SC, Kurtz TW (1993) Linkage of 11 β-hydroxylase mutations with altered steroid biosynthesis and blood pressure in the Dahl rat. Nat Genet 3:346–353PubMedGoogle Scholar
  10. Dahl LK, Heine M, Tassinari L (1962a) Role of genetic factors in susceptibility to experimental hypertension due to chronic salt ingestion. Nature 194:480–482PubMedGoogle Scholar
  11. Dahl LK, Heine M, Tassinari L (1962b) Effects of chronic salt ingestion. Evidence that genetic factors play an important role in susceptibility to experimental hypertension. J Exp Med 115:1173–1190PubMedCentralPubMedGoogle Scholar
  12. Dahl LK, Heine M, Tassinari L (1963) Effects of chronic excess salt ingestion: role of genetic factors in both DOCA-salt and renal hypertension. J Exp Med 118:605PubMedCentralPubMedGoogle Scholar
  13. Deng Y, Rapp JP (1992) Cosegregation of blood pressure with angiotensin converting enzyme and atrial natriuretic receptor genes using Dahl salt-sensitive rats. Nat Genet 1:267–272PubMedGoogle Scholar
  14. Dubay C, Vincent M, Samani NJ, Hilbert P, Kaiser MA, Beressi JP, Kotelevtsev Y, Beckmann JS, Soubrier F, Sassard J, Lathorp GM (1993) Genetic determinants of diastolic and pulse pressure map to different loci in Lyon hypertensive rats. Nat Genet 3:354–357PubMedGoogle Scholar
  15. Dupont J, Dupont JC, Fromnet A, Milon H, Vincent M (1973) Selection of three strains of rats with spontaneously different levels of blood pressure. Biomedicine 19:36–41PubMedGoogle Scholar
  16. Ernsberger P, Koletsky RJ, Collins LA, Douglas HC (1993) Renal angiotensin receptor mapping in obese spontaneously hypertensive rats. Hypertension 21:1039–1045PubMedGoogle Scholar
  17. Feron O, Salomone S, Godfraind T (1996) Action of the calcium channel blocker lacidipine on cardiac hypertrophy and endothelin-1 gene expression in stroke-prone hypertensive rats. Br J Pharmacol 118:659–664PubMedCentralPubMedGoogle Scholar
  18. Ganten D (1987) Role of animal models in hypertension research. Hypertension 1(9):I2–I4Google Scholar
  19. Gouyon B, Julier C, Takahashi S, Vincent M, Ganten D, Georges M, Lathrop GM (1991) Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats. Nature 353:521–529PubMedGoogle Scholar
  20. Hamet P, Malo D, Tremblay J (1990) Increased transcription of a major stress gene in spontaneously hypertensive mice. Hypertension 15:904–908PubMedGoogle Scholar
  21. Hilbert P, Lindpaintner K, Beckmann JS, Serikawa T, Soubrier F, Dubay C, Cartwright P, Ganten D, Lindpainter K, Ganten U, Peters J, Zimmermann F, Bader M, Mullins J (1991) Transgenic animals: new animal models in hypertension research. Hypertension 17:843–855Google Scholar
  22. Holycross BJ, Summers BM, Dunn RB, McCune SA (1997) Plasma renin activity in heart failure-prone SHHF/Mccfacp rats. Am J Physiol 273(1 Pt2):H228–H233PubMedGoogle Scholar
  23. Inoko M, Kihara Y, Morii I, Fujiwara H, Saayama S (1994) Transition from compensatory hypertrophy to dilated, failing left ventricles in Dahl salt-sensitive rats. Am J Physiol 267:H2471–H2482PubMedGoogle Scholar
  24. Jacob HJ, Lindpainter K, Lincoln SE, Kusumi K, Bunker RK, Mao YP, Ganten D, Dzau VJ, Lander ES (1991) Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 67:213–224PubMedGoogle Scholar
  25. Koletsky S (1975) Pathologic findings and laboratory data in a new strain of obese hypertensive rats. Am J Pathol 80:129–140PubMedCentralPubMedGoogle Scholar
  26. Langheinrich M, Jee MA, Böhm M, Pinto YM, Ganten D, Paul M (1996) The hypertensive Ren-2 transgenic rat TGR(mREN2)27 in hypertension research. Characteristics and functional aspects. Am J Hypertens 9:506–512PubMedGoogle Scholar
  27. Laverty R, Smirk FH (1961) Observations on the pathogenesis of spontaneous inherited hypertension and constricted renal-artery hypertension in rats. Circ Res 9:455–464PubMedGoogle Scholar
  28. Lee MA, Böhm M, Paul M, Bader M, Ganten U, Ganten D (1996) Physiological characterization of the hypertensive transgenic rat TGR(mREN2)27. Am J Physiol 270(6 Pt 1):E919–E929PubMedGoogle Scholar
  29. Linz W, Ganten D (1992) Contributions of animal models to understanding hypertension. In: Zipes DP, Rowlands DJ (eds) Progress in cardiology. Lea and Febiger, Philadelphia, pp 25–36Google Scholar
  30. Linz W, Jessen T, Becker RHA, Schölkens BA, Wiemer G (1997) Long-term ACE inhibition doubles lifespan of hypertensive rats. Circulation 96:3164–3172PubMedGoogle Scholar
  31. Meneton P, Ichikawa I, Inagami T, Schnermann J (2000) Renal physiology of the mouse. Am J Physiol 278:339–351Google Scholar
  32. Mullins JJ, Ganten D (1990) Transgenic animals: new approaches to hypertension research. J Hypertens 8(Suppl 7):S35–S37Google Scholar
  33. Mullins JJ, Peters J, Ganten D (1990) Fulminant hypertension in transgenic rats harboring the mouse Re-2 gene. Nature 344:541–544PubMedGoogle Scholar
  34. Ohkubo H, Kawakami H, Kakehi Y, Takumi T, Arai H, Yokota Y, Iwai M, Tanabe Y, Masu M, Hata J, Iwao H, Okamoto H, Yokoyama M, Nomura T, Katsuki M, Nakanishi S (1990) Generation of transgenic mice with elevated blood pressure by introduction of the rat renin and angiotensinogen genes. Proc Natl Acad Sci U S A 87:5153–5156PubMedCentralPubMedGoogle Scholar
  35. Ohta K, Kim S, Wanibuchi H, Ganten D, Iwao K (1996) Contribution of local renin-angiotensin system to cardiac hypertrophy, phenotypic modulation, and remodelling in TGR(mREN2)27 transgenic rats. Circulation 94:785–791PubMedGoogle Scholar
  36. Okamoto K, Aoki K (1963) Development of a strain of spontaneously hypertensive rats. Jpn Circ J 27:282–293PubMedGoogle Scholar
  37. Okamoto K, Tabei R, Fukushima M, Nosaka S, Yamori Y, Ichijima K, Haebara H, Matsumoto M, Maruyama T, Suzuki Y, Tamegai M (1966) Further observations of the development of a strain of spontaneously hypertensive rats. Jpn Circ J 30:703–716PubMedGoogle Scholar
  38. Okamoto K, Yamori Y, Nagaoka A (1974) Establishment of the stroke-prone spontaneously hypertensive rat (SHR). Circ Res 34/35(Suppl I):I143–I153Google Scholar
  39. Peters J, Münter K, Bader M, Hackenthal E, Mullins JJ, Ganten D (1993) Increased adrenal renin in transgenic hypertensive rats, TGR(mREN2)27, and its regulation by cAMP, angiotensin II, and calcium. J Clin Invest 91:742–747PubMedCentralPubMedGoogle Scholar
  40. Phelan EL (1968) The New Zealand strain of rats with genetic hypertension. N Z Med J 67:334–344PubMedGoogle Scholar
  41. Phelan EL, Smirk FH (1960) Cardiac hypertrophy in genetically hypertensive rats. J Pathol Bacteriol 80:445–448PubMedGoogle Scholar
  42. Pijl AJ, van der Wal AC, Mathy MJ, Kam KL, Hendriks MGC, Pfaffendorf M, van Zwieten PA (1994) Streptozotocin-induced diabetes mellitus in spontaneously hypertensive rats: a pathophysiological model for the combined effects of hypertension and diabetes. J Pharmacol Toxicol Methods 32:225–233PubMedGoogle Scholar
  43. Pinto YM, Paul M, Ganten D (1998) Lessons from rat models of hypertension: from Goldblatt to genetic engineering. Cardiovasc Res 39:77–88PubMedGoogle Scholar
  44. Pravenec M, Klír P, Kren V, Zicha J, Kuneš J (1989) An analysis of spontaneous hypertension in spontaneously hypertensive rats by means of new recombinant inbred strains. J Hypertens 7:217–222PubMedGoogle Scholar
  45. Rapp JP (1984) Characteristics of Dahl salt-susceptible and salt-resistant rats. In: de Jong W (ed) Handbook of hypertension. Experimental and genetic models of hypertension, vol 4. Elsevier Science, New York, pp 286–295Google Scholar
  46. Rapp JP, Wang SM, Dene H (1989) A genetic polymorphism in the renin gene of Dahl rats cosegregates with blood pressure. Science 242:542–544Google Scholar
  47. Rosenberg WL, Schlager G, Gennaro JF Jr (1985) Glomerular filtration and fluid balance in genetically hypertensive mice. Proc Soc Exp Biol Med 178:629–634PubMedGoogle Scholar
  48. Rosenthal T, Erlich Y, Rosenmann E, Cohen A (1997) Effects of enalapril, losartan, and verapamil on blood pressure and glucose metabolism in the Cohen-Rosenthal diabetic hypertensive rat. Hypertension 29:1260–1264PubMedGoogle Scholar
  49. Salvati P, Ferrario RG, Bianchi G (1990) Diuretic effect of bumetanide in isolated perfused kidneys of Milan hypertensive rats. Kidney Int 37:1084–1089PubMedGoogle Scholar
  50. Samani NJ, Brammar WJ, Swales JD (1989) A major structural abnormality in the renin gene of the spontaneously hypertensive rat. J Hypertens 7:249–254PubMedGoogle Scholar
  51. Sen S, Tarazi RC, Khairallah PA, Bumpus FM (1974) Cardiac hypertrophy in spontaneously hypertensive rats. Circ Res 35:775–781PubMedGoogle Scholar
  52. Simpson FO, Phelan EL (1984) Hypertension in the genetically hypertensive rat strain. In: de Jong W (ed) Handbook of hypertension. Experimental and genetic models of hypertension, vol 4. Elsevier Science, New York, pp 200–223Google Scholar
  53. Smirk FH, Hall WH (1958) Inherited hypertension in rats. Nature 182:727–728PubMedGoogle Scholar
  54. Vincent M, Sacquet J, Sassard J (1984) The Lyon strains of hypertensive, normotensive and low-blood-pressure rats. In: de Jong W (ed) Handbook of hypertension. Experimental and genetic models of hypertension, vol 4. Elsevier Science, New York, pp 314–327Google Scholar
  55. Yamori Y (1984a) Development of the spontaneously hypertensive rat (SHR) and of various spontaneous rat models, and their implications. In: de Jong W (ed) Handbook of hypertension. Experimental and genetic models of hypertension, vol 4. Elsevier Science, New York, pp 224–239Google Scholar
  56. Yamori Y (1984b) The stroke-prone spontaneously hypertensive rat: contributions to risk factor analysis and prevention of hypertensive diseases. In: de Jong W (ed) Handbook of hypertension. Experimental and genetic models of hypertension, vol 4. Elsevier Science, New York, pp 240–255Google Scholar
  57. Yamori Y, Horie R, Nara Y, Kihara M (1983) Pathogenesis, prediction and prevention of stroke in stroke-prone SHR. In: Stefanovich V (ed) Stroke: animal models. Pergamon Press, Oxford/New York/Paris/Kronberg, pp 99–113Google Scholar
  58. Zolk O, Flesch M, Schnabel P, Teisman AC, Pinto YM, van Gilst WH, Paul M, Böhm M (1998) Effects of quinapril, losartan and hydralazine on cardiac hypertrophy and β-adrenergic neuroeffector mechanisms in transgenic TGR(mREN2)27 rats. Br J Pharmacol 123:405–412PubMedCentralPubMedGoogle Scholar

Hypertension Induced by Chronic Angiotensin II Infusion

  1. Abraham G, Simon G (1994) Autopotentiation of pressor responses by subpressor angiotensin II in rats. Am J Hypertens 7:269–275PubMedGoogle Scholar
  2. Brown AJ, Casals-Stenzel J, Gofford S, Lever AF, Morton JJ (1981) Comparison of fast and slow pressor effects of angiotensin II in the conscious rat. Am J Physiol Heart Circ Physiol 241:H381–H388Google Scholar
  3. Campbell DJ (2013) Do intravenous and subcutaneous angiotensin II administration increase blood pressure by different mechanisms? Clin Exp Pharmacol Physiol 40:560–567PubMedGoogle Scholar
  4. Csiky B, Simon G (1997) Effect of neonatal sympathectomy on development of angiotensin II-induced hypertension. Am J Physiol Heart Circ Physiol 272:H648–H656Google Scholar
  5. Davern PJ, Head GA (2007) Fos-related antigen immunoreactivity after acute and chronic angiotensin II-induced hypertension in the rabbit brain. Hypertension 49:1170–1177PubMedGoogle Scholar
  6. King AJ, Osborn JW, Fink GD (2007) Splanchnic circulation is a critical neural target in angiotensin II salt hypertension in rats. Hypertension 50:547–556PubMedGoogle Scholar
  7. Kuroki MT, Fink GD, Osborn JW (2014) Comparison of arterial pressure and plasma ANG II responses to three methods of subcutaneous ANG II administration. Am J Physiol Heart Circ Physiol 307(5):H670–H679PubMedGoogle Scholar
  8. Kuroki MT, Guzman PA, Fink GD, Osborn JW (2012) Time-dependent changes in autonomic control of splanchnic vascular resistance and heart rate in ANG II-salt hypertension. Am J Physiol Heart Circ Physiol 302:H763–H769PubMedCentralPubMedGoogle Scholar
  9. Ledwith BJ, Cahill MK, Losse LS, Satiritz SM, Eydelloth RS, Dallob AL, Tanaka WK, Galloway SM, Nichols WW (1993) Measurement of plasma angiotensin II: purification by cation-exchange chromatography. Anal Biochem 213:349–355PubMedGoogle Scholar
  10. Lohmeier TE, Hildebrandt DA (1998) Renal nerves promote sodium excretion in angiotensin-induced hypertension. Hypertension 31(1 Pt 2):429–34Google Scholar
  11. Lohmeier TE, Lohmeier JR, Haque A, Hildebrandt DA (2000) Baroreflexes prevent neurally induced sodium retention in angiotensin hypertension. Am J Physiol Regul Integr Comp Physiol 279:R1437–R1448PubMedGoogle Scholar
  12. Simon G, Altman S (1992) Subpressor angiotensin II is a bifunctional growth factor of vascular muscle in rats. J Hypertens 10:1165–1171PubMedGoogle Scholar
  13. Simon G (1992) Stimulation of vascular Na-K pump with subpressor angiotensin II in rats. Proc Soc Exp Biol Med 199:424–431PubMedGoogle Scholar
  14. Simon G, Abraham G, Cserep G (1995) Pressor and subpressor angiotensin II administration. Two experimental models of hypertension. Am J Hypertens 8:645–650PubMedGoogle Scholar
  15. Simon G, Illyes G, Csiky B (1998) Structural vascular changes in hypertension. Role of angiotensin II, dietary sodium supplementation, blood pressure, and time. Hypertension 32:654–660PubMedGoogle Scholar
  16. Zimmerman MC, Lazartigues E, Sharma RV, Davisson RL (2004) Hypertension caused by angiotensin II infusion involves increased superoxide production in the central nervous system. Circ Res 95:210–216PubMedGoogle Scholar

Hypertension Induced by Chronic NO-Synthase Inhibition

  1. Arnal JF, el Amrani AI, Chatellier G, Menard J, Michel JB (1993) Cardiac weight in hypertension induced by nitric oxide synthase blockade. Hypertension 22:380–387PubMedGoogle Scholar
  2. Baylis C, Mitruka B, Deng A (1992) Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage. J Clin Invest 90:276–281Google Scholar
  3. Hropot M, Grötsch H, Klaus E, Langer KH, Linz W, Wiemer G, Schölkens BA (1994) Ramipril prevents the detrimental sequels of chronic NO synthase inhibition in rats: hypertension, cardiac hypertrophy and renal insufficiency. Naunyn Schmiedebergs Arch Pharmacol 350:646–652PubMedGoogle Scholar
  4. Hropot M, Langer KH, Wiemer G, Grötsch H, Linz W (2003) Angiotensin II subtype AT1 receptor blockade prevents hypertension and renal insufficiency induced by chronic NO-synthase inhibition in rats. Naunyn Schmiedebergs Arch Pharmacol 367:312–317PubMedGoogle Scholar
  5. Hsieh NK, Wang JY, Liu JC, Wang SD, Chen HI (2004) Nitric oxide inhibition accelerates hypertension and induces perivascular inflammation in rats. Clin Exp Pharmacol Physiol 31:212–218PubMedGoogle Scholar
  6. Küng CF, Moreau P, Takase H, Lüscher TF (1995) L-NAME hypertension alters endothelial and smooth muscle function in rat aorta. Prevention by trandolapril and verapamil. Hypertension 26:744–751PubMedGoogle Scholar
  7. Linz W, Wohlfart P, Schölkens BA, Malinski T, Wiemer G (1999) Interactions between ACE, kinins and NO. Cardiovasc Res 43:549–561PubMedGoogle Scholar
  8. Ribeiro MO, Anuntes E, de Nucci G, Lovisolo SM, Zatz R (1992) Chronic inhibition of nitric oxide synthesis. A new model of arterial hypertension. Hypertension 20:298–303PubMedGoogle Scholar
  9. Rossi MA, Ramos SG, Prado CM (2003) Chronic inhibition of nitric oxide synthase induces hypertension and cardiomyocyte mitochondrial and myocardial remodeling in the absence of hypertrophy. J Hypertens 21:993–1001PubMedGoogle Scholar
  10. Sampaio RC, Tanus-Santos JE, Melo SESFC, Hyslop S, Franchinini KG, Luca IM, Moreno H Jr (2002) Hypertension plus diabetes mimics the cardiomyopathy induced by nitric oxide inhibition in rats. Chest 122:1412–1420PubMedGoogle Scholar
  11. Yang Y, Macdonald GJ, Duggan KA (1996) A study of angiotensin II receptors after chronic inhibition of nitric oxide synthase in the spontaneously hypertensive rat. Clin Exp Pharmacol Physiol 23:441–443PubMedGoogle Scholar

Pulmonary Hypertension Induced by Monocrotaline

  1. Altiere RJ, McIntyre MJ, Petrenka J, Olson JW, Gillespie MN (1986) Altered pulmonary vascular smooth muscle responsiveness in monocrotaline-induced pulmonary hypertension. J Pharmacol Exp Ther 236:390–395PubMedGoogle Scholar
  2. Ceconi C, Condorelli ER, Quinzanini M, Rodella A, Ferrari R, Harris P (1989) Noradrenaline, atrial natriuretic peptide, bombesin and neurotensin in myocardium and blood of rats in congestive cardiac failure. Cardiovasc Res 23:674–682PubMedGoogle Scholar
  3. Ghodsi F, Will JA (1981) Changes in pulmonary structure and function induced by monocrotaline intoxication. Am J Physiol 240:H149–H155PubMedGoogle Scholar
  4. Gillespie MN, Olson JW, Reinsel CN, O’Connor WN, Altiere RJ (1986) Vascular hyperresponsiveness in perfused lungs from monocrotaline-treated rats. Am J Physiol 251:H109–H114PubMedGoogle Scholar
  5. Gillespie MN, Goldblum SE, Cohen DA, McClain CJ (1988) Interleukin-1 bioactivity in the lungs of rats with monocrotaline-induced pulmonary hypertension. Proc Soc Exp Biol Med 187:26–32PubMedGoogle Scholar
  6. Gout B, Quiniou MJ, Khandoudi N, Le Dantec C, Saiag B (1999) Impaired endothelium-dependent relaxation by adrenomedullin in monocrotaline-treated rat arteries. Eur J Pharmacol 380:23–30PubMedGoogle Scholar
  7. Hilliker KS, Roth RA (1985) Increased vascular responsiveness in lungs of rats with pulmonary hypertension induced by monocrotaline pyrrole. Am Rev Respir Dis 131:46–50PubMedGoogle Scholar
  8. Hilliker KS, Bell TG, Roth RA (1982) Pneumotoxicity and thrombocytopenia after single injection of monocrotaline. Am J Physiol 242:H573–H579PubMedGoogle Scholar
  9. Hislop A, Reid L (1979) Arterial changes in Crotalaria spectabilis-induced pulmonary hypertension in rats. Br J Exp Pathol 55:153–163Google Scholar
  10. Huxtable RD, Ciaramitaro D, Eisenstein D (1978) The effect of a pyrrolizidine alkaloid, monocrotaline, and a pyrrole, dehydroretronecine, on the biochemical functions of the pulmonary endothelium. Mol Pharmacol 14:1189–1203PubMedGoogle Scholar
  11. Kang KK, Ahn GJ, Sohn YS, Ahn BO, Kim WB (2003) DA-8159, a potent cGMP phosphodiesterase inhibitor, attenuates monocrotaline-induced pulmonary hypertension in rats. Arch Pharm Res 26:612–619PubMedGoogle Scholar
  12. Kanno S, Lee PC, Zhang Y et al (2000) Attenuation of myocardial ischemia/reperfusion injury by superinduction of inducible nitric oxide synthase. Circulation 101:2742–2748PubMedGoogle Scholar
  13. Kanno S, Wu YJ, Lee PC, Billiar TR, Ho C (2001) Angiotensin converting enzyme inhibitor preserves p21 and endothelial nitric oxide synthase expression in monocrotaline-induced pulmonary arterial hypertension in rats. Circulation 104:945–950PubMedGoogle Scholar
  14. Lai YL, Thacker AA, Diana JN (1996) Hypoxemia and elevated tachykinins in rat monocrotaline pneumotoxicity. Lung 174:195–203PubMedGoogle Scholar
  15. Lalich JJ, Johnson WD, Raczniak JJ, Shumaker RC (1977) Fibrin thrombosis in monocrotaline pyrrole induced cor pulmonale in rats. Arch Pathol Lab Med 101:69–73PubMedGoogle Scholar
  16. Madden JA, Keller PA, Choy JS, Alvarez TA, Hacker AD (1995) L-arginine-related responses to pressure and vasoactive agents in monocrotaline-treated rat pulmonary arteries. J Appl Physiol 79:589–593PubMedGoogle Scholar
  17. Meyrick B, Reid L (1979) Development of pulmonary arterial changes in rats fed Crotalaria spectabilis. Am J Pathol 94:37–50PubMedCentralPubMedGoogle Scholar
  18. Meyrick B, Gamble W, Reid L (1980) Development of Crotalaria pulmonary hypertension: a hemodynamic and structural study. Am J Physiol 239:H692–H702PubMedGoogle Scholar
  19. Molteni A, Ward WF, Ts’Ao CH, Solliday NH, Dunne M (1985) Monocrotaline-induced pulmonary fibrosis in rats: amelioration by captopril and penicillamine. Proc Soc Exp Biol Med 180:112–120PubMedGoogle Scholar
  20. Molteni A, Ward WF, Ts’Ao CH, Solliday NH (1986) Monocrotaline-induced cardiopulmonary damage in rats: amelioration by the angiotensin-converting enzyme inhibitor CL242817. Proc Soc Exp Biol Med 182:483–493PubMedGoogle Scholar
  21. Ono S, Tanita T, Hoshikawa Y, Song C, Maeda S, Tabata T, Noda M, Ueda S, Ashino Y, Fujimura S (1995) Effects of prostaglandin E1 (PGE1) on pulmonary hypertension and lung vascular remodelling in a rat monocrotaline model of human pulmonary hypertension. Jpn J Thorac Dis 33:862–867Google Scholar
  22. Pelá G, Missale C, Raddino R, Condorelli E, Spano PF, Visioli O (1990) β 1-and β 2-receptors are differentially desensitized in an experimental model of heart failure. J Cardiovasc Pharmacol 16:839–846PubMedGoogle Scholar
  23. Stenmark KR, Morganroth ML, Remigo LK, Voelkel NF, Murphy RC, Henson PM, Mathias MM, Reeves JT (1985) Alveolar inflammation and arachidonate metabolism in monocrotaline-induced pulmonary hypertension. Am J Physiol 248:859–866Google Scholar
  24. Sugita T, Hyers TM, Dauber IM, Wagner WW, McMurtry IF, Reeves JT (1983) Lung vessel leak precedes right ventricular hypertrophy in monocrotaline-treated rats. J Appl Physiol 54:371–374PubMedGoogle Scholar
  25. Todorovich-Hunter L, Johnson DJ, Ranger P, Keeley FW, Rabinovitch M (1988) Altered elastin and collagen synthesis associated with progressive pulmonary hypertension induced by monocrotaline. A biochemical and ultrastructural study. Lab Invest 58:184–195PubMedGoogle Scholar
  26. Valdiva E, Lalich JJ, Hayashi Y, Sonnard J (1967) Alterations in pulmonary alveoli after a single injection of monocrotaline. Arch Pathol 84:64–76Google Scholar
  27. Yamauchi R, Hoshino T, Ban Y, Kikkawa K, Murata S, Nawano M, Toriumi W (1996) Effects of T-0115, a novel orally active endothelin antagonist, on monocrotaline-induced pulmonary hypertension in rats. Jpn J Pharmacol 71(Suppl 1):236PGoogle Scholar

Portal Hypertension in Rats

  1. Braillon A, Lee SS, Girod C, Peignoux-Martinot M, Valla D, Lebrec D (1986) Role of portasystemic shunts in the hyperkinetic circulation of the portal hypertensive rat. J Lab Clin Med 108:543–548PubMedGoogle Scholar
  2. Chagneau C, Tazi KA, Heller J, Sogni P, Poirel O, Moreau R, Lebrec D (2000) The role of nitric oxide in the reduction of protein kinase C-induced contractile response in aortae from rats with portal hypertension. J Hepatol 33:26–32PubMedGoogle Scholar
  3. Connolly C, Cawley T, McCormick PA, Docherty JR (1999) Portal hypertension increases vasoconstrictor responsiveness of rat aorta. Clin Sci 96:41–47PubMedGoogle Scholar
  4. Dieguez B, Aller MA, Nava MP, Palma MD, Arias JL, Lopez L, Arias J (2002) Chronic portal hypertension in the rat by triple-portal stenosis ligation. J Invest Surg 15:329–336PubMedGoogle Scholar
  5. Fernandez M, Garcia-Pagan JC, Casadevall M, Mourelle MI, Pique JM, Bosch J, Rodes J (1996) Acute and chronic cyclooxygenase blockage in portal-hypertensive rats: influence on nitric oxide biosynthesis. Gastroenterology 110:1529–1535PubMedGoogle Scholar
  6. Jaffe V, Alexander B, Mathie RT (1994) Intrahepatic portal occlusion by microspheres: a new model of portal hypertension in the rat. Gut 35:815–819PubMedCentralPubMedGoogle Scholar
  7. Hilzenrat N, Arish A, Sikuler E (1999) Acute hemodynamic changes following hemorrhage and volume restitution, using a low viscosity plasma expander, in anesthetized portal hypertensive rats. J Hepatol 31:874–879PubMedGoogle Scholar
  8. Lee SS, Girod C, Valla D, Geoffroy P, Lebrec D (1985) Effect of pentobarbital anesthesia on splanchnic hemodynamics of normal and portal-hypertensive rats. Am J Physiol 249:G528–G532PubMedGoogle Scholar
  9. Li X, Benjamin IS, Alexander B (1998) The relationship between intrahepatic portal systemic shunts and microsphere induced portal hypertension in the rat liver. Gut 42:276–282PubMedCentralPubMedGoogle Scholar
  10. Moreno L, Martinez-Cuesta MA, Pique JM, Bosch J, Esplugues JV (1996) Anatomical differences in responsiveness to vasoconstrictors in the mesenteric veins from normal and portal hypertensive rats. Naunyn Schmiedebergs Arch Pharmacol 354:474–480PubMedGoogle Scholar
  11. Oren R, Hilzenrat N, Maaravi Y, Yaari A, Sikuler R (1995) Hemodynamic effects of hypothyroidism induced by methimazole in normal and portal hypertensive rats. Dig Dis Sci 40:1941–1945PubMedGoogle Scholar
  12. Sakurabayashi S, Koh KC, Chen L, Groszmann RJ (2002) Octreotide ameliorates the increase in collateral blood flow during postprandial hyperemia in portal hypertensive rats. J Hepatol 36:507–512PubMedGoogle Scholar
  13. Tanoue K, Kitano S, Hshizume M, Wada H, Sugimachi K (1991) A rat model of esophageal varices. Hepatology 13:353–358PubMedGoogle Scholar
  14. Tsugawa K, Hashizume M, Migou S, Kisihara F, Kawanaka H, Tomikawa M, Tanoue K (2000) Role of nitric oxide and endothelin-1 in a portal hypertensive rat model. Scand J Gastroenterol 35:1097–1105PubMedGoogle Scholar
  15. Vorobioff J, Bredfeldt JE, Groszmann RJ (1983) Hyperdynamic circulation in portal-hypertensive rat model: a primary factor of maintenance of chronic portal hypertension. Am J Physiol 244:G52–G57PubMedGoogle Scholar
  16. Yu Q, Shao R, Qian HS, George SE, Rockey DC (2000) Gene transfer of the neuronal NO synthase isoforms to cirrhotic rat liver ameliorates portal hypertension. J Clin Invest 105:741–748PubMedCentralPubMedGoogle Scholar

Preeclampsia in Rats

  1. Fisher SJ, Roberts JM (1999) Defects in placentation and placental perfusion. In: Lindheimer M, Roberts JM, Cunningham FG (eds) Chesley’s disorders in pregnancy, 2nd edn. Appleton & Lange, Stanford, pp 377–394Google Scholar
  2. Granger JP, Alexander BT, Llinas MT, Bennett WA, Khalil RA (2002) Pathophysiology of preeclampsia: linking placental ischemia/hypoxia with microvascular dysfunction. Microcirculation 9:147–160PubMedGoogle Scholar
  3. Granger JP, LaMarca BB, Cockrell K, Sedeek M, Balzi C, Chandler D, Bennett W (2006) Reduced uterine perfusion pressure (RUPP) model for studying cardiovascular-renal dysfunction in response to placental ischemia. Methods Mol Med 122:383–392PubMedGoogle Scholar
  4. Karumanchi SA, Stillman IE (2006) In vivo rat model of preeclampsia. Methods Mol Med 122:393–399PubMedGoogle Scholar
  5. Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, Libermann TA, Morgan JP, Sellke FW, Stillman IE, Epstein FH, Sukhatme VP, Karumanchi SA (2003) Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 111:649–658PubMedCentralPubMedGoogle Scholar
  6. Taylor RN, Roberts JM (1999) Endothelial cell dysfunction. In: Lindheimer M, Roberts JM, Cunningham FG (eds) Chesley’s hypertensive disorders in pregnancy, 2nd edn. Appleton & Lange, Stanford, pp 395–429Google Scholar
  7. Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM, Bdolah Y, Lim KH, Yuan HT, Libermann TA, Stillman IE, Roberts D, D’Amore PA, Epstein FH, Sellke FW, Romero R, Sukhatme VP, Letarte M, Karumanchi SA (2006) Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med 12:642–649PubMedGoogle Scholar
  8. Yallampalli C, Garfield RE (1993) Inhibition of nitric oxide synthesis in rats during pregnancy produces signs similar to those of preeclampsia. Am J Obstet Gynecol 169:1316–1320PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Michael Gralinski
    • 1
  • Liomar A. A. Neves
    • 1
  • Olga Tiniakova
    • 1
  1. 1.CorDynamics, Inc.ChicagoUSA

Personalised recommendations