Advertisement

Antitussive Activity

  • Kristy D. Bruse
Living reference work entry

Abstract

Cough is thought to be caused by a reflex. The sensitive receptors are located in the bronchial tree, particularly in the bifurcation of the trachea. These receptors can be stimulated mechanically or chemically, e.g., by inhalation of various irritants. Nerve impulses then activate the cough center in the brain. Several animal species and several irritants have been used, most frequently the citric acid–induced cough in guinea pigs (Charlier et al. 1961; Karlsson et al. 1989; Braga et al. 1993). The pharmacology of cough was reviewed by Reynolds et al. (2004).

Keywords

Forced Expiration Antitussive Effect Antitussive Agent Antitussive Drug Antitussive Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

Antitussive Activity After Irritant Inhalation in Guinea Pigs

  1. Adcock JJ, Schneider C, Smith TW (1988) Effects of codeine, morphine and a novel opioid pentapeptide BW443C, on cough, nociception, and ventilation in the unanesthetized guinea pig. Br J Pharmacol 93:93–100PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bolser DC, Aziz SM, DeGennaro FC, Kreutner W, Egan RW, Siegel MI, Chapman RW (1993) Antitussive effects of GABAB agonists in the cat and guinea pig. Br J Pharmacol 110:491–495PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bolser DC, DeGennaro FC, O’Reilly S, McLeod RL, Hey JA (1997) Central antitussive activity of the NK1 and NK2 tachykinin receptor antagonists, CP-99,994 and SR 48968, in the guinea pig and cat. Br J Pharmacol 121:165–170PubMedCentralPubMedCrossRefGoogle Scholar
  4. Braga PC, Bossi R, Piatti G, Dal Sasso M (1993) Antitussive effect of oxatomide on citric acid-induced cough in conscious guinea pig. Arzneim Forsch/Drug Res 43:550–553Google Scholar
  5. Brown C, Fezoui M, Selig WM, Schwartz CE, Ellis JL (2004) Antitussive activity of sigma-1 receptor agonists in the guinea pig. Br J Pharmacol 141:233–240PubMedCentralPubMedCrossRefGoogle Scholar
  6. Charlier R, Prost M, Binon F, Deltour G (1961) Étude pharmacologique d’un antitussif, le fumarate acide de phénéthyl-1 (propyne-2-yl)-4-propionoxy-4 pipéridine. Arch Int Pharmacodyn Ther 134:306–327PubMedGoogle Scholar
  7. Charmat R, Kornowski H, Jondet A (1966) Technique de sélection rapide des substances antitussives. Application à l’évaluation de l’activité d’un dérivé de la prométhazine. Ann pharmaceut franç 24:181–184Google Scholar
  8. Chen JYP, Biller HF, Montgomery EG (1960) Pharmacologic studies of a new antitussive, alpha-(dimetylaminomethyl)-ortho-chlorobenzhydrol hydrochloride (SL-501, Bayer B-186). J Pharmacol Exp Ther 128:384–391PubMedGoogle Scholar
  9. Eichler O, Smiatek A (1940) Versuche zur Auswertung von Mitteln zur Bekämpfung des Reizhustens. Arch Exp Pathol Pharmakol 194:621–627CrossRefGoogle Scholar
  10. Ellis GP, Goldberg L, King J, Sheard P (1963) The synthesis and antitussive properties of some cyclopentane derivates. J Med Chem 6:111–117PubMedCrossRefGoogle Scholar
  11. Forsberg K, Karlsson JA (1986) Cough induced by stimulation of capsaicin-sensitive sensory neurons in conscious guinea pigs. Acta Physiol Scand 128:319–320PubMedCrossRefGoogle Scholar
  12. Forsberg K, Karlsson JA, Theodorsson E, Lundsberg JM, Persson CG (1988) Cough and bronchoconstriction mediated by capsaicin-sensitive sensory neurons in the guinea pig. Pulm Pharmacol 1:33–39PubMedCrossRefGoogle Scholar
  13. Friebel H, Reichle C, Graevenitz A v (1955) Zur Hemmung des Hustenreflexes durch zentral angreifende Arzneimittel. Arch Exp Pathol Pharmakol 224:384–400CrossRefGoogle Scholar
  14. Gallico L, Borghi A, Dalla Rosa C, Ceserani R, Tognella S (1994) Mogusteine: a novel peripheral non-narcotic antitussive drug. Br J Pharmacol 112:795–800Google Scholar
  15. Gross A (1957) Etude expérimentale, chez le chien choralosé, de l’action antitussive de la codéine, au moyen du réflexe pleurotussigène et de la toux lobélinique. C R Soc Biol Paris 151:704–707PubMedGoogle Scholar
  16. Hay DWP, Giardina GAM, Griswold DE, Underwood DC, Kotzer CJ, Bush B, Potts W, Sandhu P, Lundberg D, Foley JJ, Schmidt DB, Martin LD, Kilian D, Legos JJ, Barone FC, Luttmann MA, Grugni M, Raveglia LF, Sarau HM (2002) Nonpeptide tachykinin receptor antagonists. III. SB235375, a low central nervous system-penetrant, potent and selective neurokinin-3 receptor antagonist, inhibits citric acid-induced cough and airways hyper-reactivity in guinea pigs. J Pharmacol Exp Ther 300:314–323PubMedCrossRefGoogle Scholar
  17. Källqvist I, Melander B (1957) Experimental and clinical evaluation of chlorcyclizine as an antitussive. Arzneim Forsch 7:301–304Google Scholar
  18. Kamei J, Tanihara H, Igarashi H, Kasuya Y (1989) Effects of N-methyl-d-aspartate antagonists on the cough reflex. Eur J Pharmacol 168:153–158PubMedCrossRefGoogle Scholar
  19. Karlsson JA, Lanner AS, Persson CGA (1989) Airway opioid receptors mediate inhibition of cough and reflex bronchoconstriction in guinea pigs. J Pharmacol Exp Ther 252:863–868Google Scholar
  20. Karttunen P, Koskiniemi J, Airaksinen MM (1982) An improvement to the use of sulfur dioxide to induce cough in experimental animals. J Pharmacol Methods 7:181–184PubMedCrossRefGoogle Scholar
  21. May AJ, Widdicombe JG (1954) Depression of the cough reflex by pentobarbitone and some opium derivatives. Br J Pharmacol 9:335–340Google Scholar
  22. McLeod RL, Mingo G, O’Reilly S, Ruck LA, Bolser DC, Hey JA (1998) Antitussive action of antihistamines is independent of sedative and ventilation activity in the guinea pig. Pharmacology 52:57–64CrossRefGoogle Scholar
  23. Püschmann S, Engelhorn R (1978) Pharmakologische Untersuchungen des Bromhexin-Metaboliten Ambroxol. Arzneim Forsch/Drug Res 28:889–898Google Scholar
  24. Reichle C, Friebel H (1955) Zur Hemmung des Hustenreflexes durch zentral angreifende Arzneimittel. II. Mitteilung. Arch Exp Pathol Pharmakol 226:558–562CrossRefGoogle Scholar
  25. Reynolds SM, Mackenzie AJ, Spina D, Page CP (2004) The pharmacology of cough. Trends Pharmacol Sci 25:569–576PubMedCrossRefGoogle Scholar
  26. Rosiere CE, Winder CV, Wax J (1956) Ammonia cough elicited through a tracheal side tube inn unanesthetized dogs. Comparative antitussive bioassay of four morphine derivatives and methadone in terms of ammonia thresholds. J Pharmacol Exp Ther 116:296–316PubMedGoogle Scholar
  27. Sallé J, Brunaud M (1960) Nouvelle technique d’enregistrement des mouvements de toux provoqués par l’inhalation de vapeurs irritantes chez le cobaye. Arch Int Pharmacodyn 126:120–125PubMedGoogle Scholar
  28. Sanzari NP, Fainman FB, Emele JF (1968) Cough induced by 1,1-dimethyl-4-phenylpiperazinium iodide: a new antitussive method. J Pharmacol Exp Ther 162:190–195PubMedGoogle Scholar
  29. Shemano I (1964) Techniques for evaluating antitussive drugs in animals. In: Nodine JH, Siegler PE (eds) Animal and clinical pharmacologic techniques in drug evaluation. Year Book Medical Publishers, Chicago, pp 456–460Google Scholar
  30. Trevisani M, Milan A, Gatti R, Zanasi A, Harrison S, Fonatana G, Morice AH, Geppetti G (2004) Antitussive activity of iodo-resiniferatoxin in guinea pigs. Thorax 59:769–772PubMedCentralPubMedCrossRefGoogle Scholar
  31. Wiedemeijer JC, Kramer HW, deJongh DK (1960) A screening method for antitussive compounds. Acta Physiol Pharmacol Neerl 9:501–508PubMedGoogle Scholar
  32. Winter CA, Flakater L (1952) Antitussive action of d-isomethadone and d-methadone in dogs. Proc Soc Exp Biol Med 81:463–465PubMedCrossRefGoogle Scholar
  33. Winter CA, Flakater L (1954) Antitussive compounds: testing methods and results. J Pharmacol Exp Ther 112:99–108PubMedGoogle Scholar
  34. Winter CA, Flakater L (1955) The effects of drugs upon a graded cough response obtained in sensitized guinea pigs exposed to aerosol of specific antigen. J Exp Med 101:17–24PubMedCentralPubMedCrossRefGoogle Scholar

Cough Induced by Mechanical Stimulation

  1. Benson WM, Stefko PL, Randall LO (1953) Comparative pharmacology of levorphan, racemorphan and dextromorphan and related methyl esters. J Pharmacol Exp Ther 109:189–200PubMedGoogle Scholar
  2. Bolser DC, Hey JA, Chapman RW (1999) Influence of central antitussive drugs on the cough motor pattern. J Appl Physiol 86:1017–1024PubMedGoogle Scholar
  3. Bolser DC, McLeod RL, Tulshian DB, Hey JA (2001) Antinociceptive action of nociceptin in the cat. Eur J Pharmacol 430:107–111PubMedCrossRefGoogle Scholar
  4. Gallico L, Borghi A, Dalla Rosa C, Ceserani R, Tognella S (1994) Mogusteine: a novel peripheral non-narcotic antitussive drug. Br J Pharmacol 112:795–800Google Scholar
  5. Granier-Doyeux M, Horande M, Kucharski W (1959) Méthode d’évaluation quantitative des agents antitussigènes. Arch Int Pharmacodyn 121:287–296PubMedGoogle Scholar
  6. Gross A, Lebon P, Rambert R (1958) Technique de toux expérimentale chez le Chien., par excitation faradique, sous bronchoscopie, de l’éperon trachéal. C R Soc Biol Paris 152:495–497PubMedGoogle Scholar
  7. Hara S, Yanaura S (1959) A method of inducing and recording cough and examination of the action of some drugs with this method. Jpn J Pharmacol 9:46–54PubMedCrossRefGoogle Scholar
  8. Kasé Y (1952) New methods of estimating cough depressing action. Jpn J Pharmacol 2:7–13CrossRefGoogle Scholar
  9. Kasé Y (1954) The “coughing dog” – an improved method for the evaluation of an antitussive. Pharm Bull (Jpn) 2:298–299CrossRefGoogle Scholar
  10. Kasé Y, Kito G, Miyata T, Uno T, Takahama K, Ida H (1976) Antitussive activity and other related pharmacological properties of d-3-methyl-N-methylmorphinan (AT-17). Arzneim Forsch/Drug Res 26:353–360Google Scholar
  11. Kroepfli P (1950) Über das Verhalten einiger Atmungsgrößen beim Husten. I. Mitteilung über den Hustenmechanismus. Helv Phys Acta 8:33–43Google Scholar
  12. Lemeignan M, Streichenberger G, Lechat P (1966) De l’utilisation du Cobaye décérébré pour l’étude des antitusssifs. Therapie 21:361–366PubMedGoogle Scholar
  13. McLeod RL, Bolser CD, Jia Y, Parra LE, Mutter JC, Wang X, Tulshian DB, Egan RW, Hey JA (2002) Antitussive effect of nociceptin/orphanin FQ in experimental cough models. Pulm Pharmacol Ther 15:213–216PubMedCrossRefGoogle Scholar
  14. Stefko PL, Benson WM (1953) A method for the evaluation of antitussive agents in the unanesthetized dog. J Pharmacol Exp Ther 108:217–223PubMedGoogle Scholar
  15. Stefko PL, Denzel J, Hickey I (1961) Experimental investigation of nine antitussive drugs. J Pharm Sci 50:216–221CrossRefGoogle Scholar
  16. Takagi F, Fukuda H, Yano K (1960) Studies on antitussives. I. Bioassay of antitussives. Yakugaku Zasshi 80:1497–1501Google Scholar
  17. Tedeschi RE, Tedeschi DH, Hitchens JD, Cook L, Mattis PA, Fellows EJ (1959) A new antitussive method involving mechanical stimulation in unanesthetized dogs. J Pharmacol Exp Ther 126:338–344PubMedGoogle Scholar
  18. Yanaura S, Iwase H, Sato S, Nishimura T (1974) A new method for induction of the cough reflex. Jpn J Pharmacol 24:453–460PubMedCrossRefGoogle Scholar
  19. Yanaura S, Kitagawa H, Hosakawa T, Misawa M (1982) A new screening method for evaluating antitussives in conscious guinea pigs. J Pharmacobiodyn 5:965–971PubMedCrossRefGoogle Scholar

Cough Induced by Stimulation of the Nervus Laryngicus Superior

  1. Bobb JRR, Ellis S (1951) Production of cough and its suppression in the unanesthetized dog. Am J Physiol 167:768–769Google Scholar
  2. Braga PC (1989) Experimental models for the study of cough. In: Braga PC, Allegra L (eds) Cough. Raven, New York, pp 55–70Google Scholar
  3. Chakravarty NK, Mattalana A, Jensen R, Borison HL (1956) Central effects of antitussive drugs on cough and respiration. J Pharmacol Exp Ther 117:127–135PubMedGoogle Scholar
  4. Domenjoz R (1952) Zur Auswertung hustenstillender Arzneimittel. Arch Exp Pathol Pharmakol 215:19–24Google Scholar
  5. Kasé Y, Wakita Y, Kito T, Miyata T, Yuizono T, Kataoka M (1970) Centrally-induced coughs in the cat. Life Sci 9:49–59PubMedCrossRefGoogle Scholar
  6. Lindner E, Stein L (1959) Abkömmlinge des Diphenyl-piperidono-propans – eine neue Reihe hustenstillender Mittel. Arzneim Forsch/Drug Res 9:94–99Google Scholar
  7. Mattalana A, Borison HL (1955) Antitussive agents and centrally-induced cough. Fed Proc 14:367–368Google Scholar
  8. Schröder W (1951) Die Verwendung des Vagusschlingenhundes für die Wertbestimmung hustenstillender Substanzen. Arch Exp Pathol Pharmakol 212:433–439Google Scholar
  9. Toner JJ, Macko E (1952) Pharmacological studies on bis-(1-carbo-β-diethyl-aminoethoxy)-1-phenylcyclopentane)-ethane disulfonate. J Pharmacol Exp Ther 106:246–251PubMedGoogle Scholar
  10. van Dongen K (1956) The effect of Narcotine, Ticarda and Romilar on coughs and on the movements of the cilia in the air passages. Acta Physiol Pharmacol Neerl 4:500–507Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Integrated Physiology & Pharmacology Consulting, LLCPoughkeepsieUSA

Personalised recommendations