Impaired Renal Function

Living reference work entry

Abstract

Chronic renal failure is a frequent pathological condition in man. An animal model as described by Acott et al. (1987) is of value to test new diuretics under these conditions.

Keywords

Chronic Renal Failure Autosomal Dominant Polycystic Kidney Disease Candesartan Cilexetil Unilateral Ureteral Obstruction Puromycin Aminonucleoside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

Chronic Renal Failure in the Rat

  1. Acott PD, Ogborn MR, Crocker JFS (1987) Chronic renal failure in the rat.A surgical model for long-term-toxicological studies. J Pharmacol Methods 18:81–88CrossRefPubMedGoogle Scholar
  2. Freeman RM (1971) The role of magnesium in the pathogenesis of azotemic hypothermia. Proc Soc Exp Biol Med 137:1069–1072CrossRefPubMedGoogle Scholar
  3. Hartenbower DL, Coburn JW (1972) A model of renal insufficiency in the chick. Lab Anim Sci 22:258–261PubMedGoogle Scholar
  4. Ishidoya S, Morrissey J, McCracken R, Reyes A, Klahr S (1995) Angiotensin II receptor antagonist ameliorates renal tubulo-interstitial fibrosis caused by unilateral ureteral obstruction. Kidney Int 47:1285–1294CrossRefPubMedGoogle Scholar
  5. Klahr S, Morrissey JJ (1997) Comparative study of ACE inhibitors and angiotensin II receptor antagonists in interstitial scarring. Kidney Int 52(Suppl 63):111–114Google Scholar
  6. Sancho JJ, Qy D, Oms L, Sitges-Serra A, Hammond ME, Arnaud CD, Clark OH (1989) A new experimental model for secondary hyperparathyroidism. Surgery 106:1002–1008PubMedGoogle Scholar
  7. Williams P, Lopez H, Britt D, Chan C, Ezrin A, Hottendorf R (1997) Characterization of renal ischemia-reperfusion injury in rats. J Pharmacol Toxicol Methods 37:1–7CrossRefPubMedGoogle Scholar

Chronic Renal Failure After Subtotal (Five-Sixths) Nephrectomy in Rats

  1. Ali SM, Laping NJ, Fredrickson TA, Contino LC, Olson BA, Anderson K, Brooks DP (1998) Angiotensin-converting enzyme inhibition attenuates proteinuria and renal TGFβ1 mRNA expression in rats with chronic renal disease. Pharmacology 57:20–27CrossRefPubMedGoogle Scholar
  2. Ashab I, Peer G, Blum M, Wollman Y, Chernihovsky T, Hassner A, Schwartz D, Cabiki S, Silverberg D, Iaina A (1995) Oral administration of l-arginine and captopril in rats prevents chronic renal failure by nitric oxide production. Kidney Int 47:1515–1521CrossRefPubMedGoogle Scholar
  3. Bardoux P, Martin H, Ahoulay M, Schmitt F, Bouby N, Trinh Trang Tan M, Bankir E (1999) Vasopressin contributes to hyperfiltration, albuminuria, and renal hypertrophy in diabetes mellitus: study in vasopressin-deficient Brattleboro rats. Proc Natl Acad Sci U S A 96:10397–10402CrossRefPubMedCentralPubMedGoogle Scholar
  4. Barreto-Chaves MLM, Mello-Aires M (1996) Effect of luminal angiotensin II and ANP on early and late cortical distal tubule HCO3-reabsorption.Am J Physiol 271; Ren Fluid Electrolyte Physiol 40:F977–F984Google Scholar
  5. Bonilla-Felix M, Hamm LL, Herndon J, Vehaskari VM (1992) Response of cortical collecting ducts from remnant kidneys to arginine vasopressin. Kidney Int 41:1150–1154CrossRefPubMedGoogle Scholar
  6. Brochu E, Lacasse MS, Moreau C, Lebel M, Kingma I, Grose JH, Laviviere R (1999) Endothelin in ETA receptor blockade prevents the progression of renal failure and hypertension in uraemic rats. Nephrol Dial Transplant 14:1881–1888CrossRefPubMedGoogle Scholar
  7. Brooks DP, Contino LC, Short BG, Gowan C, Trizna W, Edwards RM (1995) SB 203220: a novel angiotensin II receptor antagonist and renoprotective agent. J Pharmacol Exp Ther 274:1222–1227PubMedGoogle Scholar
  8. Brown JH, Lappin TRJ, Elder EG, Bridges MJ, McGeown MG (1990) The metabolism of erythropoietin in the normal and uremic rabbit. Nephrol Dial Transplant 5:855–859CrossRefPubMedGoogle Scholar
  9. Christensen S, Marcussen N, Petersen S, Shalmi M (1992) Effects of uninephrectomy and high protein feeding on lithium-induced chronic renal failure in rats. Ren Physiol Biochem 15:141–149PubMedGoogle Scholar
  10. Christensen S, Shalmi M, Hansen AK, Marcussen N (1997) Effects of pepindopril and hydrochlorothiazide on the long-term progression of lithium-induced chronic renal failure in rats. Pharmacol Toxicol 80:132–141CrossRefPubMedGoogle Scholar
  11. Cohen DS, Mathis JE, Dotson RA, Graybill SR, Wosu NJ (1998) Protective effects of CGS 30440, a combined angiotensin-converting enzyme inhibitor and neutral endopeptidase inhibitor, in a model of chronic renal failure. J Cardiovasc Pharmacol 32:87–95CrossRefPubMedGoogle Scholar
  12. Cowley BD Jr, Grantham JJ, Muessel MJ, Kraybill AL, Gattone VH II (1996) Modification of disease progression in rats with inherited polycystic kidney disease. Am J Kidney Dis 27:865–879CrossRefPubMedGoogle Scholar
  13. Fernadez R, Lopes MJ, De Lira RF, Dantas WFG, Cragoe EJ Jr, Malnic G (1994) Mechanism of acidification along cortical distal tubule of the rat.Am J Physiol 266, Ren Fluid Electrolyte Physiol 35:F218–F226Google Scholar
  14. Fine A, Jones D, Kaushal G, LeFal Y, Sharma G (1990) Remnant model of renal failure in the dog: avoidance of second surgery by chemical nephrectomy. Clin Invest Med 13:152–154PubMedGoogle Scholar
  15. Garcia de Boto MJ, Cobo A, Rodriguez J, Fernandez P, Rey C, Santos F (1996) Chronic renal failure and human growth hormone treatment do not modify endothelium-dependent reactions in the rat aorta in vitro. J Auton Pharmacol 16:97–103CrossRefPubMedGoogle Scholar
  16. Fukagawa M, Kaname SY, Igarashi T, Ogata E, Kurokawa K (1991) Regulation of parathyroid hormone synthesis in chronic renal failure in rat. Kidney Int 39:874–881CrossRefPubMedGoogle Scholar
  17. Hamilton DL, Cotes PM (1994) The effect of the submandibular salivary gland on the erythropoietin response to hypoxia in mice with chronic renal failure. Exp Hematol 22:256–260PubMedGoogle Scholar
  18. Hazel SJ, Gillespie CM, Moore RJ, Clark RG, Jureidini KF, Martin AA (1994) Enhanced body growth in uremic rats treated with IGF-I and growth hormone in combination. Kidney Int 46:58–68CrossRefPubMedGoogle Scholar
  19. Jarusiripipat C, Chan L, Shapiro JI, Schrier RW (1992) Effect of long-acting calcium entry blocker (anipamil) on blood pressure, renal function and survival of uremic rats. J Pharmacol Exp Ther 260:243–247PubMedGoogle Scholar
  20. Kakinuma Y, Kawamura T, Bills T, Yoshioka T, Ichikawa I, Fogo A (1992) Blood pressure-independent effect of angiotensin inhibition on vascular lesions of chronic renal failure. Kidney Int 42:46–55CrossRefPubMedGoogle Scholar
  21. Kimura M, Suzuki T, Hishida A (1999) A rat model of progressive renal failure produced by microembolism. Am J Pathol 155:1371–1380CrossRefPubMedCentralPubMedGoogle Scholar
  22. Kohzuki M, Yasujima M, Yoshida K, Kanazawa M, Abe K (1994) Antihypertensive and antiproteinuric effects of losartan in spontaneously hypertensive rats with chronic renal failure. Hypertens Res Clin Exp 17:173–178CrossRefGoogle Scholar
  23. Kohzuki M, Kanazawa M, Liu PF, Kamimoto M, Yoshida K, Saito T, Yasujima M, Sato T, Abe K (1995) Kinin and angiotensin II receptor antagonists in rats with chronic renal failure: chronic effects on cardio- and renoprotection of angiotensin converting enzyme inhibitors. J Hypertens 13:1785–1790PubMedGoogle Scholar
  24. Koumegawa JI, Nagano N, Arai H, Wada N, Kusaka M, Takahashi A (1991) Anemia in new congenital adult type polycystic kidney mice. J Urol 146:1645–1649PubMedGoogle Scholar
  25. Lariviere R, Lebel M, Kingma T, Grose JH, Boucher D (1998) Effects of losartan and captopril on endothelin-1 production in blood vessels and glomeruli of rats with reduced renal mass. Am J Hypertens 11:989–997CrossRefPubMedGoogle Scholar
  26. Levine DZ, Iacovitti M, Buckman S, Burns KD (1996) Role of angiotensin II in dietary modulation of rat late distal tubule bicarbonate flux in vivo. J Clin Invest 97:120–125CrossRefPubMedCentralPubMedGoogle Scholar
  27. Levine DZ, Iacovitti M, Buckman S, Hinke MT, Luck B, Fryer JN (1997) ANG II-dependent HCO3 reabsorption in surviving rat renal tubules: expression/activation of H+-ATPase.Am J Physiol 272; Ren Physiol 41:F799–F808Google Scholar
  28. Liu DT, Turner SW, Wen C, Witworth JA (1996) Angiotensin converting enzyme inhibition and protein restriction in progression of experimental chronic renal failure. Pathology 28:156–160CrossRefPubMedGoogle Scholar
  29. Luk JKH, Wong EFC, Wong NLM (1995) Downregulation of atrial natriuretic factor clearance receptors in experimental chronic failure in rats.Am J Physiol 269; Heart Circ Physiol 38:H902–G908Google Scholar
  30. MacLaughlin M, Monserrat AJ, Muller A, Matoso M, Amorena C (1998) Role of kinins in the renoprotective effect of angiotensin-converting enzyme inhibitors in experimental chronic renal failure. Kidney Blood Press Res 21:329–334CrossRefPubMedGoogle Scholar
  31. Mak RHK, Pak YK (1996) End-organ resistance to growth hormone and IGF-I in epiphyseal chondrocytes of rats with chronic renal failure. Kidney Int 50:400–406CrossRefPubMedGoogle Scholar
  32. Nabokov A, Amann K, Wagner J, Gehlen F, Munter K, Ritz E (1996) Influence of specific and non-specific endothelin receptor antagonists on renal morphology in rats with surgical renal ablation. Nephrol Dial Transplant 11:514–520CrossRefPubMedGoogle Scholar
  33. Noda M, Fukuda R, Matsuo T, Ohta M, Nagano H, Imura Y, Nishikawa K, Shibouta Y (1997) Effects of candesartan cilexetil (TCV-116) and enalapril in 5/6 nephrectomized rats. Kidney Int Suppl 51(63):S136–S139Google Scholar
  34. Nyengaard JR, Bendtsen TF, Christensen S, Ottosen PD (1994) The number and size of glomeruli in long-term lithium-induced nephropathy in rats. APMIS 102:59–66CrossRefPubMedGoogle Scholar
  35. Pelayo JC, Quan AH, Shanley PF (1990) Angiotensin II control of the renal microcirculation in rats with reduced renal mass.Am J Physiol 258; Ren Fluid Electrolyte Physiol 27:F414–F422Google Scholar
  36. Potter GS, Johnson RJ, Fink GD (1997) Role of endothelin in hypertension of experimental chronic renal failure. Hypertension 30:1578–1584CrossRefPubMedGoogle Scholar
  37. Poux JM, Lartigue M, Chaisemartin RA, Galen FX, Leroux-Robert C (1995) Uraemia is necessary for erythropoietin-induced hypertension in rats. Clin Exp Pharmacol Physiol 22:769–771CrossRefPubMedGoogle Scholar
  38. Roczniak A, Fryer JN, Levine DZ, Burns KD (1999) Downregulation of neuronal nitric oxide synthase in the rat remnant kidney. J Am Soc Nephrol 10:704–713PubMedGoogle Scholar
  39. Santos F, Chan JCM, Hanna JD, Niimi K, Krieg RJ Jr, Wellons MD (1992) The effect of growth hormone on the growth failure of chronic renal failure. Pediatr Nephrol 6:262–266CrossRefPubMedGoogle Scholar
  40. Schaefer L, Malchow M, Schaefer RM, Ling H, Heidland A, Massry SG (1996) Effects of parathyroid hormone on renal tubular proteinases. Miner Electrolyte Metab 22:182–186PubMedGoogle Scholar
  41. Shimizu T, Hata S, Kuroda T, Mihara SI, Fujimoto M (1999) Different roles of two types of endothelin receptors in partial ablation-induced chronic renal failure in rats. Eur J Pharmacol 381:39–49CrossRefPubMedGoogle Scholar
  42. Stockelman MG, Lorenz JN, Smith FN, Boivin GP, Sahota A, Tischfield JA, Stambrook PJ (1998) Chronic renal failure in a mouse model of human adenine phosphoribosyltransferase deficiency.Am J Physiol 275; Ren Physiol 44:F154–F163Google Scholar
  43. Tolins JP, Raij L (1990) Comparison of converting enzyme inhibitor and calcium channel blocker in hypertensive glomerular injury. Hypertension 10:452–461CrossRefGoogle Scholar
  44. Tonshoff B, Powell DR, Zhao D, Durham SK, Coleman ME, Domene HM, Blum WF, Baxter RC, Moore LC, Kaskel FJ (1997) Decreased hepatic insulin-like growth factor (IGF)-I and increased IGF binding protein-1 and −2 gene expression in experimental uremia. Endocrinology 138:938–946CrossRefPubMedGoogle Scholar
  45. Urena P, Kubrusly M, Mannstadt M, Hruby M, Tan MMTT, Silve C, Lacour B, Abou-Samra AB, Segre GV, Drueke T (1994) The renal PTH/PTHrP receptor is down-regulated in rats with chronic renal failure. Kidney Int 45:605–611CrossRefPubMedGoogle Scholar
  46. Van den Branden C, Gabriels M, Vamecq J, Houte KV, Verbeelen D (1997) Carvedilol protects against glomerulosclerosis in rat remnant kidney without general changes in antioxidant enzyme status: a comparative study of two β-blocking drugs, carvedilol and propranolol. Nephron 77:319–324CrossRefPubMedGoogle Scholar
  47. Vaneerdeweg W, Buyssens N, De Winne T, Sebrechts M, Babloyan A, Arakelian S, De Broe ME (1992) A standard surgical technique to obtain a stable and reproducible chronic renal failure model in dogs. Eur Surg Res 24:273–282CrossRefPubMedGoogle Scholar
  48. Vaziri ND, Oveisi F, Ding Y (1998) Role of increased oxygen free radical activity in the pathogenesis of uremic hypertension. Kidney Int 53:1748–1754CrossRefPubMedGoogle Scholar
  49. Wolf SC, Br B, Gaschler F, Brehm S, Klaussner M, Smykowski J, Amann K, Osswald H, Erley CM, Risler T (1999) Protective effects of endothelin antagonists in chronic renal failure. Nephrol Dial Transplant 14(Suppl 4):29–30CrossRefPubMedGoogle Scholar
  50. Wong NLM, Wong EEC (1991) Increased release of atrial natriuretic peptide by the atria of rats with experimental renal failure. Nephron 57:89–93CrossRefPubMedGoogle Scholar
  51. Wong NLM, Wong EEC (1992) Effect of dietary sodium on atrial natriuretic factor released in rats with chronic renal failure. Nephron 61:464–469CrossRefPubMedGoogle Scholar
  52. Yi H, Fukagawa M, Yamamoto H, Kumagai M, Watanabe T, Kurokawa K (1995) Prevention of enhanced parathyroid hormone secretion, synthesis and hyperplasia by mild dietary phosphorus restriction in early chronic renal failure in rats. Possible direct role of phosphorus. Nephron 70:242–248CrossRefPubMedGoogle Scholar
  53. Zhou XJ, Pandian D, Wang QX, Vaziri ND (1997) Erythropoietin-induced hypertension is not mediated by alterations of plasma endothelin, vasopressin, or atrial natriuretic peptide levels. J Am Soc Nephrol 8:901–905PubMedGoogle Scholar

Experimental Nephritis

  1. Chen Y-M, Chien C-T, Hu-Tsai M-I, Wu K-D, Tsai C-C, Wu MS, Tsai T-J (1999) Pentoxifylline attenuates experimental mesangial proliferative glomerulonephritis. Kidney Int 56:932–943Google Scholar
  2. Heymann W, Hackel DB, Harwood S, Wilson SGF, Hunter JLP (1959) Production of nephrotic syndrome in rats by Freund’s adjuvant and rat kidney suspension. Proc Soc Exp Biol Med 100:660–664Google Scholar
  3. Masugi M, Sato Y (1934) Über die allergische Gewebsreaktion der Niere.Zugleich ein experimenteller Beitrag zur Pathogenese der diffusen Glomerulonephritis und der Periarteriitis nodosa. Virchows Arch Pathol Anat Physiol Klin Med 293:615–664Google Scholar
  4. Nagao T, Nagamatsu T, Suzuki Y (1994) Effect of DP-1904, a thromboxane A2 synthetase inhibitor, on crescentic nephritis in rats. Eur J Pharmacol 259:233–242Google Scholar
  5. Nagao T, Nagamatsu T, Suzuki Y (1998) Effect of lipo-prostaglandin E1 on crescentic-type anti-glomerular basement membrane nephritis in rats. Eur J Pharmacol 348:37–44Google Scholar
  6. Theofilopoulos AN, Dixon FJ (1981) Etiopathogenesis of murine SLE. Immunol Rev 55:179–216CrossRefPubMedGoogle Scholar
  7. Unanue ER, Dixon FJ (1967) Experimental glomerulonephritis: immunological events and pathogenic mechanisms. Adv Immunol 6:1–90Google Scholar

Nephrotoxic Serum Nephritis

  1. Chen Y-M, Chien C-T, Hu-Tsai M-I, Wu K-D, Tsai C-C, Wu MS, Tsai T-J (1999) Pentoxifylline attenuates experimental mesangial proliferative glomerulonephritis. Kidney Int 56:932–943Google Scholar
  2. Couser WG, Steinmuller DR, Stilmant MM, Salant DJ, Lowenstein LM (1978) Experimental glomerulonephritis in the isolated perfused rat kidney. J Clin Invest 62:1275–1287CrossRefPubMedCentralPubMedGoogle Scholar
  3. Eddington TS, Glassock RJ, Dixon FJ (1968) Autologous immune complex nephritis induced with renal tubular antigen.I Identification and isolation of the pathogenic antigen. J Exp Med 127:555–572CrossRefGoogle Scholar
  4. Hamada N, Nagase M (1996) In vivo effect of OPC15161, a superoxide scavenger, on anti-Thy1 nephritis. Eur J Pharmacol 317:123–128CrossRefPubMedGoogle Scholar
  5. Hara M, Batsford SR, Mihatsch MJ, Bitter-Suermann D, Vogt A (1991) Complement and monocytes are essential for provoking glomerular injury in passive Heymann nephritis in rats.Terminal complement components are not the sole mediators of proteinuria. Lab Invest 65:168–179PubMedGoogle Scholar
  6. Hayashi K, Nagematsu T, Honda S, Suzuki Y (1996) Butein (3,4,2′,4′-tetrahydroxychalcone) ameliorates experimental anti-glomerular basement membrane antibody-associated glomerulonephritis. Eur J Pharmacol 316:279–306CrossRefGoogle Scholar
  7. Heise G, Grabensee B, Schrör K, Heering P (1998) Different actions of the cyclooxygenase 2 selective inhibitor flosulide in rats with passive Heymann nephritis. Nephron 80:220–226CrossRefPubMedGoogle Scholar
  8. Heymann W, Hackel DB, Harwood S, Wilson SGF, Hunter JLP (1959) Production of nephrotic syndrome in rats by Freund’s adjuvant and rat kidney suspension. Proc Soc Exp Biol Med 100:660–664Google Scholar
  9. Heymann W, Kmetec EP, Wilson SGF, Hunter JLP, Hackel DB, Okuda R, Cuppage F (1965) Experimental autoimmune renal disease in rats. Ann N Y Acad Sci 124:310–315CrossRefPubMedGoogle Scholar
  10. Ito M, Yamada H, Okamoto K, Suzuki Y (1983) Crescentic type nephritis induced by anti-glomerular basement membrane (GBM) serum in rats. Jpn J Pharmacol 33:1145–1154CrossRefPubMedGoogle Scholar
  11. Kawasaki K, Yaoita E, Yamamoto T, Kihara I (1992) Depletion of CD8 positive cells in nephrotoxic serum nephritis of WKY rats. Kidney Int 41:1517–1527CrossRefPubMedGoogle Scholar
  12. Kawasaki K, Yaoita E, Yamamoto T, Kihara I (1995) Therapeutic effect of combined treatment with monoclonal antibodies against intercellular adhesion molecule 1 and lymphocyte-function-associated antigen 1 in Masugi nephritis of Wistar–Kyoto rats. Nephron 71:101–102CrossRefPubMedGoogle Scholar
  13. Krakower CA, Greenspon SA (1951) Localization of nephrotoxic antigen within the isolated renal glomeruli. Arch Pathol 51:629–639Google Scholar
  14. Kushiro M, Shikata K, Sugimoto H, Shikata Y, Miyatake N, Wada J, Miyasaka M, Makino H (1998) Therapeutic effects of prostacyclin analog on crescentic glomerulonephritis of rat. Kidney Int 53:1314–1320CrossRefPubMedGoogle Scholar
  15. Liebler S, Überschär B, Kübert H, Brems S, Schnitger A, Tsukada M, Zouboulis CC, Ritz E, Wagner J (2004) The renal retinoid system: time dependent activation in experimental glomerulonephritis. Am J Physiol Renal Physiol 286:F458–F465CrossRefPubMedGoogle Scholar
  16. Masugi M, Sato T (1934b) Virchows Arch Pathol Anat Physiol Klin Med 293:615CrossRefGoogle Scholar
  17. Nagamatsu T, Hayashi K, Oka T, Suzuki Y (1999) Angiotensin II type I receptor antagonist suppresses proteinuria and glomerular lesions in experimental nephritis. Eur J Pharmacol 374:93–101CrossRefPubMedGoogle Scholar
  18. Nagao T, Nagamatsu T, Suzuki Y (1994) Effect of DP-1904, a thromboxane A2 synthetase inhibitor, on crescentic nephritis in rats. Eur J Pharmacol 259:233–242Google Scholar
  19. Nagao T, Nagamatsu T, Suzuki Y (1996) Effect of DP-1904, a thromboxane A2 synthetase inhibitor, on passive Heymann nephritis in rats. Eur J Pharmacol 316:73–80CrossRefPubMedGoogle Scholar
  20. Nagao T, Nagamatsu T, Suzuki Y (1998) Effect of lipo-prostaglandin E1 on crescentic-type anti-glomerular basement membrane nephritis in rats. Eur J Pharmacol 348:37–44Google Scholar
  21. Okubo Y, Tsukada Y, Maezawa A, Ono K, Yano S, Naruse T (1990) FK506, a novel immunosuppressive agent, induces antigen-specific immunotolerance in active Heymann’s nephritis and in the autologous phase of Masugi nephritis. Clin Exp Immunol 82:450–455CrossRefPubMedCentralPubMedGoogle Scholar
  22. Okuda S, Languino LR, Ruoslathi E, Border WA (1990) Elevated expression of transforming growth factor-β and proteoglycan production in experimental glomerulonephritis.Possible role in expansion of the mesangial extracellular matrix. J Clin Invest 86:453–462CrossRefPubMedCentralPubMedGoogle Scholar
  23. Rennke HG, Klein PS, Sandstrom DJ, Mendrick DL (1994) Cell-mediated immune injury in the kidney: acute nephritis induced by azobenzenearsonate. Kidney Int 45:1044–1056CrossRefPubMedGoogle Scholar
  24. Sanaka T, Nakano Y, Nishimura H, Shinobe M, Higuchi C, Omata M, Nihei H, Sugino N (1997) Therapeutic effect of a newly developed antioxidative agent (OPC-15161) on experimental immune complex nephritis. Nephron 76:315–322CrossRefPubMedGoogle Scholar
  25. Suzuki S, Gejyo F, Kuroda T, Kazama JJ, Imai N, Kimura H, Arakawa M (1998) Effect of a new elastase inhibitor, ONO-5046, on nephrotoxic serum nephritis in rats. Kidney Int 53:1208–1291CrossRefGoogle Scholar
  26. Tamatani T, Miyasaka M (1990) Identification of monoclonal antibodies reactive with the rat homolog of ICAM-1 and evidence for differential involvement of ICAM-1 in the adherence of resting versus activated lymphocytes to high endothelial cells. Int Immunol 2:165–171CrossRefPubMedGoogle Scholar
  27. Thaiss F, Schoeppe W, Willaredt-Stoll JG, Batsford S, Mihatsch MJ (1989) Cyclosporin A prevents proteinuria in an active model of membranous nephropathy in rats. Lab Invest 61:661–669PubMedGoogle Scholar
  28. Unanue ER, Dixon FJ (1967) Experimental glomerulonephritis: immunological events and pathogenic mechanisms. Adv Immunol 6:1–90Google Scholar

Experimental Nephrosis

  1. Abdel-Gayoum AA, El Jenjan KB, Ghwarsha KA (1999) Hyperlipidaemia in cisplatin-induced nephrotic rats. Hum Exp Toxicol 18:454–459CrossRefPubMedGoogle Scholar
  2. Asami T, Toyabe S, Uchiyama M (1999) Effects of glutathione on aminonucleoside nephrosis in rats. Acta Med Biol 47:9–14Google Scholar
  3. Binder CJ, Weiher H, Exner M, Kerjaschki D (1999) Glomerular overproduction of oxygen radicals in Mpv17 gene-inactivated mice causes podocyte foot process flattening and proteinuria.A model of steroid-resistant nephrosis sensitive to radical scavenger therapy. Am J Pathol 154:1075–1967CrossRefGoogle Scholar
  4. Chagnac A, Korzets A, Ben Bassat M, Zevin D, Hirsh J, Meckler J, Levi J (1994) Uninephrectomy aggravates tubulointerstitial injury in rats with adriamycin nephrosis. Nephron 66:176–180CrossRefPubMedGoogle Scholar
  5. De Boer E, Navis G, Wapstra FH, De Jong PE, De Zeeuw D (1999) Effect of proteinuria reduction on prevention of focal glomerulosclerosis by angiotensin-converting enzyme inhibition is modifiable. Kidney Int 56(Suppl 71):S42–S46CrossRefGoogle Scholar
  6. Ebihara I, Nakamura T, Tomino Y, Koide H (1997) Effect of a specific endothelin receptor A antagonist and an angiotensin-converting enzyme inhibitor on glomerular mRNA levels for extracellular matrix components, metalloproteinases (MMP) and a tissue inhibitor of MMP in aminonucleoside nephrosis. Nephrol Dial Transplant 12:1001–1006CrossRefPubMedGoogle Scholar
  7. Guoji Y, Orita M, Tashiro K, Abe H (1994) Effects of glycyrrhetinic acid on aminonucleoside nephrosis in rats. Naunyn-Schmiedeberg’s Arch Pharmacol 349:318–323CrossRefGoogle Scholar
  8. Kimura M, Takahashi H, Ohtake T, Sato T, Hishida A, Nishimura M, Honda H (1993) Interstrain differences in murine daunomycin-induced nephrosis. Nephron 63:193–198PubMedGoogle Scholar
  9. Klar S, Morrissey JJ (1997) Comparative study of ACE inhibitors and angiotensin II receptor antagonists in interstitial scarring. Kidney Int 52(Suppl 63):S-111–S-114Google Scholar
  10. Mackenzie HS, Ots M, Ziai F, Lee K-W, Kato S, Brenner BM (1997) Angiotensin receptor agonists in experimental models of chronic renal failure. Kidney Int 52(Suppl 63):140–143Google Scholar
  11. Magil A (1996) Inhibition of progression of chronic puromycin aminonucleoside nephrosis by probucol, an antioxidant. J Am Soc Nephrol 7:2340–2347PubMedGoogle Scholar
  12. Milner LS, Wei SH, Houser MT (1991) Amelioration of glomerular injury in doxorubicin hydrochloride nephrosis by dimethylthiourea. J Lab Clin Med 118:427–434PubMedGoogle Scholar
  13. Milner LS, Wei S, Kazakoff P, Watkins L, Houser MT (1994) Synergistic effect of fish oil diet and dimethylurea in acute adriamycin nephrosis. Am J Med Sci 308:266–270CrossRefPubMedGoogle Scholar
  14. Mizuno S, Mizuno-Horikawa Y, Yue B-F, Okamoto M, Kurosawa T (1999) Nephrotic mice (ICGN strain): a model of diffuse mesangial sclerosis in infantile nephrotic syndrome. Am J Nephrol 19:73–82CrossRefPubMedGoogle Scholar
  15. Mutti A, Coccini T, Alinovi R, Toubeau G, Broeckaert F, Bergamaschi E, Mozoni P, Nonclercq D, Bernard A, Manzo L (1999) Exposure to hydrocarbons and renal disease: an experimental animal model. Ren Fail 21:369–385CrossRefPubMedGoogle Scholar
  16. Nosaka K, Takahashi T, Nishi T, Imaki H, Suzuki T, Suzuki K, Kurokawa K, Endou H (1997) An adenosine deaminase inhibitor prevents puromycin aminonucleoside nephrotoxicity. Free Radic Biol Med 22:597–605CrossRefPubMedGoogle Scholar
  17. Park Y-S, Guijarro C, Kim Y, Massy CA, Kasiske BL, Keane WF, O’Donnell MP (1998) Lovastatin reduces glomerular macrophage influx and expression of monocyte chemoattractant protein-1 mRNA in nephrotic rats. Am J Kidney Dis 31:190–194CrossRefPubMedGoogle Scholar
  18. Pedraza-Chaverri J, Granados-Silvestre MA, Medina-Campos ON, Hernández-Pando R (1999) Effect of the in vivo catalase inhibition on aminonucleoside nephrosis. Free Radic Biol Med 27:245–253CrossRefPubMedGoogle Scholar
  19. Wapstra FH, Van Goor H, Navis G, De Jong PE, De Zeeuw D (1996) Antiproteinuric effect predicts renal protection by angiotensin-converting enzyme inhibition in rats with established adriamycin nephrosis. Clin Sci 90:339–340Google Scholar
  20. Yayama K, Kawao M, Tujii H, Itoh N, Okamoto H (1993) Dup 753 prevents the development of puromycin aminonucleoside-induced nephrosis. Eur J Pharmacol 236:337–338CrossRefPubMedGoogle Scholar
  21. Yoneda H, Toriumi W, Ohmachi Y, Okumura F, Fujimura H, Nishiyama S (1998) Involvement of angiotensin II in development of spontaneous nephrosis in Dahl salt-sensitive rats. Eur J Pharmacol 362:213–219CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Non-Clinical Drug SafetyBoehringer Ingelheim Pharmaceuticals, IncRidgefieldUSA

Personalised recommendations