Hypnotic Activity

  • Mary Jeanne Kallman
Living reference work entry


The term “hypnotic” has to be defined. In man, the purpose of taking hypnotics is to obtain a “normal” night’s sleep from which the patient can be aroused without any subsequent hangover. In animal experiments, the term “hypnotic” has been applied to a much deeper stage of central depression of drug induced unconsciousness associated with loss of muscle tone and of righting reflexes. Therefore, most of the pharmacological models are questionable in regard to their predictivity to find an ideal hypnotic for human therapy. Many of the pharmacological tests are based on the potentiation of sleeping time induced by barbiturates or other sedative agents.


Canonical Variable Paradoxical Sleep Canonical Discriminant Analysis Quiet Waking Hypnotic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

Potentiation of Hexobarbital Sleeping Time

  1. Balazs T, Grice HC (1963) The relationship between liver necrosis and pentobarbital sleeping time in rats. Toxicol Appl Pharmacol 5:387–391CrossRefGoogle Scholar
  2. Fujimori H (1965) Potentiation of barbital hypnosis as an evaluation method for central nervous system depressants. Psychopharmacologia 7:374–378PubMedCrossRefGoogle Scholar
  3. Harris LS, Uhle FC (1961) Enhancement of amphetamine stimulation and prolongation of barbiturate depression by a substituted pyrid[3,4-b]indole derivative. J Pharmacol Exp Ther 132:251–257PubMedGoogle Scholar
  4. Lim RKS (1964) Animal techniques for evaluating hypnotics. In: Nodine JH, Siegler PE (eds) Animal and clinical pharmacologic techniques in drug evaluation. Year Book Medical Publication, Chicago, pp 291–297Google Scholar
  5. Mason DFJ (1964) Hypnotics and general anaesthetics. In: Laurence DR, Bacharach AL (eds) Evaluation of drug activities: pharmacometrics. Academic, London/New York, pp 261–286CrossRefGoogle Scholar
  6. Remmer H (1972) Induction of drug metabolizing enzyme system in the liver. Eur J Clin Pharmacol 5:116–136CrossRefGoogle Scholar
  7. Simon P, Chermat R, Doaré L, Bourin M, Farinotti R (1982) Interactions imprévues de divers psychotropes avec les effets du barbital et du pentobarbital chez la souris. J Pharmacol (Paris) 13:241–252Google Scholar

Experimental Insomnia in Rats

  1. Gardner CR, James V (1987) Activity of some benzodiazepine receptor ligands with reduced sedative and muscle relaxant properties on stress-induced electrocorticogram arousal in sleeping rats. J Pharmacol Methods 18:47–54PubMedCrossRefGoogle Scholar
  2. James GWL, Piper DC (1978) A method for evaluating potential hypnotic compounds in rats. J Pharmacol Methods 1:145–154CrossRefGoogle Scholar
  3. Laval J, Stenger A, Briley M (1991) Effect of anxiolytic and hypnotic drugs on sleep circadian rhythms in the rat. In: Briley M, File SE (eds) New concepts in anxiety. McMillan Press, London, pp 338–346Google Scholar

EEG Registration in Conscious Cats

  1. Baust W, Heinemann H (1967) The role of the baroreceptors and of blood pressure in the regulation of sleep and wakefulness. Exp Brain Res 3:12–24PubMedCrossRefGoogle Scholar
  2. Hashimoto T, Hamada C, Wada T, Fukuda N (1992) Comparative study on the behavioral and EEG changes induced by diazepam. buspirone and a novel anxioselective anxiolytic, DN-2327, in the cat. Neuropsychobiology 26:89–99PubMedCrossRefGoogle Scholar
  3. Heinemann H, Stock G (1973) Chlordiazepoxide and its effect on sleep-wakefulness behavior in unrestrained cats. Arzneim Forsch/Drug Res 23:823–825Google Scholar
  4. Heinemann H, Hartmann A, Sturm V (1968) Der Einfluß von Medazepam auf die Schlaf-Wach-Regulation von wachen, unnarkotisierten Katzen. Arzneim Forsch/Drug Res 18:1557–1559Google Scholar
  5. Heinemann H, Hartmann A, Stock G, Sturm V (1970) Die Wirkungen von Medazepam auf Schwellen subcorticaler, limbischer Reizantworten gemessen an unnarkotisierten, frei beweglichen Katzen. Arzneim Forsch/Drug Res 20:413–415Google Scholar
  6. Hirotsu I, Kihara T, Nakamura S, Hattori Y, Hatta M, Kitakaze Y, Takahama K, Hashimoto Y, Miyata T, Ishihara T, Satoh F (1988) General pharmacological studies on N-(2,6-dimethyl-phenyl)-8-pyrrolizidineacetamide hydrochloride hemihydrate. Arzneim Forsch/Drug Res 38:1398–1410Google Scholar
  7. Holm E, Staedt U, Heep J, Kortsik C, Behne F, Kaske A, Mennicke I (1991) Untersuchungen zum Wirkungsprofil von D, L-Kavain. Zerebrale Angriffsorte und Schlaf-Wach-Rhythmus im Tierexperiment. Arzneim Forsch/Drug Res 41:673–683Google Scholar
  8. Jones RD, Greufe NP (1994) A quantitative electroencephalographic method for xenobiotic screening in the canine model. J Pharmacol Toxicol Methods 31:233–238PubMedCrossRefGoogle Scholar
  9. Krijzer F, van der Molen R, Olivier B, Vollmer F (1991) Antidepressant subclassification based on the quantitatively analyzed electrocorticogram of the rat. In: Olivier B, Mos J, Slangen JL (eds) Animal models in psychopharmacology, Advances in pharmacological sciences. Birkhäuser Verlag, Basel, pp 237–241CrossRefGoogle Scholar
  10. Kuhn FJ, Schingnitz G, Lehr E, Montagna E, Hinzen HD, Giachetti A (1988) Pharmacology of WEB 1881-FU, a central cholinergic agent, which enhances cognition and cerebral metabolism. Arch Int Pharmacodyn 292:13–34PubMedGoogle Scholar
  11. Lozito RJ, La Marca S, Dunn RW, Jerussi TP (1994) Single versus multiple infusions of fentanyl analogues in a rat EEG model. Life Sci 55:1337–1342PubMedCrossRefGoogle Scholar
  12. Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1:455–473PubMedCrossRefGoogle Scholar
  13. Ongini E, Parravicini L, Bamonte F, Guzzon V, Iorio LC, Barnett A (1982) Pharmacological studies with Quazepam, a new benzodiazepine hypnotic. Arzneim Forsch/Drug Res 32:1456–1462Google Scholar
  14. Rinaldi-Carmona M, Congy C, Santucci V, Simiand J, Gautret B, Neliat G, Labeeuw B, Le Fur G, Soubrie P, Breliere JC (1929) Biochemical and pharmacological properties of SR 46349B, a new potent and selective 5-hydroxytryptamine2 receptor antagonist. J Pharmacol Exp Ther 262:759–768Google Scholar
  15. Ruckert RT, Johnson DN, Robins AH (1983) Effects of antihistaminic agents on sleep pattern in cats: a new method for detecting sedative potential. Pharmacologist 25:180Google Scholar
  16. Sarkadi A, Inczeffy Z (1996) Simultaneous quantitative evaluation of visual-evoked responses and background EEG activity in rat: normative data. J Pharmacol Toxicol Methods 35:145–151PubMedCrossRefGoogle Scholar
  17. Schallek W, Kuehn A (1965) Effects of benzodiazepines on spontaneous EEG and arousal responses of cats. Prog Brain Res 18:231–236PubMedCrossRefGoogle Scholar
  18. Shibata M, Shingu K, Murakawa M, Adachi T, Osawa M, Nakao S, Mori K (1994) Tetraphasic actions of local anesthetics on central nervous system electrical activities in cats. Reg Anesth 19:255–263PubMedGoogle Scholar
  19. Shouse MN, Siegel JM, Wu MF, Szymusiak R, Morrison AR (1989) Mechanisms of seizure suppression during rapid-eye-movement (REM) sleep in cats. Brain Res 505:271–282PubMedCrossRefGoogle Scholar
  20. Sommerfelt L, Ursin R (1991) Behavioral, sleep-waking and EEG power spectral effects following the two specific 5-HT uptake inhibitors zimeldine and alaproclate in cats. Behav Brain Res 45:105–115PubMedCrossRefGoogle Scholar
  21. Tobler I, Scherschlicht R (1990) Sleep and EEG slow-wave activity in the domestic cat: effect of sleep deprivation. Behav Brain Res 37:109–118PubMedCrossRefGoogle Scholar
  22. Wallach MB, Rogers C, Dawber M (1976) Cat sleep: a unique first night effect. Brain Res Bull 1:425–427PubMedCrossRefGoogle Scholar
  23. Wetzel W (1985) Effects of nootropic drugs on the sleep-waking pattern of the rat. Biomed Biochim Acta 44:1211–1217PubMedGoogle Scholar
  24. Yamagushi N, Ling GM, Marczynski TJ (1964) Recruiting responses observed during wakefulness and sleep in unanesthetized chronic cats. Electroencephalogr Clin Neurophysiol 17:246–254CrossRefGoogle Scholar

Automated Rat Sleep Analysis System

  1. De Boer T, Ruigt GSF (1995) The selective α2-adrenoceptor antagonist mirtazapine (Org 3770) enhances noradrenergic and 5-HT1A-mediated serotonergic transmission. CNS Drugs 4(Suppl 1):29–38CrossRefGoogle Scholar
  2. Fairchild MD, Jenden DJ, Mickey MR (1969) Discrimination of behavioral state in the cat utilizing long-term EEG frequency analysis. Clin Neurophysiol 27:503–513CrossRefGoogle Scholar
  3. Fairchild MD, Jenden DJ, Mickey MR (1971) Quantitative analysis of some drug effects on the EEG by long-term frequency analysis. Proc West Pharmacol Soc 14:135–140Google Scholar
  4. Fairchild MD, Jenden DJ, Mickey MR (1975) An application of long-term frequency analysis in measuring drug-specific alterations in the EEG of the cat. Electroencephalogr Clin Neurophysiol 38:337–348PubMedCrossRefGoogle Scholar
  5. Ruigt GSF, van Proosdij JN (1990) Antidepressant characteristics of Org 3770, Org 4428 and Org 9768 on rat sleep. Eur J Pharmacol 183:1467–1468CrossRefGoogle Scholar
  6. Ruigt GSF, van Proosdij JN, van Delft AML (1989a) A large scale, high resolution, automated system for rat sleep staging. I. Methodology and technical aspects. Electroencephalogr Clin Neurophysiol 73:52–64PubMedCrossRefGoogle Scholar
  7. Ruigt GSF, van Proosdij JN, van Wezenbeek LACM (1989b) A large scale, high resolution, automated system for rat sleep staging. II. Validation and application. Electroencephalogr Clin Neurophysiol 73:64–71PubMedCrossRefGoogle Scholar
  8. Ruigt GSF, Engelen S, Gerrits A, Verbon F (1993) Computerbased prediction of psychotropic drug classes based on a discriminant analysis of drug effects on rat sleep. Neuropsychobiology 28:138–153PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Covance Research LabsIndianapolisUSA

Personalised recommendations