Induction of Experimental Atherosclerosis

  • Stefan Offermanns
Living reference work entry


Experimental atherosclerosis was first successfully induced in rabbits by Saltykow (1908) and Ignatowski (1909). During the following years, various scientists found that dietary cholesterol was the responsible stimulus for the development of atherosclerosis. Other species are also susceptible to diet-induced atherosclerosis (Reviews by Kritchevsky 1964; Hadjiinky et al. 1991). Mouse models of atherosclerosis were reviewed by Reardon and Getz (2001), by Daugherty (2002), and by Maganto-Garcia et al. (2012). The responses of mouse models of atherosclerosis to different drugs have been summarized by Zadelaar et al. (2007). Getz and Reardon (2012) have recently compared different animal models of atherosclerosis.


Cholesteryl Ester Transfer Protein Arterioscler Thromb Vasc Biol Familial Hypercholesterolemia Tree Shrew Fatty Streak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

General Considerations

  1. Daugherty A (2002) Mouse models of atherosclerosis. Am J Med Sci 323:3–10Google Scholar
  2. Getz GS, Reardon CA (2012) Animal models of atherosclerosis. Arterioscler Thromb Vasc Biol 32:1104–1115PubMedCentralPubMedGoogle Scholar
  3. Hadjiinky P, Bourdillon MC, Grosgogeat Y (1991) Modèles expérimentaux d’athérosclérose. Apports, limites et perspectives. Arch Mal Coeur Vaiss 84:1593–1603Google Scholar
  4. Ignatowski A (1909) Über die Wirkung des tierischen Eiweißes auf die Aorta und die parenchymatösen Organe der Kaninchen. Virchow’s Arch Pathol Anat Physiol 198:248–270Google Scholar
  5. Kritchevsky D (1964) Chapter 2: Experimental atherosclerosis. In: Paoletti R (ed) Lipid pharmacology. Academic, New York/London, pp 63–130Google Scholar
  6. Maganto-Garcia E, Tarrio M, Lichtman AH (2012) Mouse models of atherosclerosis. Curr Protoc Immunol Chapter 15:Unit 15 24 11–23Google Scholar
  7. Reardon CA, Getz GS (2001) Mouse models of atherosclerosis. Curr Opin Lipidol 12:167–173PubMedGoogle Scholar
  8. Saltykow S (1908) Die experimentell erzeugten Arterienveränderungen in ihrer Beziehung zu Atherosklerose und verwandten Krankheiten des Menschen. Zentralbl Allgem Pathol Pathol Anat 19:321–368Google Scholar
  9. Zadelaar S, Kleemann R, Verschuren L et al (2007) Mouse models for atherosclerosis and pharmaceutical modifiers. Arterioscler Thromb Vasc Biol 27:1706–1721Google Scholar

Cholesterol-Diet-Induced Atherosclerosis in Rabbits and Other Species

  1. Baxter A, Fitzgerald BJ, Hutson JL, McCarthy AD, Motteram JM, Ross BC, Sapra M, Snowden MA, Watson NS, Williams RJ, Wright C (1992) Squalestatin 1, a potent inhibitor of squalene synthase, which lowers cholesterol in vivo. J Biol Chem 267:11705–11708PubMedGoogle Scholar
  2. Beere PA, Glagov S, Zarins CK (1992) Experimental atherosclerosis at the carotid bifurcation of the cynomolgus monkey. Arterioscler Thromb 12:1245–1253PubMedGoogle Scholar
  3. Beitz J, Mest HJ (1991) A new derivative of trapidil (AR 12456) as a potentially new antiatherosclerotic drug. Cardiovasc Drug Rev 9:385–397Google Scholar
  4. Blaton V, Peeters H (1976) The nonhuman primates as models for studying atherosclerosis: studies on the chimpanzee, the baboon and the rhesus macacus. In: Day CE (ed) Atherosclerosis drug discovery. Plenum Press, New York/London, pp 33–64Google Scholar
  5. Bretherton KN, Day AJ, Skinner SL (1977) Hypertension-accelerated atherogenesis in cholesterol-fed rabbits. Atherosclerosis 27:79–87PubMedGoogle Scholar
  6. Caldwell CT, Suydam DE (1959) Quantitative study of estrogen-induced atherosclerosis in cockerels. Proc Soc Exp Biol Med 101:299–302PubMedGoogle Scholar
  7. Chapman KP, Stafford WW, Day CE (1976) Produced by selective breeding of Japanese quail animal model for experimental atherosclerosis. In: Day CE (ed) Atherosclerosis drug discovery. Plenum Press, New York/London, pp 347–356Google Scholar
  8. Clarkson TB, Lofland HB (1961) Therapeutic studies on spontaneous arteriosclerosis in pigeons. In: Garattini S, Paoletti R (eds) Drugs affecting lipid metabolism. Elsevier, Amsterdam, pp 314–317Google Scholar
  9. Crook D, Weisgraber KH, Rall SC Jr, Mahley RW (1990) Isolation and characterization of several plasma apolipoproteins of common marmoset monkey. Arteriosclerosis 10:625–632PubMedGoogle Scholar
  10. Day CE (1990) Comparison of hypocholesterolemic activities of the bile acid sequestrants cholestyramine and cholestipol hydrochloride in cholesterol fed sea quail. Artery 17:281–288PubMedGoogle Scholar
  11. Day CE, Stafford WW (1975) New animal model for atherosclerosis research. In: Kritchevsky D, Paoletti R, Holmes WL (eds) Lipids, lipoproteins, and drugs. Plenum Press, New York, pp 339–347Google Scholar
  12. Day CE, Stafford WW, Schurr PE (1977) Utility of a selected line (SEA) of the Japanese quail (Coturnix coturnix japonica) for the discovery of new anti-atherosclerosis drugs. Anim Sci 27:817–821Google Scholar
  13. Day CE, Phillips WA, Schurr PE (1979) Animal models for an integrated approach to the pharmacologic control of atherosclerosis. Artery 5:90–109PubMedGoogle Scholar
  14. Eggen DA, Bhattacharyya AK, Strong JP, Newman WP III, Guzman MA, Restrepo C (1991) Use of serum lipid and apolipoprotein concentrations to predict extent of diet-induced atherosclerotic lesions in aortas and coronary arteries and to demonstrate regression of lesions in individual Rhesus monkeys. Arterioscler Thromb 11:467–475PubMedGoogle Scholar
  15. Fernandez ML (2001) Guinea pigs as model for cholesterol and lipoprotein metabolism. J Nutr 131:10–20PubMedGoogle Scholar
  16. Fillios LC, Andrus SB, Mann GV, Stare FJ (1956) Experimental production of gross atherosclerosis in the rat. J Exp Med 104:539–552PubMedCentralPubMedGoogle Scholar
  17. Fukushima H, Nakatani H (1969) Cholesterol-lowering effects of DL-N-(α-methylbenzyl)-linoleamide and its optically active isomers in cholesterol-fed animals. J Atheroscler Res 9:65–71PubMedGoogle Scholar
  18. Henry PD, Bentley KI (1981) Suppression of atherogenesis in cholesterol-fed rabbit treated with nifedipine. J Clin Invest 68:1366–1369PubMedCentralPubMedGoogle Scholar
  19. Hollander W, Prusty S, Nagraj S, Kirkpatrick B, Paddock J, Colombo M (1978) Comparative effects of cetaben (PHB) and dichlormethylene diphosphonate (Cl2MDP) on the development of atherosclerosis in the cynomolgus monkey. Atherosclerosis 31:307–325PubMedGoogle Scholar
  20. Howard AN (1976) The baboon in atherosclerosis research: comparison with other species and use in testing drugs affecting lipid metabolism. In: Day CE (ed) Atherosclerosis drug discovery. Plenum Press, New York/London, pp 77–87Google Scholar
  21. Huff MW, Telford DE, Edwards JY, Burnett JR, Barrett HP, Rapp SR, Napawan N, Keller BT (2002) Inhibition of the apical sodium-dependent bile acid transporter reduced LDL cholesterol and apoB by enhanced plasma clearance of LDL apoB. Arterioscler Thromb Vasc Biol 22:1884–1891PubMedGoogle Scholar
  22. Inoue Y, Goto H, Horinuki R, Kimura Y, Toda T (1990) Experimental atherosclerosis in the rat carotid artery induced by balloon de-endothelialization and hyperlipidemia. J Jpn Atheroscler Soc 18:1147–1154Google Scholar
  23. Jacobsson L (1987) Influence of clofibrate on the plasma lipoprotein pattern and on lipid content and protein and collagen synthesis in atherosclerotic coronary arteries and abdominal aorta from hypercholesterolemic mini-pigs. Atherosclerosis 63:173–180PubMedGoogle Scholar
  24. Jacobsson L, Lundholm L (1982) Experimental atherosclerosis in hypercholesterolemic mini-pigs. Atherosclerosis 45:129–148PubMedGoogle Scholar
  25. Kowala MC, Nunnari JJ, Durham SK, Nicolosi RJ (1991) Doxazosin and cholestyramine similarly decrease fatty streak formation in the aortic arch of hyperlipidemic hamsters. Atherosclerosis 91:35–49PubMedGoogle Scholar
  26. Kritchevsky D (1964) Animal techniques for evaluating hypocholesteremic drugs. In: Nodine JH, Siegler PE (eds) Animal and clinical pharmacologic techniques in drug evaluation. Year Book Medical Publishers, Chicago, pp 193–198Google Scholar
  27. Kritchevsky D, Tepper SA, Davidson LM, Fisher EA, Klurfeld DM (1989) Experimental atherosclerosis in rabbits fed cholesterol-free diets. 13. Interactions of protein and fat. Atherosclerosis 75:123–127PubMedGoogle Scholar
  28. Kushwaha RS, Lewis DS, Dee Carey K, McGill HC Jr (1991) Effects of estrogen and progesterone on plasma lipoproteins and experimental atherosclerosis in the baboon (Papio sp.). Arterioscl Thromb 11:23–31PubMedGoogle Scholar
  29. Lundholm L (1978) Influence of nicotinic acid, nicitrol and ß-pyridicarbinol on experimental hyperlipidemia and atherosclerosis in mini-pigs. Atherosclerosis 29:217–239PubMedGoogle Scholar
  30. Lustalot P, Schuler W, Albrecht W (1961) Comparison of drug actions in a spectrum of experimental anti-atherosclerotic test systems. In: Garattini S, Paoletti R (eds) Drugs affecting lipid metabolism. Elsevier, Amsterdam, pp 271–276Google Scholar
  31. Malinow MR, McLaughlin P, Papworth L, Naito HK, Lewis L, McNulty WP (1976) A model for therapeutic intervention on established coronary atherosclerosis in a nonhuman primate. In: Day CE (ed) Atherosclerosis drug discovery. Plenum Press, New York/London, pp 3–31Google Scholar
  32. Ming-Peng S, Ren-Yi X, Bi-Fang R, Zong-Li W (1990) High density lipoproteins and prevention of experimental atherosclerosis with special reference to tree shrews. Ann N Y Acad Sci 598:339–351Google Scholar
  33. Moss JN, Dajani EZ (1971) Antihyperlipidemic agents. In: Turner RA, Hebborn P (eds) Screening methods in pharmacology, vol II. Academic, New York/London, pp 121–143Google Scholar
  34. Nistor A, Bulla A, Filip DA, Radu A (1987) The hyperlipidemic hamster as a model of experimental atherosclerosis. Atherosclerosis 68:159–173PubMedGoogle Scholar
  35. O’Meara NMG, Devery RAM, Owens D, Collins PB, Johnson AH, Tomkin GH (1991) Serum lipoproteins and cholesterol metabolism in two hypercholesterolaemic rabbit models. Diabetologia 34:139–143PubMedGoogle Scholar
  36. Paigen B, Morrow A, Holmes PA, Mitchell D, Williams RA (1987) Quantitative assessment of atherosclerotic lesions in mice. Atherosclerosis 68:231–240PubMedGoogle Scholar
  37. Paigen B, Ishida BY, Verstuyft J, Winters RB, Albee D (1990) Atherosclerosis susceptibility differences among progenitors of recombinant inbred strains of mice. Atherosclerosis 10:316–323Google Scholar
  38. Riezebos J, Vleeming W, Beems RB, van Amsterdam JGC, Meijer GW, de Wildt DJ, Porsius AJ, Wemer J (1994) Comparison of Isradipine and Ramipril in cholesterol-fed rabbits: effect on progression of atherosclerosis and endothelial dysfunction. J Cardiovasc Pharmacol 23:415–423PubMedGoogle Scholar
  39. Roberts A, Thompson JS (1976) Inbred mice and their hybrids as an animal model for atherosclerosis research. In: Day CE (ed) Atherosclerosis drug discovery. Plenum Press, New York/London, pp 313–327Google Scholar
  40. Schäfer H-L, Linz W, Bube A, Falk E, Hennig A, Hoffmann A, Leineweber M, Matthäi U, Schmalz M, Sendlbeck E, Kramer W, Schölkens BA (1999) The Syrian hamster as animal model for atherosclerosis. Naunyn-Schmiedeberg’s Arch Pharmacol 359S:R111Google Scholar
  41. Scholz W, Albus U, Hropot M, KLaus E, Linz W, Schölkens BA (1990) Zunahme des Na+/H+-Austausches an Kaninchenerythrozyzen unter atherogener Diät. In: Assmann G, Betz E, Heinle H, Schulte H (eds) Arteriosklerose. Neue Aspekte aus Zellbiologie und Molekulargenetik, Epidemiologie und Klinik. Tagung der Deutschen Gesellschaft für Arteriosklerose-Forschung. Vieweg Verlag, Braunschweig, Wiesbaden, pp 296–302Google Scholar
  42. Shore B, Shore V (1976) Rabbits as a model for the study of hyperlipoproteinemia and atherosclerosis. In: Day CE (ed) Atherosclerosis drug discovery. Plenum Press, New York/London, pp 123–141Google Scholar
  43. Simpson CF, Harms RH (1969) Aortic atherosclerosis of turkeys induced by feeding of cholesterol. J Atheroscler Res 10:63–75PubMedGoogle Scholar
  44. Soret MG, Blanks MC, Gerritsen GC, Day CE, Block EM (1976) Diet-induced hypercholesterinemia in the diabetic and non-diabetic Chinese hamster. In: Day CE (ed) Atherosclerosis drug discovery. Plenum Press, New York/London, pp 329–343Google Scholar
  45. Tao L, Liu HR, Gao E, Teng ZP, Lopez BL, Christopher TA, Ma XL, Batinic-Haberle I, Willette RN, Ohlstein EH, Yue TL (2003) Antioxidative, antinitrative, and vasculoprotective effects of a peroxisome proliferator-activated receptor-γ agonist in hypercholesterolemia. Circulation 108:2805–2811PubMedGoogle Scholar
  46. Telford DE, Edwards JY, Lipson SM, Hugh P, Barrett HP, Burnett JR, Krul ES, Keller BT, Huff MW (2003) Inhibition of both the apical sodium-dependent bile acid transporter and HMG-CoA reductase markedly enhances the clearance of LDL apoB. J Lipid Res 44:943–952PubMedGoogle Scholar
  47. Tennent DM, Siegel H, Zanetti ME, Kuron GW, Ott WH, Wolf FJ (1960) Plasma cholesterol lowering action of bile acid binding polymers in experimental animals. J Lipid Res 1:469–473PubMedGoogle Scholar
  48. Yamaguchi Y, Kitagawa S, Imaizumi N, Kunitomo M, Fujiwara M (1993) Enhancement of cholesterol deposition by dietary linoleic acid in cholesterol-fed mice: an animal model for primary screening of antiatherosclerotic agents. J Pharmacol Toxicol Methods 30:169–175PubMedGoogle Scholar

Hereditary Hypercholesterolemia in Rats

  1. Lutton C, Ouguerram K, Sauvage M, Magot T (1990) Turnover of [14C]sucrose HDL and uptake by organs in the normal or genetically hypercholesterolemic (RICO) rat using a constant infusion method. Reprod Nutr Dev 30:97–101PubMedGoogle Scholar
  2. Müller KR, Li JR, Dinh DM, Subbiah MTR (1979) The characteristics and metabolism of a genetically hypercholesterolemic strain of rats (RICO). Biochim Biophys Acta 574:334–343PubMedGoogle Scholar
  3. Ougueram K, Magot T, Lutton C (1991) Alterations in cholesterol metabolism in the genetically hypercholesterolemic RICO rat: an overview. In: Malmedier CL, Alaupovic P, Brewer HB Jr (eds) Hypercholesterolemia, hypocholesterolemia, hypertriglyceridemia, in vivo kinetics, vol 285, Advances in experimental medicine biology. Plenum Press, New York/London, pp 257–274Google Scholar
  4. Ougueram K, Magot T, Lutton C (1992) Metabolism of intestinal triglyceride-rich lipoproteins in the genetically hypercholesterolemic rat (RICO). Atherosclerosis 93:201–208Google Scholar
  5. Riottot M, Olivier P, Huet A, Caboche JJ, Parquet M, Khallou J, Lutton C (1993) Hypolipidemic effects of β-cyclodextrin in the hamster and in the genetically hypercholesterolemic RICO rat. Lipids 28:181–188PubMedGoogle Scholar

Hereditary Hyperlipidemia in Rabbits

  1. Bilheimer DW, Watanabe Y, Kita T (1982) Impaired receptor-mediated catabolism of low density lipoprotein in the WHHL rabbit, an animal model of familial hypercholesterolemia. Proc Natl Acad Sci U S A 79:3305–3309PubMedCentralPubMedGoogle Scholar
  2. Gallagher PJ, Nanjee MN, Richards T, Roche WR, Miller NE (1988) Biochemical and pathological features of a modified strain of Watanabe heritable hyperlipidemic rabbits. Atherosclerosis 71:173–183PubMedGoogle Scholar
  3. Kita T, Brown MS, Watanabe Y, Goldstein JL (1981) Deficiency of low density lipoprotein receptors in liver and adrenal gland of the WHHL rabbit, an animal model of familial hypercholesterolemia. Proc Natl Acad Sci U S A 78:2268–2272PubMedCentralPubMedGoogle Scholar
  4. Kita T, Brown MS, Bilheimer DW, Goldstein JL (1982) Delayed clearance of very low density and intermediate density lipoproteins with enhanced conversion to low density lipoprotein in WHHL rabbits. Proc Natl Acad Sci U S A 79:5693–5697PubMedCentralPubMedGoogle Scholar
  5. Makheja AN, Bloom S, Muesing R, Simon T, Bailey JM (1989) Anti-inflammatory drugs in experimental atherosclerosis. 7. Spontaneous atherosclerosis in WHHL rabbits and inhibition by cortisone acetate. Atherosclerosis 76:155–161PubMedGoogle Scholar
  6. Rosenfeld ME, Tsukada T, Gown AM, Ross R (1987) Fatty streak initiation in Watanabe heritable hyperlipidemic and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis 7:9–23PubMedGoogle Scholar
  7. Schneider WJ, Brown MS, Goldstein JL (1983) Kinetic defects in the processing of the low density lipoprotein receptor in fibroblasts from WHHL rabbits and a family with familial hypercholesterolemia. Mol Biol Med 1:353–367PubMedGoogle Scholar
  8. Tagawa H, Tomoike H, Nakamura M (1991) Putative mechanisms of the impairment of endothelium-dependent relaxation of the aorta with atheromatous plaque in heritable hyperlipidemic rabbits. Circ Res 68:330–337Google Scholar
  9. Watanabe Y (1980) Serial inbreeding of rabbits with hereditary hyperlipidemia (WHHL)-rabbit). Incidence and development of atherosclerosis and xanthoma. Atherosclerosis 36:261–268PubMedGoogle Scholar
  10. Watanabe Y, Ito T, Kondo T (1977) Breeding of a rabbit strain of hyperlipidemia and characteristic of these strain. Exp Anim 26:35–42Google Scholar
  11. Watanabe Y, Ito T, Shiomi M (1985) The effect of selective breeding on the development of coronary atherosclerosis in WHHL rabbits. An animal model for familial hypercholesterolemia. Atherosclerosis 56:71–79PubMedGoogle Scholar

Studies in Genetically Modified Mice

  1. Bentzon JF, Falk E (2010) Atherosclerotic lesions in mouse and man: is it the same disease? Curr Opin Lipidol 21:434–440PubMedGoogle Scholar
  2. Braun A, Trigatti BL, Post MJ, Sato K, Simons M, Edelberg JM, Rosenberg RD, Schrenzel M, Krieger M (2002) Loss of SR-BI expression leads to the early onset of occlusive atherosclerotic coronary artery disease, spontaneous myocardial infarctions, severe cardiac dysfunction, and premature death in apolipoprotein E-deficient mice. Circ Res 90:270–276PubMedGoogle Scholar
  3. Caligiuri G, Levy B, Pernow J, Thoren P, Hansson GK (1999) Myocardial infarction mediated by endothelin receptor signaling in hypercholesterolemic mice. Proc Natl Acad Sci U S A 96:6920–6924PubMedCentralPubMedGoogle Scholar
  4. Daugherty A (2002) Mouse models of atherosclerosis. Am J Med Sci 323:3–10Google Scholar
  5. Fazio S, Babaev VR, Murray AB et al (1997) Increased atherosclerosis in mice reconstituted with apolipoprotein E null macrophages. Proc Natl Acad Sci U S A 94:4647–4652PubMedCentralPubMedGoogle Scholar
  6. Fu T, Kashireddy P, Borensztajn J (2003) The peroxisome-proliferator-activated receptor α agonist ciprofibrate severely aggravates hypercholesterolaemia and accelerates the development of atherosclerosis in mice lacking apolipoprotein E. Biochem J 373:941–947PubMedCentralPubMedGoogle Scholar
  7. Getz GS, Reardon CA (2009) Apoprotein E as a lipid transport and signaling protein in the blood, liver, and artery wall. J Lipid Res 50(Suppl):S156–S161PubMedCentralPubMedGoogle Scholar
  8. Groot PH, van Vlijmen BJ, Benson GM, Hofker MH, Schiffelers R, Vidgeon-Hart M, Haveskes LM (1996) Quantitative assessment of aortic atherosclerosis in APOE*3 Leiden transgenic mice and its relationship to serum cholesterol exposure. Arterioscler Thromb Vasc Biol 16:926–933PubMedGoogle Scholar
  9. Harada K, Shimano H, Ishibashi S, Yamada N (1996) Transgenic mouse and gene therapy. Diabetes 45(Suppl 3):S129–S132PubMedGoogle Scholar
  10. Ishibashi S, Goldstein JL, Brown MS et al (1994) Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J Clin Invest 93:1885–1893PubMedCentralPubMedGoogle Scholar
  11. Joseph SB, McKilligin E, Pei L, Watson MA, Collins AR, Laffitte BA, Chen M, Noh G, Goodman J, Hagger GH, Tran J, Tippin TK, Wang X, Lusis AJ, Hsueh WA, Law RE, Collins JL, Willson TM, Tontonoz P (2002) Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci U S A 99:7604–7609PubMedCentralPubMedGoogle Scholar
  12. Li AC, Brown KK, Silvestre MJ, Willson TM, Paliski W, Glass CK (2000) Peroxisome proliferator-activated receptor γ ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 106:523–531PubMedCentralPubMedGoogle Scholar
  13. Linton MF, Fazio S (1999) Macrophages, lipoprotein metabolism, and atherosclerosis: insights from murine bone marrow transplantation studies. Curr Opin Lipidol 10:97–105PubMedGoogle Scholar
  14. Linton MF, Babaev VR, Gleaves LA, Fazio S (1999) A direct role for the macrophage low density lipoprotein receptor in atherosclerotic lesion formation. J Biol Chem 274:19204–19210PubMedGoogle Scholar
  15. Meier KS, Leitersdorf E (2004) Atherosclerosis in the apolipoprotein E-deficient mouse; a decade of progress. Arterioscler Thromb Vasc Biol 24:1006–1014Google Scholar
  16. Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R (1994) ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 14:133–140PubMedGoogle Scholar
  17. Paigen B, Morrow A, Brandon C, Mitchell D, Holmes P (1985) Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis 57:65–73PubMedGoogle Scholar
  18. Plump AS, Smith JD, Hayek T, Aalto-Setälä K, Walsh A, Verstuyft JG, Rubin EM, Breslow JL (1992) Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71:343–353PubMedGoogle Scholar
  19. Rader DJ, deGoma EM (2014) Future of cholesteryl ester transfer protein inhibitors. Annu Rev Med 65:385–403PubMedGoogle Scholar
  20. Stoltzfus L, Rubin EM (1993) Atherogenesis. Insights from the study of transgenic and gene-targeted mice. Trends Cardiovasc Med 3:130–134PubMedGoogle Scholar
  21. Terasaka N, Hiroshima A, Koieyama T, Ubukata N, Morikawa Y, Nakai D, Inaba T (2003) T-0901317, a synthetic liver X receptor ligand, inhibits development of atherosclerosis in LDL receptor-deficient mice. FEBS Lett 536:6–11PubMedGoogle Scholar
  22. Van Eck M, Herijgers N, Vidgeon-Hart M, Pearce NJ, Hoogerbrugge PM, Groot PH, Van Berkel TJ (2000) Accelerated atherosclerosis in C57Bl/6 mice transplanted with ApoE-deficient bone marrow. Atherosclerosis 150:71–80PubMedGoogle Scholar
  23. Wang YX (2005) Cardiovascular functional phenotypes and pharmacological responses in apolipoprotein E deficient mice. Neurobiol Aging 26:309–316PubMedGoogle Scholar
  24. Zadelaar S, Kleemann R, Verschuren L, de Vries-Van der Weij J, van der Hoorn J, Princen HM, Kooistra T (2007) Mouse models for atherosclerosis and pharmaceutical modifiers. Arterioscler Thromb Vasc Biol 27:1706–1721Google Scholar
  25. Zhang SH, Reddick RL, Piedrahita JA, Maeda N (1992) Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258:468–471PubMedGoogle Scholar

Evaluation of Endothelial Function in Rabbits with Atherosclerosis

  1. Becker RHA, Wiemer G, Linz W (1991) Preservation of endothelial function by ramipril in rabbits on a long-term atherogenic diet. J Cardiovasc Pharmacol 18(Suppl 2):S110–S115PubMedGoogle Scholar
  2. Bossaller C, Habib GB, Yamamoto H, Williams C, Wells S, Henry PD (1987) Impaired muscarinic endothelium-dependent relaxation and cyclic guanosine 5′-monophosphate formation in atherosclerotic human coronary artery and rabbit aorta. J Clin Invest 79:170–174PubMedCentralPubMedGoogle Scholar
  3. Finta KM, Fischer MJ, Lee L, Gordon D, Pitt B, Webb RC (1993) Ramipril prevents impaired endothelium-dependent relaxation in arteries from rabbits fed an atherogenic diet. Atherosclerosis 100:149–156PubMedGoogle Scholar
  4. Jayakody L, Kappagoda T, Senaratne MPJ, Thomson ABR (1988) Impairment of endothelium-dependent relaxation: an early marker for atherosclerosis in the rabbit. Br J Pharmacol 94:335–346PubMedCentralPubMedGoogle Scholar
  5. Rubanyi GM, Lorenz RR, Vanhoutte PM (1985) Bioassay of endothelium-derived relaxing factor(s): inactivation by catecholamines. Am J Physiol 249:H95–H110PubMedGoogle Scholar
  6. Tagawa H, Tomoike H, Nakamura M (1991) Putative mechanisms of the impairment of endothelium-dependent relaxation of the aorta with atheromatous plaque in heritable hyperlipidemic rabbits. Circ Res 68:330–337Google Scholar
  7. Verbeuren TJ, Jordaens FH, Zonnekeyn LL, Van Hove CE, Coene MC, Herman AG (1986) Effect of hypercholesterolemia on vascular reactivity in the rabbit. I. Endothelium-dependent and endothelium-independent contractions and relaxations in isolated arteries of control and hypercholesterolemic rabbits. Circ Res 58:552–564PubMedGoogle Scholar
  8. Verbeuren TJ, Jordaens FH, Van Hove CE, Van Hoydonk AE, Herman AG (1990) Release and vascular activity of endothelium-derived relaxing factor in atherosclerotic rabbit aorta. Eur J Pharmacol 191:173–184PubMedGoogle Scholar

Intimal Reactions After Endothelial Injury

  1. Berkenboom G, Unger P, Fontaine J (1989) Atherosclerosis and responses of human isolated coronary arteries to endothelium-dependent and -independent vasodilators. J Cardiovasc Pharmacol 14(Suppl 11):S35–S39PubMedGoogle Scholar
  2. Bocan TMA, Mueller SB, Uhlendorf PD, Newton RS, Krause BR (1991) Comparison of CI-976, an ACAT inhibitor, and selected lipid-lowering agents for antiatherosclerotic activity in iliac-femoral and thoracic aortic lesions. Arterioscler Thromb 11:1830–1843PubMedGoogle Scholar
  3. Davies MG, Klyachkin ML, Kim JH, Hagen PO (1993) Endothelin and vein bypass grafts in experimental atherosclerosis. J Cardiovasc Pharmacol 22(Suppl 8):S348–S351PubMedGoogle Scholar
  4. DeCampli WM, Kosek JC, Mitchell RS, Handen CE, Miller DC (1988) Effects of aspirin, dipyridamole, and cod liver oil on accelerated myointimal proliferation in canine veno-arterial allografts. Ann Surg 208:746–754PubMedCentralPubMedGoogle Scholar
  5. Farhy RD, Ho KL, Carretero OA, Scicli AG (1992) Kinins mediate the antiproliferative effect of ramipril in rat carotid artery. Biochem Biophys Res Commun 182:283–288PubMedGoogle Scholar
  6. Groves PH, Levis MJ, Cheadle HA, Penny WJ (1993) SIN-1 reduces platelet adhesion and thrombus formation in a porcine model of balloon angioplasty. Circulation 87:590–597PubMedGoogle Scholar
  7. Jackson CL, Bush RC, Bowyer DE (1988) Inhibitory effects of calcium antagonists on balloon catheter-induced arterial smooth muscle cell proliferation and lesion size. Atherosclerosis 69:115–122PubMedGoogle Scholar
  8. Kawata M, Lee KT, Makiat T (1990) Detection of regenerating cells in the aorta after ballooning by immunocytochemical demonstration of the thymidine analogue 5-bromo-2′-deoxyuridine (BrUdR). In: Lee KT, Onodera K, Tanaka K (eds) Atherosclerosis II: recent progress in atherosclerosis research, vol 598, Annals of the New York Academy of Sciences. New York Academy of Sciences, New York, pp 514–516Google Scholar
  9. Linz W, Schölkens BA (1992) Role of bradykinin in the cardiac effects of angiotensin-converting enzyme inhibitors. J Cardiovasc Pharmacol 20(Suppl 9):S83–S90PubMedGoogle Scholar
  10. Linz W, Wiemer G, Schölkens BA (1993) Contribution of bradykinin to the cardiovascular effects of ramipril. J Cardiovasc Pharmacol 22(Suppl 9):S1–S8PubMedGoogle Scholar
  11. Linz W, Wiemer G, Gohlke P, Unger T, Schölkens BA (1994) The contribution of bradykinin to the cardiovascular actions of ACE inhibitors. In: Lindpaintner K, Ganten D (eds) The cardiac renin angiotensin system. Futura Publishing, Armonk, pp 253–287Google Scholar
  12. Lyle EM, Fujita T, Conner MW, Connolly TM, Vlasuk GP, Lynch JL (1995) Effect of inhibitors of factor Xa or platelet adhesion, heparin, and aspirin on platelet deposition in an atherosclerotic rabbit model of angioplastic injury. J Pharmacol Toxicol Methods 33:53–61PubMedGoogle Scholar
  13. Manderson JA, Cocks TM, Campbell GR (1990) Changes in vascular reactivity following endothelial denudation. In: Lee KT, Onodera K, Tanaka K (eds) Atherosclerosis II: recent progress in atherosclerosis research, vol 598, Annals of the New York Academy of Sciences. New York Academy of Sciences, New York, pp 564–566Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Abteilung PharmakologieMax-Planck-Institut für Herz- und LungenforschungBad NauheimGermany

Personalised recommendations