Advertisement

General Anesthetics

  • Mary Jeanne Kallman
Living reference work entry

Abstract

The first agents which could be used as intravenous anesthetics were barbiturates. Barbiturates with a duration of action appropriate to the requirements of surgery became available with the introduction of hexobarbital and thiopental (Volwiler and Tabern 1930; Miller et al. 1936). The studies with barbiturates were extended (Butler and Bush 1942; Christensen and Lee 1973). Intravenous anesthetics from other chemical groups were developed, such as acetamidoeugenol (Estil, Domenjoz 1959), steroid derivatives (Presuren = hydroxydione sodium, Laubach et al. 1955; alfaxolone, CT1341, Child et al. 1971), propanidid (Goidenthai 1971), ketamine (CI-581, Chen et al. 1966; Reich and Silvay 1989), etomidate (Janssen et al. 1975), propofol (ICI 35868, Glen 1980), and midazolam (Pieri 1983; Reilly and Nimmo 1987).

Keywords

Minimum Alveolar Concentration Inhalation Anesthetic Intravenous Anesthetic Anesthetic Potency Cardiopulmonary Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

Intravenous Anesthesia

  1. Büch H, Butello W, Neurohr O, Rummel W (1968) Vergleich von Verteilung, narkotischer Wirksamkeit und metabolischer Elimination der optischen Antipoden von Methylphenobarbital. Biochem Pharmacol 17:2391–2398Google Scholar
  2. Büch H, Grund W, Buzello W, Rummel W (1969) Narkotische Wirksamkeit und Gewebsverteilung der optischen Antipoden des Pentobarbitals bei der Ratte. Biochem Pharmacol 18:1005–1009PubMedCrossRefGoogle Scholar
  3. Butler TC, Bush MT (1942) Anesthetic potency of some new derivatives of barbituric acid. Proc Soc Exp Biol Med 50:232–243CrossRefGoogle Scholar
  4. Chen G, Ensor CR, Bohner B (1966) The Neuropharmacol of 2-(o-chlorophenyl)-2-methylaminocyclohexanone hydrochloride. J Pharmacol Exp Ther 152:332–339Google Scholar
  5. Child KJ, Currie JP, Davis B, Dodds MG, Pearce DR, Twissell DJ (1971) The pharmacological properties in animals of CT1341 – a new steroid anaesthetic agent. Br J Anaesth 43:2–24Google Scholar
  6. Christensen HD, Lee IS (1973) Anesthetic potency and acute toxicity of optically active disubstituted barbituric acids. Toxicol Appl Pharmacol 26:495–503Google Scholar
  7. Domenjoz R (1959) Anaesthesist 8:16PubMedGoogle Scholar
  8. Glen JB (1980) Animal studies of the anesthetic activity of ICI 35868. Br J Anaesth 52:731–742Google Scholar
  9. Goldenthal EI (1971) A compilation of LD50 values in newborn and adult animals. Toxicol Appl Pharmacol 18:185–207PubMedCrossRefGoogle Scholar
  10. Janssen PAJ, Niemegeers CJE, Marsboom RPH (1975) Etomidate, a potent non-barbiturate hypnotic. Intravenous etomidate in mice, rats, guinea pigs, rabbits and dogs. Arch Int Pharmacodyn Ther 214:92–132Google Scholar
  11. Laubach GD, Pan SY, Rudel HW (1955) Steroid anesthetic agent. Science 122:78PubMedCrossRefGoogle Scholar
  12. Miller E, Munch JC, Crossley FS, Hartung WH (1936) J Am Chem Soc 58:1090CrossRefGoogle Scholar
  13. Pieri L (1984) Preclinical pharmacology of midazolam. Br J Clin Pharmacol 16:17S–27SCrossRefGoogle Scholar
  14. Reich DL, Silvay G (1989) Ketamine: an update on the first twenty-five years of clinical experience. Can J Anaesth 36:186–197PubMedCrossRefGoogle Scholar
  15. Reilly CS, Nimmo WS (1987) New intravenous anaesthetics and neuromuscular blocking drugs. Drugs 34:98–135Google Scholar
  16. Volwiler EH, Tabern DL (1930) J Am Chem Soc 52:1676Google Scholar

Screening of Intravenous Anesthetics

  1. Büch H, Butello W, Neurohr O, Rummel W (1968) Vergleich von Verteilung, narkotischer Wirksamkeit und metabolischer Elimination der optischen Antipoden von Methylphenobarbital. Biochem Pharmacol 17:2391–2398Google Scholar
  2. Chen G, Ensor CR, Bohner B (1966) The Neuropharmacol of 2-(o-chlorophenyl)-2-methylaminocyclohexanone hydrochloride. J Pharmacol Exp Ther 152:332–339Google Scholar
  3. Child KJ, Currie JP, Davis B, Dodds MG, Pearce DR, Twissell DJ (1971) The pharmacological properties in animals of CT1341 – a new steroid anaesthetic agent. Br J Anaesth 43:2–24Google Scholar
  4. Christensen HD, Lee IS (1973) Anesthetic potency and acute toxicity of optically active disubstituted barbituric acids. Toxicol Appl Pharmacol 26:495–503Google Scholar
  5. Dingwall B, Reeve B, Hutchinson M, Smith PF, Darlington CL (1993) The tolerometer: a fast, automated method for the measurement of righting reflex latency in chronic drug studies. J Neurosci Methods 48:11–114CrossRefGoogle Scholar
  6. Glen JB (1977) A technique for the laboratory evaluation of the speed of onset of i.v. anesthesia. Br J Anaesth 49:545–549PubMedCrossRefGoogle Scholar
  7. Janssen PAJ, Niemegeers CJE, Marsboom RPH (1975) Etomidate, a potent non-barbiturate hypnotic. Intravenous etomidate in mice, rats, guinea pigs, rabbits and dogs. Arch Int Pharmacodyn Ther 214:92–132Google Scholar
  8. Litchfield JT Jr, Wilcoxon FA (1949) Simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 96:99–113PubMedGoogle Scholar
  9. Michelsen LG, Salmenperä M, Hug CC, Sziam F, van der Meer D (1996) Anesthetic potency of remifentanil in dogs. Anesthesiology 84:865–872PubMedCrossRefGoogle Scholar
  10. Reilly CS, Nimmo WS (1987) New intravenous anaesthetics and neuromuscular blocking drugs. Drugs 34:98–135Google Scholar
  11. Volwiler EH, Tabern DL (1930) 5,5-Substituted barbituric acids. J Am Chem Soc 52:1676–1679Google Scholar

EEG Threshold Test in Rats

  1. Boiander HG, Wahlström G, Norberg L (1984) Reevaluation of potency and pharmacokinetic properties of some lipidsoluble barbiturates with an EEG-threshold method. Acta Pharmacol Toxicol 54:33–40CrossRefGoogle Scholar
  2. Korkmaz S, Wahlström G (1997) The EEG burst suppression threshold test for the determination of CNS sensitivity to intravenous anesthetics in rats. Brain Res Brain Res Protoc 1:378–384PubMedCrossRefGoogle Scholar
  3. Koskela T, Wahlström G (1989) Comparison of anaesthetic and kinetic properties of thiobutabarbital, butabarbital and hexobarbital after intravenous threshold doses in the male rat. Pharmacol Toxicol 64:308–313PubMedCrossRefGoogle Scholar
  4. Norberg L, Wahlström G (1988) Anaesthetic effects of flurazepam alone and in combination with thiopental or hexobarbital evaluated with an EEG-threshold method in male rats. Arch Int Pharmacodyn Ther 292:45–57PubMedGoogle Scholar
  5. Norberg L, Wahlström G, Bäckström T (1987) The anaesthetic potency of 3α-hydroxy-5α-pregnan-20-one and 3αhydroxy-5β-pregnan-20-one determined with an intravenous EEG threshold method in male rats. Pharmacol Toxicol 61:42–47PubMedCrossRefGoogle Scholar
  6. Wauquier A, De Ryck M, Van den Broeck W, Van Loon J, Melis W, Janssen P (1988) Relationships between quantitative EEG measures and pharmacodynamics of alfentanil in dogs. Electroencephalogr Clin Neurophysiol 69:550–560PubMedCrossRefGoogle Scholar

Efficacy and Safety of Intravenous Anesthetics

  1. Borkowski GL, Dannemann PJ, Russel GB, Lang CM (1990) An evaluation of three intravenous regimens in New Zealand rabbits. Lab Anim Sci 40:270–276PubMedGoogle Scholar
  2. Glen JB (1980) Animal studies of the anesthetic activity of ICI 35868. Br J Anaesth 52:731–742Google Scholar
  3. Murdock HR (1969) Anesthesia in the rabbit. Fed Proc 28:1510–1516PubMedGoogle Scholar
  4. Peeters ME, Gil D, Teske E, Eyzenbach V, vd Brom WE, Lumeij JT, de Vries HW (1988) Four methods for general anesthesia in rabbits: a comparative study. Lab Anim 22:355–360PubMedCrossRefGoogle Scholar

Inhalation Anesthesia

  1. Fang Z, Gong D, Ionescu P, Laster MJ, Eger EI II, Kendig J (1997) Maturation decreases ethanol minimum alveolar anesthetic concentration (MAC) more than desflurane MAC in rats. Anesth Analg 84:852–858Google Scholar
  2. Robbins BH (1946) Preliminary studies of the anesthetic activity of fluorinated hydrocarbons. J Pharmacol Exp Ther 86:197–204PubMedGoogle Scholar
  3. Wolfson B, Dorsch SE, Kuo TS, Siker ES (1972) Brain anesthetic concentration – a new concept. Anesthesiology 36:176–179PubMedCrossRefGoogle Scholar

Screening of Volatile Anesthetics

  1. Burgison RM (1964) Animal techniques for evaluating anesthetic drugs. In: Nodine JH, Siegler PE (eds) Animal and clinical techniques in drug evaluation. Year Book Medical Publishers, Chicago, pp 369–372Google Scholar
  2. Burns THS, Hall JM, Bracken A, Gouldstone G (1961) Investigation of new fluorine compounds in anaesthesia (3): the anaesthetic properties of hexafluorobenzene. Anaesthesia 16:333–339PubMedCrossRefGoogle Scholar
  3. Ravento J, Spinks A (1958) Development of halothane. Methods of screening volatile anaesthetics. Manchester Univ Med School Gaz 37:55Google Scholar
  4. Raventós J (1956) Action of fluothane a new volatile anaesthetic. Br J Pharmacol 11:394Google Scholar
  5. Van Poznak A, Artusio JF Jr (1960) Anesthetic compounds: II. Fluorinated ethers. Toxicol Appl Pharmacol 2:374Google Scholar

Determination of Minimal Alveolar Anesthetic Concentration (MAC)

  1. Davis NL, Nunnally RL, Malinin TI (1975) Determination of the minimal alveolar concentration (MAC) of halothane in the white New Zealand rabbit. Br J Anaesth 47:341–345PubMedCrossRefGoogle Scholar
  2. Doquier MA, Lavand’homme P, Ledermann C, Collet V, de Kock M (2003) Can determining the minimum alveolar anesthetic concentration of volatile anesthetic be used as an objective tool to assess antinociception in animals? Anesth Analg 97:1033–1039CrossRefGoogle Scholar
  3. Eger EI II, Saidman LJ, Brandstater B (1965) Minimum alveolar anesthetic concentration: a standard of anesthetic potency. Anesthesiology 26:756–763PubMedCrossRefGoogle Scholar
  4. Eger EI II, Johnson BH, Weiskopf RB, Holmes MA, Yasuda N, Targ A, Rampil IJ (1988) Minimum alveolar concentration of I-653 and isoflurane in pigs. Anesth Analg 67:1174–1176PubMedCrossRefGoogle Scholar
  5. Eger EI II, Ionescu P, Laster MJ, Gong D, Hudlicky T, Kendig JJ, Harrius RA, Trudell JR, Pohorille A (1999) Maximum alveolar anesthetic concentration of fluorinated alkanols in rats: relevance to theories of narcosis. Anesth Analg 88:867–876PubMedGoogle Scholar
  6. Eger EI II, Xing Y, Laster M, Sonner J, Antognini JF, Carstens E (2003) Halothane and isofluroane have additive minimum alveolar concentration (MAC) effects in rats. Anesth Analg 96:1350–1353PubMedCrossRefGoogle Scholar
  7. Fang Z, Gong D, Ionescu P, Laster MJ, Eger EI II, Kendig J (1997) Maturation decreases ethanol minimum alveolar anesthetic concentration (MAC) more than desflurane MAC in rats. Anesth Analg 84:852–858Google Scholar
  8. Gong D, Fang Z, Ionescu P, Laster M, Terrell RC, Eger EI II (1998) Strain minimally influences anesthetic and convulsant requirements of inhaled compounds in rats. Anesth Analg 87:963–966, Eger EI IIPubMedGoogle Scholar
  9. Hall RI, Murphy MR, Hug CC (1987) The enfluorane sparing effect in dogs. Anesthesiology 67:518–525PubMedCrossRefGoogle Scholar
  10. Ide T, Sakurai Y, Aono M, Nishino T (1998) Minimum alveolar anesthetic concentrations for airway occlusion in cats: a new concept of minimum alveolar anesthetic concentration-airway occlusion response. Anesth Analg 86:191–197PubMedGoogle Scholar
  11. Kashimoto S, Furuya A, Nonoka A, Oguchi T, Koshimizu M, Kumazawa T (1997) The minimum alveolar concentration of sevoflurane in rats. Eur J Anesth 14:359–361CrossRefGoogle Scholar
  12. Merkel G, Eger EI II (1963) A comparative study of halothane and halopropane anesthesia. Anesthesiology 24:346–357PubMedCrossRefGoogle Scholar
  13. Murphy MR, Hug CC (1982) The anesthetic potency of fentanyl in terms of its reduction of enflurane MAC. Anesthesiology 57:485–488PubMedCrossRefGoogle Scholar
  14. Quasha AL, Eger EI II, Tinker JH (1980) Determination and applications of MAC. Anesthesiology 53:315–334PubMedCrossRefGoogle Scholar
  15. Regan MJ, Eger EI II (1967) Effect of hypothermia in dogs on anesthetizing and apneic doses of inhalation agents. Determination of the anesthetic index (Apnea/MAC). Anesthesiology 28:689–700PubMedCrossRefGoogle Scholar
  16. Saidman LJ, Eger EI II (1964) Effect of nitrous oxide and narcotic premedication on the alveolar concentration of halothane required for anesthesia. Anesthesiology 25:302–306PubMedCrossRefGoogle Scholar
  17. Seifen E, Seifen AB, Kennedy RH, Bushman GA, Loss GE, Williams TG (1987) Comparison of cardiac effects of enflurane, isoflurane, and halothane in the dog heart-lung preparation. J Cardiothorac Anesth 1:543–553PubMedCrossRefGoogle Scholar
  18. Sonner JM (2002) Issues in the design and interpretation of minimum alveolar anesthetic concentration (MAC) studies. Anesth Analg 95:609–614PubMedGoogle Scholar
  19. Waizer PR, Baez S, Orkin LR (1973) A method for determining minimum alveolar concentration of anesthetic in the rat. Anesthesiology 39:394–397PubMedCrossRefGoogle Scholar

Efficacy and Safety of Inhalation Anesthetics

  1. Antognini JF, Eisele PH (1993) Anesthetic potency and cardiopulmonary effects of enfluorane, halothane, and isofluorane in goats. Lab Anim Sci 43:607–610PubMedGoogle Scholar
  2. Cervin A, Lindberg S (1998) Changes in mucociliary activity may be used to investigate the airway-irritating potency of volatile anaesthetics. Br J Anaesth 80:475–480PubMedCrossRefGoogle Scholar
  3. Chaves AA, Dech SJ, Nakayama T, Hamlin RL, Bauer JA, Carnes CA (2003) Age and anesthetic effects on murine electrocardiography. Life Sci 72:2401–2412PubMedCrossRefGoogle Scholar
  4. Fukuda H, Hirabayashi Y, Shimizu R, Saitoh K, Mitsuhata H (1996) Sevoflurane is equivalent to isoflurane for attenuating bupivacaine-induced arrhythmias and seizures in rats. Anesth Analg 83:570–573PubMedGoogle Scholar
  5. Hanagata K, Matsukawa T, Sessler DI, Miyaji T, Funayama T, Koshimizu M, Kashimoto S, Kumazawa T (1995) Isoflurane and sevoflurane produce a dose-dependent reduction in the shivering threshold in rabbits. Anesth Analg 81:581–584PubMedGoogle Scholar
  6. Hashimoto H, Imamura S, Ikeda K, Nakashima M (1994) Electrophysiological effects of volatile anesthetics, sevoflurane and halothane, in a canine myocardial infarction model. J Anesth 8:93–100CrossRefGoogle Scholar
  7. Hashimoto Y, Hirota K, Ohtomo N, Ishihara H, Matsuki A (1996) In vivo direct measurement of the bronchodilating effect of sevoflurane using a superfine fiberoptic bronchoscope: comparison with enflurane and halothane. J Cardiothorac Vasc Anesth 10:213–216PubMedCrossRefGoogle Scholar
  8. Hirano M, Fujigaki T, Shibata O, Sumikawa K (1995) A comparison of coronary hemodynamics during isoflurane and sevoflurane anesthesia in dogs. Anesth Analg 80:651–656PubMedGoogle Scholar
  9. Hisaka Y, Ohe N, Takase K, Ogasawara S (1997) Cardiopulmonary effects of sevoflurane in cats: comparison with isoflurane, halothane, and enflurane. Res Vet Sci 63:205–210CrossRefGoogle Scholar
  10. Johnson RA, Striler E, Sawyer DC, Brunson DB (1998) Comparison of isoflurane with sevoflurane for anesthesia induction and recovery in adult dogs. Am J Vet Res 59:478–481PubMedGoogle Scholar
  11. Kanaya N, Kawana S, Tsuchida H, Miyamoto A, Ohshika H, Namiki A (1998) Comparative myocardial depression of sevoflurane, isofluorane, and halothane in cultured neonatal rat ventricular myocytes. Anesth Analg 67:1041–1047Google Scholar
  12. Kataoka Y, Manabe M, Takimoto E, Tokai H, Aono J, Hishiyama K, Ueda W (1994) Negative inotropic effects of sevoflurane, isoflurane, enflurane and halothane in canine blood-perfused papillary muscles. Anesth Resusc 30:73–76Google Scholar
  13. Kissin I, Morgan PL, Smith LR (1983) Comparison of isoflurane and halothane safety margins in rats. Anesthesiology 58:556–561PubMedCrossRefGoogle Scholar
  14. Kissin I, Kerr CR, Smith LR (1984) Morphine-halothane interaction in rats. Anesthesiology 60:553–561PubMedCrossRefGoogle Scholar
  15. Krantz JC Jr, Carr CJ, Forman SE, Evans WE Jr, Wollenweber H (1941) Anesthesia. IV. The anesthetic action of cyclopropylethyl ether. J Pharmacol Exp Ther 72:233–244Google Scholar
  16. Krantz JC Jr, Carr CJ, Lu G, Bell FK (1953) Anesthesia. XL. The anesthetic action of trifluoroethyl vinyl ether. J Pharmacol Exp Ther 108:488–495PubMedGoogle Scholar
  17. Mazzeo AJ, Cheng EY, Bosnjak ZJ, Coon RL, Kampine JP (1996) Differential effects of desflurane and halothane on peripheral airway smooth muscle. Br J Anaesth 76:841–846PubMedCrossRefGoogle Scholar
  18. McMurphy RM, Hodgson DS (1996) Cardiopulmonary effects of desflurane in cats. Am J Vet Res 57:367–370PubMedGoogle Scholar
  19. Mitsuhata H, Saitoh J, Shimizu R, Takeuchi H, Hasome N, Horiguchi Y (1994) Sevoflurane and isoflurane protect against bronchospasm in dogs. Anesthesiology 81:1230–1234PubMedCrossRefGoogle Scholar
  20. Mutoh T, Nishimura R, Kim HY, Matsunage S, Sasaki N (1997) Cardiopulmonary effects of sevoflurane, compared with halothane, enflurane, and isoflurane, in dogs. Am J Vet Res 58:885–890PubMedGoogle Scholar
  21. Novalija E, Hogan QH, Kulier AH, Turner LH, Bosnjak ZJ (1998) Effects of desflurane, sevoflurane and halothane on postinfarction spontaneous dysrhythmias in dogs. Acta Anaesthesiol Scand 42:353–357PubMedCrossRefGoogle Scholar
  22. Saeki Y, Hasegawa Y, Shibamoto T, Yamaguchi Y, Hayashi T, Tanaka S, Wang GH, Koyama S (1996) The effects of sevoflurane, enflurane, and isoflurane on baroreceptor-sympathetic reflex in rabbits. Anesth Analg 82:342–348PubMedGoogle Scholar
  23. Salmempera M, Wilson D, Szlam F, Hugg CC Jr (1992) Anesthetic potency of the opioid GI 87084B in dogs. Anesthesiology 77:A368CrossRefGoogle Scholar
  24. Soma LR, Terney WJ, Hogan GK, Satoh N (1995) The effects of multiple administrations of sevoflurane to cynomolgus monkeys: clinical pathologic, hematologic and pathologic study. Anesth Analg 81:347–352PubMedGoogle Scholar
  25. Steffey EP, Howland D (1978) Potency of enflurane in dogs: comparison with halothane and isoflurane. Am J Vet Res 39:573–577PubMedGoogle Scholar
  26. Van Poznak A, Artusio F Jr (1960a) Anesthetic properties of a series of fluorinated compounds. I. Fluorinated hydrocarbons. Toxicol Appl Pharmacol 2:363–373Google Scholar
  27. Van Poznak A, Artusio F Jr (1960b) Anesthetic properties of a series of fluorinated compounds. II. Fluorinated ethers. Toxicol Appl Pharmacol 2:363–373Google Scholar
  28. White PF, Johnston RR, Eger EI II (1974) Determination of anesthetic requirement in rats. Anesthesiology 40:52–57PubMedCrossRefGoogle Scholar
  29. Wolfson B, Kielar CM, Lake C, Hetrick WD, Siker ES (1973) Anesthetic index a new approach. Anesthesiology 38:583–586PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Covance Research LaboratoriesIndianapolisUSA

Personalised recommendations