Advertisement

α- and β-Adrenoceptor Binding

  • Michael Gralinski
  • Liomar A. A. Neves
  • Olga Tiniakova
Living reference work entry

Abstract

α1-Adrenoceptors are widely distributed and are activated either by norepinephrine released from sympathetic nerve terminals or by epinephrine released from the adrenal medulla.

Keywords

Adenylyl Cyclase Activity Imidazoline Receptor Adrenoceptor Subtype Adrenergic Receptor Subtype Imidazoline Binding Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

α 1-Adrenoreceptor Binding

  1. Aboud R, Shafii M, Docherty JR (1993) Investigation of the subtypes of α 1-adrenoceptor mediating contractions of rat aorta, vas deferens and spleen. Br J Pharmacol 109:80–87PubMedCentralPubMedGoogle Scholar
  2. Adolfo JA et al (1989) Species heterogeneity of hepatic α1- adrenoceptors: α1A-, α1B-, and α1C-subtypes. Biochem Biophys Res Commun 186:760–767Google Scholar
  3. Ahlquist RP (1948) A study of the adrenotropic receptors. Am J Physiol 153:586–600Google Scholar
  4. Alexander S, Peters J, Mathie A, MacKenzie G, Smith A (2001) TiPS nomenclature supplement 2001Google Scholar
  5. Bristow MR, Minobe W, Rasmussen R, Hershberger RE, Hoffman BB (1988) Alpha-1 adrenergic receptors in the nonfailing and failing human heart. J Pharmacol Exp Ther 247(3):1039–1045PubMedGoogle Scholar
  6. Bylund DB, Eikenburg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, Molinoff PB, Ruffolo RR, Trendelenburg U (1994) IV. International union of pharmacology nomenclature of adrenoceptors. Pharmacol Rev 46:121–136Google Scholar
  7. Bylund DB, Bond RA, Clarke DE, Eikenburg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, Molinoff PB, Ruffolo RR, Strosberg AD, Trendelenburg U (1998) Adrenoceptors. The IUPHAR compendium of receptor characterization and classification, IUPHAR Media, London, pp. 58–74Google Scholar
  8. Calzada BC, de Artiñano AA (2001) Alpha-adrenoceptor subtypes. Pharmacol Res 44(3):195–208Google Scholar
  9. Cavalli A, Lattion AL, Hummler E, Nenniger M, Pedrazzini T, Aubert JF, Michel MC, Yang M, Lembo G, Vecchione C, Mostardini M, Schmidt A, Beermann F, Cotecchia S (1997) Decreased blood pressure response in mice deficient of the α1b-adrenergic receptor. Proc Natl Acad Sci USA 94:11589–11594PubMedCentralPubMedGoogle Scholar
  10. Chen ZJ, Minneman KP (2005) Recent progress in alpha1-adrenergic receptor research. Acta Pharmacol Sin 26(11):1281–1287, ReviewPubMedGoogle Scholar
  11. Cheng YC, Prusoff WH (1973) Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108Google Scholar
  12. Cotecchia S, Schwinn DA, Randall RR, Lefkowitz RJ, Caron MG, Kobilka BK (1988) Molecular cloning and expression of the cDNA for the hamster alpha 1-adrenergic receptor. Proc Natl Acad Sci U S A A85(19):7159–7163Google Scholar
  13. Couldwell C, Jackson A, O’Brien H, Chess-Williams R (1993) Characterization of the α1-adrenoceptors of rat prostate gland. J Pharm Pharmacol 45:922–924PubMedGoogle Scholar
  14. Docherty JR (2010) Subtypes of functional alpha1-adrenoceptor. Cell Mol Life Sci 67(3):405–417PubMedGoogle Scholar
  15. Eltze M, Boer R (1992) The adrenoceptor agonist, SDZ NVI 085, discriminates between α1A-and α1B adrenoceptorsubtypes in vas deferens, kidney and aorta of the rat. Eur J Pharmacol 224:125–136PubMedGoogle Scholar
  16. Endoh M, Takanashi M, Norota I (1992) Role of alpha1A adrenoceptor subtype in production of the positive inotropic effect mediated via myocardial alpha1 adrenoceptors in the rabbit papillary muscle: influence of selective alpha1A subtype antagonists WB 4101 and 5-methylurapidil. Naunyn-Schmiedeberg’s Arch Pharmacol 345:578–585Google Scholar
  17. Esbenshade TA, Hirasawa A, Tsujimoto G, Tanaka T, Yano J, Minneman KP, Murphy TJ (1995) Cloning of the human alpha 1d-adrenergic receptor and inducible expression of three human subtypes in SK-N-MC cells.Mol. Pharmacology 47(5):977–985Google Scholar
  18. Ford AP, Williams TJ, Blue DR, Clarke DE (1994) Alpha 1-adrenoceptor classification: sharpening Occam’s razor. Trends Pharmacol Sci 15(6):167–170PubMedGoogle Scholar
  19. Forray C, Bard JA, Wetzel JM, Chiu G, Shapiro E, Tang R, Lepor H, Hartig PR, Weinshank RL, Branchek TA et al (1994) The alpha 1-adrenergic receptor that mediates smooth muscle contraction in human prostate has the pharmacological properties of the cloned human alpha 1c subtype. Mol Pharmacol 45(4):703–708PubMedGoogle Scholar
  20. García-Sáinz JA (1993) α1-adrenergic action: receptor subtypes, signal transduction and regulation. Cell Signal 5:539–547PubMedGoogle Scholar
  21. García-Sáinz JA, Romero-Avila MT, Hernandez RA, Macias-Silva M, Olivares-Reyes A, González-Espinosa C (1992) Species heterogeneity of hepatic α1-adrenoceptors: α1A-, α1B- and α1C-subtypes. Biochem Biophys Res Commun 186:760–767PubMedGoogle Scholar
  22. Hague C, Chen Z, Uberti M, Minneman KP (2003) Alpha(1)-adrenergic receptor subtypes: non-identical triplets with different dancing partners? Life Sci 74(4):411–418PubMedGoogle Scholar
  23. Han C, Abel PW, Minneman KP (1987) Heterogeneity of alpha 1-adrenergic receptors revealed by chlorethylclonidine. Mol Pharmacol 32(4):505–510PubMedGoogle Scholar
  24. Han C, Li J, Minneman KP (1990) Subtypes of alpha 1-adrenoceptors in rat blood vessels. Eur J Pharmacol 190(1–2):97–104PubMedGoogle Scholar
  25. Hieble JP, Ruffolo RR Jr (1997) Recent advances in the identification of α1- and α2-adrenoceptor subtypes. Therapeutic implications. Expert Opin Investig Drugs 6:367–387PubMedGoogle Scholar
  26. Hirasawa A, Horie K, Tanaka T, Takagaki K, Murai M, Yano J, Tsujimoto G (1993) Cloning, functional expression and tissue distribution of human cDNA for the alpha 1C-adrenergic receptor. Biochem Biophys Res Commun 195(2):902–909PubMedGoogle Scholar
  27. Hwang KC, Gray CD, Sweet WE, Moravec CS, Im MJ (1996) Alpha 1-adrenergic receptor coupling with Gh in the failing human heart. Circulation 94(4):718–726PubMedGoogle Scholar
  28. Jensen BC, Swigart PM, De Marco T, Hoopes C, Simpson PC (2009) {alpha}1-Adrenergic receptor subtypes in nonfailing and failing human myocardium. Circ Heart Fail 2(6):654–663PubMedCentralPubMedGoogle Scholar
  29. Johnson RD, Minneman KP (1987) Differentiation of alpha 1-adrenergic receptors linked to phosphatidylinositol turnover and cyclic AMP accumulation in rat brain. Mol Pharmacol 31(3):239–246PubMedGoogle Scholar
  30. Kenny BB, Chalmers DH, Philpott PC, Naylor AM (1995) Characterization of an α1D-adrenoceptor mediating the contractile response of rat aorta to adrenaline. Br J Pharmacol 115:981–986PubMedCentralPubMedGoogle Scholar
  31. Koch WJ, Lefkowitz RJ, Rockman HA (2000) Functional consequences of altering myocardial adrenergic receptor signaling. Annu Rev Physiol 62:237–260PubMedGoogle Scholar
  32. Koshimizu TA, Yamauchi J, Hirasawa A, Tanoue A, Tsujimoto G (2002) Recent progress in alpha 1-adrenoceptor pharmacology. Biol Pharm Bull 25(4):401–408PubMedGoogle Scholar
  33. Lin F, Owens WA, Chen S, Stevens ME, Kesteven S, Arthur JF, Woodcock EA, Feneley MP, Graham RM (2001) Targeted alpha(1A)-adrenergic receptor overexpression induces enhanced cardiac contractility but not hypertrophy. Circ Res 89(4):343–350PubMedGoogle Scholar
  34. Link RE, Stevens MS, Kulatunga M, Scheinin M, Barsh GS, Kobilka BK (1995) Targeted inactivation of the gene encoding the mouse alpha 2c-adrenoceptor homolog. Mol Pharmacol 48(1):48–55Google Scholar
  35. Michel AD et al (1989) Identification of a single α1A-adrenoceptor corresponding to the α1A-subtype in rat submaxillary gland. Br J Pharmacol 98:833–889Google Scholar
  36. Michel MC, Hanft G, Gross G (1994) Radioligand binding studies of alpha 1-adrenoceptor subtypes in rat heart. Br J Pharmacol 111(2):533–538PubMedCentralPubMedGoogle Scholar
  37. Minneman KP, Esbenshade TA (1994) α1-adrenergic receptor subtypes. Annu Rev Pharmacol Toxicol 34:117–133PubMedGoogle Scholar
  38. Minneman KP, Han C, Abel PW (1988) Comparison of alpha 1-adrenergic receptor subtypes distinguished by chlorethylclonidine and WB 4101. Mol Pharmacol 33(5):509–514PubMedGoogle Scholar
  39. Morrow AL, Creese I (1986) Characterization of alpha 1-adrenergic receptor subtypes in rat brain: a reevaluation of [3H]WB4104 and [3H]prazosin binding. Mol Pharmacol 29(4):321–330PubMedGoogle Scholar
  40. Muramatsu I, Tanaka T, Suzuki F, Li Z, Hiraizumi-Hiraoka Y, Anisuzzaman AS, Yamamoto H, Horinouchi T, Morishima S (2005) Quantifying receptor properties: the tissue segment binding method – a powerful tool for the pharmacome analysis of native receptors. J Pharmacol Sci 98(4):331–339PubMedGoogle Scholar
  41. Muramatsu I, Morishima S, Suzuki F, Yoshiki H, Anisuzzaman AS, Tanaka T, Rodrigo MC, Myagmar BE, Simpson PC (2008) Identification of alpha 1L-adrenoceptor in mice and its abolition by alpha 1A-adrenoceptor gene knockout. Br J Pharmacol 155(8):1224–1234PubMedCentralPubMedGoogle Scholar
  42. Noguchi H, Muraoka R, Kigoshi S, Muramatsu I (1995) Pharmacological characterization of alpha 1-adrenoceptor subtypes in rat heart: a binding study. Br J Pharmacol 114(5):1026–1030PubMedCentralPubMedGoogle Scholar
  43. O’Connell TD, Ishizaka S, Nakamura A, Swigart PM, Rodrigo MC, Simpson GL, Cotecchia S, Rokosh DG, Grossman W, Foster E, Simpson PC (2003) The alpha(1A/C)- and alpha(1B)-adrenergic receptors are required for physiological cardiac hypertrophy in the double-knockout mouse. J Clin Invest 111(11):1783–1791PubMedCentralPubMedGoogle Scholar
  44. O’Connell TD, Jensen BC, Baker AJ, Simpson PC (2014) Cardiac alpha1-adrenergic receptors: novel aspects of expression, signaling mechanisms, physiologic function, and clinical importance. Pharmacol Rev 66(1):308–333PubMedCentralPubMedGoogle Scholar
  45. Ohmura T, Oshita M, Kigoshi S, Muramatsu I (1992) Identification of α1-adrenoceptor subtypes in the rat vas deferens: binding and functional studies. Br J Pharmacol 107:697–704PubMedCentralPubMedGoogle Scholar
  46. Oshita M, Kigoshi S, Muramatsu I (1993) Pharmacological characterization of two distinct α1-adrenoceptor subtypes in rabbit thoracic aorta. Br J Pharmacol 108:1071–1076PubMedCentralPubMedGoogle Scholar
  47. Perez DM (2007) Structure-function of alpha1-adrenergic receptors. Biochem Pharmacol 73(8):1051–1062PubMedCentralPubMedGoogle Scholar
  48. Perez DM, Piascik MT, Graham RM (1991) Solution-phase library screening for the identification of rare clones: isolation of an alpha 1D-adrenergic receptor cDNA. Mol Pharmacol 40(6):876–883PubMedGoogle Scholar
  49. Philipp M, Hein L (2004) Adrenergic receptor knockout mice: distinct functions of 9 receptor subtypes. Pharmacol Ther 101(1):65–74Google Scholar
  50. Regan JW, Cotecchia S (1992) The α-adrenergic receptors: new subtypes, pharmacology, and coupling mechanisms. In: Brann MR (ed) Molecular Biology of G-Protein-coupled receptors. Birkhäuser, Boston Basel Berlin, pp 76–112Google Scholar
  51. Rokosh DG, Simpson PC (2002) Knockout of the alpha 1A/C-adrenergic receptor subtype: the alpha 1A/C is expressed in resistance arteries and is required to maintain arterial blood pressure. Proc Natl Acad Sci U S A 99(14):9474–9479PubMedCentralPubMedGoogle Scholar
  52. Ruffolo RR, Stadel JM, Hieble JP (1994) α-adrenoceptors: recent developments. Med Res Rev 14:270–279Google Scholar
  53. Satoh M, Kojima C, Takayanagi I (1992) Characterization of α1-adrenoceptor subtypes labeled by [3H]prazosin in single cells prepared from rabbit thoracic aorta. Eur J Pharmacol 221:35–41PubMedGoogle Scholar
  54. Sayet I, Neuilly G, Rakotoarisoa L, Mironneau C, Mironneau J (1993) Relation between alpha 1-adrenoceptor subtypes and noradrenaline-induced contraction in rat portal vein smooth muscle. Br J Pharmacol 110(1):207–212PubMedCentralPubMedGoogle Scholar
  55. Schwinn DA, Lomasney JW (1992) Pharmacologic characterization of cloned α1-adrenoceptor subtypes: selective antagonists suggest the existence of a fourth subtype. Eur J Pharmacol Mol Pharmacol Sect 227:433–436Google Scholar
  56. Schwinn DA, Lomasney JW, Lorenz W, Szklut PJ, Fremeau RT Jr, Yang-Feng TL, Caron MG, Lefkowitz RJ, Cotecchia S (1990) Molecular cloning and expression of the cDNA for a novel alpha 1-adrenergic receptor subtype. J Biol Chem 265(14):8183–8189PubMedGoogle Scholar
  57. Schwinn DA, Johnston GI, Page SO, Mosley MJ, Wilson KH, Worman NP, Campbell S, Fidock MD, Furness LM, Parry-Smith DJ et al (1995) Cloning and pharmacological characterization of human alpha-1 adrenergic receptors: sequence corrections and direct comparison with other species homologues. J Pharmacol Exp Ther 272(1):134–142PubMedGoogle Scholar
  58. Stam WB, Van der Graaf PH, Saxena PR (1998) Functional characterization of the pharmacological profile of the putative α1B-adrenoceptor antagonist, (+)-cyclazocine. Eur J Pharmacol 361:79–83PubMedGoogle Scholar
  59. Steinfath M, Chen YY, Lavický J, Magnussen O, Nose M, Rosswag S, Schmitz W, Scholz H (1992a) Cardiac alpha 1-adrenoceptor densities in different mammalian species. Br J Pharmacol 107(1):185–188PubMedCentralPubMedGoogle Scholar
  60. Steinfath M, Danielsen W, von der Leyen H, Mende U, Meyer W, Neumann J, Nose M, Reich T, Schmitz W, Scholz H, Starbatty J, Stein B, Döring V, Kalmar P, Haverich A (1992b) Reduced alpha 1- and beta 2-adrenoceptor-mediated positive inotropic effects in human end-stage heart failure. Br J Pharmacol 105(2):463–469PubMedCentralPubMedGoogle Scholar
  61. Stewart AF, Rokosh DG, Bailey BA, Karns LR, Chang KC, Long CS, Kariya K, Simpson PC (1994) Cloning of the rat alpha 1C-adrenergic receptor from cardiac myocytes. alpha 1C, alpha 1B, and alpha 1D mRNAs are present in cardiac myocytes but not in cardiac fibroblasts. Circ Res 75(4):796–802PubMedGoogle Scholar
  62. Tanaka T, Zhang L, Suzuki F, Muramatsu I (2004) Alpha-1 adrenoceptors: evaluation of receptor subtype-binding kinetics in intact arterial tissues and comparison with membrane binding. Br J Pharmacol 141(3):468–476PubMedCentralPubMedGoogle Scholar
  63. Tanoue A, Koshimizu TA, Tsujimoto G (2002a) Transgenic studies of alpha(1)-adrenergic receptor subtype function. Life Sci 71(19):2207–2215PubMedGoogle Scholar
  64. Tanoue A, Nasa Y, Koshimizu T, Shinoura H, Oshikawa S, Kawai T, Sunada S, Takeo S, Tsujimoto G (2002b) The alpha(1D)-adrenergic receptor directly regulates arterial blood pressure via vasoconstriction. J Clin Invest 109(6):765–775PubMedCentralPubMedGoogle Scholar
  65. Vargas HM, Cunningham D, Zhou L, Hartman HB, Gorman AJ (1993) Cardiovascular effects of chloroethylclonidine, a irreversible α1B-adrenoceptor antagonist, in the unanesthetized rat: a pharmacological analysis in vivo and in vitro. J Pharmacol Exp Ther 266:864–871PubMedGoogle Scholar
  66. Veenstra DMJ, van Buuren KJH, Nijkamp FP (1992) Determination of α1-adrenoceptor subtype selectivity by [3H]-prazosin displacement studies in guinea-pig cerebral cortex and rat spleen membranes. Br J Pharmacol 107:202–206PubMedCentralPubMedGoogle Scholar
  67. Yang M, Reese J, Cotecchia S, Michel MC (1998) Murine alpha1-adrenoceptor subtypes. I. Radioligand binding studies. J Pharmacol Exp Ther 286(2):841–847PubMedGoogle Scholar
  68. Zhong H, Minneman KP (1999) Alpha1-adrenoceptor subtypes. Eur J Pharmacol 375(1–3):261–276PubMedGoogle Scholar

α 2-Adrenoreceptor Binding

  1. Altman JD, Trendelenburg AU, MacMillan L, Bernstein D, Limbird L, Starke K, Kobilka BK, Hein L (1999) Abnormal regulation of the sympathetic nervous system in alpha2A-adrenergic receptor knockout mice. Mol Pharmacol 56(1):154–161PubMedGoogle Scholar
  2. Beckeringh JJ, Thoolen MJ, De Jonge A, Wilffert B, Timmermans PB, Van Zwieten PA (1984) The contractions induced in rat and guinea-pig aortic strips by the alpha 2-adrenoceptor selective agonists B-HT 920 and UK 14,304 are mediated by alpha 1-adrenoceptors. Eur J Pharmacol 104(3–4):197–203PubMedGoogle Scholar
  3. Blaxall HS, Murphy TJ, Baker JC, Ray C, Bylund DB (1991) Characterization of the alpha-2C adrenergic receptor subtype in the opossum kidney and in the OK cell line. J Pharmacol Exp Ther 259(1):323–329PubMedGoogle Scholar
  4. Boyajian CL, Leslie FM (1987) Pharmacological evidence for alpha-2 adrenoceptor heterogeneity: differential binding properties of [3H]rauwolscine and [3H]idazoxan in rat brain. J Pharmacol Exp Ther 241:1092–1098PubMedGoogle Scholar
  5. Boyajian CL, Loughlin SE, Leslie FM (1987) Anatomical evidence for alpha-2 adrenoceptor heterogeneity: differential autoradiographic distributions of [3H]rauwolscine and [3H]idazoxan in rat brain. J Pharmacol Exp Ther 241(3):1079–1091PubMedGoogle Scholar
  6. Brasch H (1991) No influence of prejunctional α2-adrenoceptors on the effects of nicotine and tyramine in guinea-pig atria. J Auton Pharmacol 11:37–44PubMedGoogle Scholar
  7. Broadhurst AM, Alexander BS, Wood MD (1988) Heterogeneous 3H-rauwolscine binding sites in rat cortex: two alpha2-adrenoreceptor subtypes or an additional nonadrenergic interaction? Life Sci 43:83–92PubMedGoogle Scholar
  8. Bücheler MM, Hadamek K, Hein L (2002) Two alpha(2)-adrenergic receptor subtypes, alpha(2A) and alpha(2C), inhibit transmitter release in the brain of gene-targeted mice. Neuroscience 109(4):819–826Google Scholar
  9. Bylund DB (1978) Subtypes of α2-adrenoceptors: pharmacological and molecular biological evidence converge. Trends Pharmacol Sci 9:356–361Google Scholar
  10. Bylund DB (1988) Subtypes of alpha 2-adrenoceptors: pharmacological and molecular biological evidence converge. Trends Pharmacol Sci 9(10):356–361PubMedGoogle Scholar
  11. Bylund DB (1992) Subtypes of alpha 1- and alpha 2-adrenergic receptors. FASEB J 6(3):832–839PubMedGoogle Scholar
  12. Bylund DB, Ray-Prenger C, Murphy TJ (1988) Alpha-2A and alpha-2B adrenergic receptor subtypes: antagonist binding in tissues and cell lines containing only one subtype. J Pharmacol Exp Ther 245:600–607PubMedGoogle Scholar
  13. Bylund DB, Eikenburg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, Molinoff PB, Ruffolo RR, Trendelenburg U (1994) IV. International union of pharmacology nomenclature of adrenoceptors. Pharmacol Rev 46:121–136Google Scholar
  14. Calzada BC, de Artiñano AA (2001) Alpha-adrenoceptor subtypes. Pharmacol Res 44(3):195–208Google Scholar
  15. Cheung YD, Barnett DB, Nahorski SR (1982) [3H]Rauwolscine and [3H]yohimbine binding to rat cerebral and human platelet membranes: possible heterogeneity of alpha 2-adrenoceptors. Eur J Pharmacol 84(1–2):79–85PubMedGoogle Scholar
  16. Connaughton S, Docherty R (1989) Functional evidence for heterogeneity of peripheral prejunctional α2- adrenoceptors. Br J Pharmacol 101:285–290Google Scholar
  17. Docherty JR (1998) Subtypes of functional alpha1- and alpha2-adrenoceptors. Eur. J Pharmacol 361(1):1–15Google Scholar
  18. Fairbanks CA, Stone LS, Wilcox GL (2009) Pharmacological profiles of alpha 2 adrenergic receptor agonists identified using genetically altered mice and isobolographic analysis. Pharmacol Ther 123(2):224–238PubMedCentralPubMedGoogle Scholar
  19. Feller DJ, Bylund DB (1984) Comparison of alpha-2 adrenergic receptors and their regulation in rodent and porcine species. J Pharmacol Exp Ther 228(2):275–282PubMedGoogle Scholar
  20. Flordellis C, Manolis A, Scheinin M, Paris H (2004) Clinical and pharmacological significance of alpha2-adrenoceptor polymorphisms in cardiovascular diseases. Int J Cardiol 97(3):367–372PubMedGoogle Scholar
  21. Gilsbach R, Hein L (2012) Are the pharmacology and physiology of α2 adrenoceptors determined by α-heteroreceptors and autoreceptors respectively? Br J Pharmacol 165(1):90–102PubMedCentralPubMedGoogle Scholar
  22. Goldberg MR, Robertson D (1983) Yohimbine: a pharmacological probe for the study of the 2-adrenoreceptor. Pharmacol Rev 35:143–180PubMedGoogle Scholar
  23. Guyenet PG (1997) Is the hypotensive effect of clonidine and related drugs due to imidazoline binding sites? Am J Physiol 273(5 Pt 2):R1580–R1584Google Scholar
  24. Hein L (2001) The alpha 2-adrenergic receptors: molecular structure and in vivo function. Z Kardiol 90(9):607–612PubMedGoogle Scholar
  25. Hein L, Altman JD, Kobilka BK (1999) Two functionally distinct alpha2-adrenergic receptors regulate sympathetic neurotransmission. Nature 402(6758):181–184PubMedGoogle Scholar
  26. Kable JW, Murrin LC, Bylund DB (2000) In vivo gene modification elucidates subtype-specific functions of alpha(2)-adrenergic receptors. J Pharmacol Exp Ther 293(1):1–7PubMedGoogle Scholar
  27. Knaus AE, Muthig V, Schickinger S, Moura E, Beetz N, Gilsbach R, Hein L (2007) Alpha2-adrenoceptor subtypes–unexpected functions for receptors and ligands derived from gene-targeted mouse models. Neurochem Int 51(5):277–281PubMedGoogle Scholar
  28. Kobilka BK, Matsui H, Kobilka TS, Yang-Feng TL, Francke U, Caron MG, Lefkowitz RJ, Regan JW (1987) Cloning, sequencing, and expression of the gene coding for the human platelet alpha 2-adrenergic receptor. Science 238(4827):650–656Google Scholar
  29. Kobinger W, Walland A (1967) Investigations into the mechanism of the hypotensive effect of 2-(2,6-dichlorphenylamino)- 2-imidazoline-HCl. Eur J Pharmacol 2:155–162PubMedGoogle Scholar
  30. Lakhlani PP, MacMillan LB, Guo TZ, McCool BA, Lovinger DM, Maze M, Limbird LE (1997) Substitution of a mutant alpha2a-adrenergic receptor via “hit and run” gene targeting reveals the role of this subtype in sedative, analgesic, and anesthetic-sparing responses in vivo. Proc Natl Acad Sci U S A 94(18):9950–9955PubMedCentralPubMedGoogle Scholar
  31. Link RE, Stevens MS, Kulatunga M, Scheinin M, Barsh GS, Kobilka BK (1995) Targeted inactivation of the gene encoding the mouse alpha 2c-adrenoceptor homolog. Mol Pharmacol 48(1):48–55Google Scholar
  32. Link RE, Desai K, Hein L, Stevens ME, Chruscinski A, Bernstein D, Barsh GS, Kobilka BK (1996) Cardiovascular regulation in mice lacking alpha2-adrenergic receptor subtypes b and c. Science 273(5276):803–805PubMedGoogle Scholar
  33. Lomasney JW, Allen LF, King K, Regan JW, Yang-Feng TL, Caron MG, Lefkowitz RJ (1990) Expansion of the alpha 2-adrenergic receptor family: cloning and characterization of a human alpha 2-adrenergic receptor subtype, the gene for which is located on chromosome 2. Proc Natl Acad Sci U S A A87(13):5094–5098Google Scholar
  34. Lorenz W, Lomasney JW, Collins S, Regan JW, Caron MG, Lefkowitz RJ (1990) Expression of three alpha 2-adrenergic receptor subtypes in rat tissues: implications for alpha 2 receptor classification. Mol Pharmacol 38(5):599–603PubMedGoogle Scholar
  35. MacDonald E, Scheinin M (1995) Distribution and pharmacology of alpha 2-adrenoceptors in the central nervous system. J Physiol Pharmacol 46(3):241–258PubMedGoogle Scholar
  36. MacDonald E, Kobilka BK, Scheinin M (1997) Gene targeting–homing in on alpha 2-adrenoceptor-subtype function. Trends Pharmacol Sci 8(6):211–219Google Scholar
  37. MacMillan LB, Hein L, Smith MS, Piascik MT, Limbird LE (1996) Central hypotensive effects of the alpha2a-adrenergic receptor subtype. Science 273(5276):801–803PubMedGoogle Scholar
  38. Makaritsis KP, Handy DE, Johns C, Kobilka B, Gavras I, Gavras H (1999) Role of the alpha2B-adrenergic receptor in the development of salt-induced hypertension. Hypertension 33(1):14–17PubMedGoogle Scholar
  39. Marjamäki A, Luomala K, Ala-Uotila S, Scheinin M (1993) Use of recombinant human α2-adrenoceptors to characterize subtype selectivity of antagonist binding. Eur J Pharmacol Mol Pharmacol Sect 246:219–226Google Scholar
  40. Michel AD, Loury DN, Withing RL (1989) Differences between the α2-adrenoceptor in rat submaxillary gland and the α2A- and α2B-adrenoceptor subtypes. Br J Pharmacol 98:890–897Google Scholar
  41. Minneman KP (1988) Alpha 1-adrenergic receptor subtypes, inositol phosphates, and sources of cell Ca2+. Pharmacol Rev 40(2):87–119PubMedGoogle Scholar
  42. Motulsky HJ, Shattil SJ, Insel PA (1980) Characterization of alpha 2-adrenergic receptors on human platelets using [3H]yohimbine. Biochem Biophys Res Commun 97(4):1562–1570PubMedGoogle Scholar
  43. Murphy TJ, Bylund DB (1988) Characterization of alpha- 2 adrenergic receptors in the OK cell, an opossum kidney cell line. J Pharmacol Exp Ther 244:571–578PubMedGoogle Scholar
  44. Neylon CB, Summers RJ (1985) [3H]-rauwolscine binding to alpha 2-adrenoceptors in the mammalian kidney: apparent receptor heterogeneity between species. Br J Pharmacol 85(2):349–359PubMedCentralPubMedGoogle Scholar
  45. Perry BD, U’Prichard DC (1981) [3H]rauwolscine (α-yohimbine): a specific radioligand for brain α2-adrenergic receptors. Eur J Pharmacol 76:461–464PubMedGoogle Scholar
  46. Philipp M, Brede M, Hein L (2002) Physiological significance of alpha(2)-adrenergic receptor subtype diversity: one receptor is not enough. Am J Physiol Regul Integr Comp Physiol 283(2):R287–R295Google Scholar
  47. Philipp M, Hein L (2004) Adrenergic receptor knockout mice: distinct functions of 9 receptor subtypes. Pharmacol Ther 101(1):65–74Google Scholar
  48. Piascik MT, Soltis EE, Piascik MM, Macmillan LB (1996) Alpha-adrenoceptors and vascular regulation: molecular, pharmacologic and clinical correlates. Pharmacol Ther 72(3):215–241PubMedGoogle Scholar
  49. Regan JW, Kobilka TS, Yang-Feng TL, Caron MG, Lefkowitz RJ, Kobilka BK (1988) Cloning and expression of a human kidney cDNA for an alpha 2-adrenergic receptor subtype. Proc Natl Acad Sci U S A 85(17):6301–6305PubMedCentralPubMedGoogle Scholar
  50. Ruffolo RR (1990) α2-adrenoceptor agonists and antagonists. Neurotransmissions 6(2):1–5Google Scholar
  51. Ruffolo RR, Nichols AJ, Stadel JM, Hieble JP (1993) Pharmacologic and therapeutic applications of α2- adrenoceptor subtypes. Annu Rev Pharmacol Toxicol 33:243–279PubMedGoogle Scholar
  52. Sallinen J, Link RE, Haapalinna A, Viitamaa T, Kulatunga M, Sjöholm B, Macdonald E, Pelto-Huikko M, Leino T, Barsh GS, Kobilka BK, Scheinin M (1997) Genetic alteration of alpha 2C-adrenoceptor expression in mice: influence on locomotor, hypothermic, and neurochemical effects of dexmedetomidine, a subtype-nonselective alpha 2-adrenoceptor agonist. Mol Pharmacol 51(1):36–46PubMedGoogle Scholar
  53. Sallinen J, Haapalinna A, Viitamaa T, Kobilka BK, Scheinin M (1998a) d-amphetamine and l-5-hydroxytryptophan-induced behaviours in mice with genetically-altered expression of the alpha2C-adrenergic receptor subtype. Neuroscience 86(3):959–965PubMedGoogle Scholar
  54. Sallinen J, Haapalinna A, Viitamaa T, Kobilka BK, Scheinin M (1998b) Adrenergic alpha2C-receptors modulate the acoustic startle reflex, prepulse inhibition, and aggression in mice. J Neurosci 18(8):3035–3042PubMedGoogle Scholar
  55. Sallinen J, Haapalinna A, MacDonald E, Viitamaa T, Lähdesmäki J, Rybnikova E, Pelto-Huikko M, Kobilka BK, Scheinin M (1999) Genetic alteration of the alpha2-adrenoceptor subtype c in mice affects the development of behavioral despair and stress-induced increases in plasma corticosterone levels. Mol Psychiatry 4(5):443–452PubMedGoogle Scholar
  56. Satoh M, Takayanagi I (1992) Identification and characterization of the α2D-adrenoceptor subtype in single cells prepared from guinea pig tracheal smooth muscle. Jpn J Pharmacol 60:393–395PubMedGoogle Scholar
  57. Scheibner J, Trendelenburg AU, Hein L, Starke K (2001) Stimulation frequency-noradrenaline release relationships examined in alpha2A-, alpha2B- and alpha2C-adrenoceptor-deficient mice. Naunyn Schmiedebergs Arch Pharmacol 364(4):321–328Google Scholar
  58. Scheinin M, Sallinen J, Haapalinna A (2001) Evaluation of the alpha2C-adrenoceptor as a neuropsychiatric drug target studies in transgenic mouse models. Life Sci 68(19–20):2277–2285PubMedGoogle Scholar
  59. Starke K (2001) Presynaptic autoreceptors in the third decade: focus on alpha2-adrenoceptors. J Neurochem 78(4):685–693Google Scholar
  60. Stone LS, MacMillan LB, Kitto KF, Limbird LE, Wilcox GL (1997) The alpha2a adrenergic receptor subtype mediates spinal analgesia evoked by alpha2 agonists and is necessary for spinal adrenergic-opioid synergy.J. Neuroscience 17(18):7157–7165PubMedGoogle Scholar
  61. Summers RJ, Barnett DB, Nahorski SR (1983) Characteristics of adrenoceptors in homogenates of human cerebral cortex labelled with (3H)-rauwolscine. Life Sci 33:1105–1112PubMedGoogle Scholar
  62. Takano Y, Takano M, Yaksh TL (1992) The effect of intrathecally administered imiloxan and WB4101: possible role of α2-adrenoceptor subtypes in the spinal cord. Eur J Pharmacol 219:465–468PubMedGoogle Scholar
  63. Trendelenburg AU, Klebroff W, Hein L, Starke K (2001) A study of presynaptic alpha2-autoreceptors in alpha2A/D-, alpha2B- and alpha2C-adrenoceptor-deficient mice. Naunyn Schmiedebergs Arch Pharmacol 364(2):117–130Google Scholar
  64. Trendelenburg AU, Philipp M, Meyer A, Klebroff W, Hein L, Starke K (2003) All three alpha2-adrenoceptor types serve as autoreceptors in postganglionic sympathetic neurons. Naunyn-Schmiedebergs Arch Pharmacol 368:504–512Google Scholar
  65. Uhlén S, Wikberg JES (1990) Spinal cord α2-adrenoceptors are of the α2A-subtype: comparison with α2A- and α2B- adrenoceptors in rat spleen, cerebral cortex and kidney using [3H]-RX821002 ligand binding. Pharmacol Toxicol 69:341–345Google Scholar
  66. Uhlén S, Porter AC, Neubig RR (1994) The novel α2-adrenergic radioligand [3H]-MK912 is α2C-selective among human α2A-, α2B- and -α2C adrenoceptors. J Pharmacol Exp Ther 271:1558–1565PubMedGoogle Scholar
  67. Uhlén S, Dambrova M, Näsman J, Schiöth HB, Gu Y, Wikberg-Mattson A, Wikberg JE (1998) [3H]RS79948-197 binding to human, guinea pig and pig α2A-, α2B- and -α2C adrenoceptors. Comparison with MK912, RX821002, rauwolscine and yohimbine. Eur J Pharmacol 343:93–101PubMedGoogle Scholar

Electrically Stimulated Release of [3H]Norepinephrine from Brain Slices

  1. Bücheler MM, Hadamek K, Hein L (2002) Two alpha(2)-adrenergic receptor subtypes, alpha(2A) and alpha(2C), inhibit transmitter release in the brain of gene-targeted mice. Neuroscience 109(4):819–826Google Scholar
  2. Docherty JR (1998) Subtypes of functional alpha1- and alpha2-adrenoceptors. Eur. J Pharmacol 361(1):1–15Google Scholar
  3. Dooley DJ, Donovan CM, Meder WP, Whetzel SZ (2002) Preferential action of gabapentin and pregabalin at P/Q-type voltage-sensitive calcium channels: inhibition of K+−evoked [3H]-norepinephrine release from rat neocortical slices. Synapse 45(3):171–190PubMedGoogle Scholar
  4. Langer SZ (1981) Presynaptic regulation of the release of catecholamines. Pharmacol Rev 32:337–362Google Scholar
  5. Miller RJ (1998) Presynaptic receptors. Annu Rev Pharmacol Toxicol 38:201–227PubMedGoogle Scholar
  6. Philipp M, Brede M, Hein L (2002) Physiological significance of alpha(2)-adrenergic receptor subtype diversity: one receptor is not enough. Am J Physiol Regul Integr Comp Physiol 283(2):R287–R295Google Scholar
  7. Raiteri M et al (1984) Handbook of Neurochemistry, vol 6. Plenum Publishing, New York, pp 431–462Google Scholar
  8. Reynolds JL, Ignatowski TA, Spengler RN (2005) Effect of tumor necrosis factor-alpha on the reciprocal G-protein-induced regulation of norepinephrine release by the alpha2-adrenergic receptor. J Neurosci Res 79(6):779–787PubMedGoogle Scholar
  9. Scheibner J, Trendelenburg AU, Hein L, Starke K (2001) Stimulation frequency-noradrenaline release relationships examined in alpha2A-, alpha2B- and alpha2C-adrenoceptor-deficient mice. Naunyn Schmiedebergs Arch Pharmacol 364(4):321–328Google Scholar
  10. Starke K (1981) Presynaptic receptors. Annu Rev Pharmacol Toxicol 21:7–30PubMedGoogle Scholar
  11. Starke K (2001) Presynaptic autoreceptors in the third decade: focus on alpha2-adrenoceptors. J Neurochem 78(4):685–693Google Scholar
  12. Trendelenburg AU, Klebroff W, Hein L, Starke K (2001) A study of presynaptic alpha2-autoreceptors in alpha2A/D-, alpha2B- and alpha2C-adrenoceptor-deficient mice. Naunyn Schmiedebergs Arch Pharmacol 364(2):117–130Google Scholar
  13. Trendelenburg AU, Philipp M, Meyer A, Klebroff W, Hein L, Starke K (2003) All three alpha2-adrenoceptor types serve as autoreceptors in postganglionic sympathetic neurons. Naunyn-Schmiedebergs Arch Pharmacol 368:504–512Google Scholar
  14. Vizi ES, Zsilla G, Caron MG, Kiss JP (2004) Uptake and release of norepinephrine by serotonergic terminals in norepinephrine transporter knock-out mice: implications for the action of selective serotonin reuptake inhibitors. J Neurosci 24(36):7888–7894PubMedGoogle Scholar
  15. Zahniser NR et al (1986) Chemical and functional assays of receptor binding, 1986, short course 1, syllabus. Society for Neuroscience, Washington, DC, pp 73–81Google Scholar

Imidazoline Receptor Binding

  1. Alemany R, Olmos G, Escriba PV, Menargues A, Obach R, Garcia-Sevilla JA (1995) LSL, 60101, a selective ligand for imidazoline I2 receptors, on glial fibrillary acidic protein concentration. Eur J Pharmacol 280:205–210PubMedGoogle Scholar
  2. Alemany R, Olmos G, Garcia-Sevilla JA (1997) Labeling of I2B-imidazoline receptors by [3H]2-(2-benzofuranyl)-2- imidazoline (2-BFI) in rat brain and liver. Characterization, regulation and relation to monoamine oxidase enzymes. Naunyn-Schmiedeberg’s Arch Pharmacol 356:39–47Google Scholar
  3. Atlas D, Burstein Y (1984) Isolation and partial purification of a clonidine-displacing endogenous brain substance. Eur J Biochem 144:287–293PubMedGoogle Scholar
  4. Berdeu D, Puech R, Loubatières-Mariani MM, Bertrand G (1996) Agmatine is not a good candidate as endogenous ligand for imidazoline sites of pancreatic B cells and vascular bed. Eur J Pharmacol 308(3):301–304PubMedGoogle Scholar
  5. Bock C, Niederhoffer N, Szabo B (1999) Analysis of the receptor involved in the central hypotensive effect of rilmenidine and moxonidine. Naunyn Schmiedebergs Arch Pharmacol 359(4):262–271PubMedGoogle Scholar
  6. Bousquet P (1995) Imidazoline receptors: from basic concepts to recent developments. J Cardiovasc Pharmacol 26(Suppl 2):S1–S6PubMedGoogle Scholar
  7. Bousquet P (1998) Imidazoline receptors: how many, where and why? Naunyn-Schmiedeberg’s Arch Pharmacol 358(Suppl 1):R 195Google Scholar
  8. Bousquet P, Feldman J, Bloch R, Schwartz J (1981) The nucleus reticularis lateralis: a region highly sensitive to clonidine. Eur J Pharmacol 69(3):389–392PubMedGoogle Scholar
  9. Bousquet P, Feldman J, Schwartz J (1984) Central cardiovascular effects of alpha adrenergic drugs: differences between catecholamines and imidazolines. J Pharmacol Exp Ther 230(1):232–236PubMedGoogle Scholar
  10. Brown CM, MacKinnon AC, Redfern WS, William A, Linton C, Stewart M, Clague RU, Clark R, Spedding M (1995) RS- 45041-190: a selective, high affinity ligand for I2 imidazoline receptors. Br J Pharmacol 116:1737–1744PubMedCentralPubMedGoogle Scholar
  11. Chan SLF, Atlas D, James RFL, Morgan NG (1997) The effect of the putative endogenous imidazoline receptor ligand, clonidine-displacing substance, on insulin secretion from rat and human islets of Langerhans. Br J Pharmacol 120:926–932PubMedCentralPubMedGoogle Scholar
  12. Coupry I, Podevin RA, Dausse JP, Parini A (1987) Evidence for imidazoline binding sites in basolateral membranes from rabbit kidney. Biochem Biophys Res Commun 147(3):1055–1060PubMedGoogle Scholar
  13. Eglen RM, Hudson AL, Kendall DA, Nutt DJ, Morgan NG, Wilson VC, Dillon MP (1998) ‘Seeing through a glass darkly’: casting light on imidazoline ‘I’ sites. Trends Pharmacol Sci 19:381–390PubMedGoogle Scholar
  14. Ernsberger P (1999) The I1-imidazoline receptor and its cellular signaling pathways. Ann N Y Acad Sci 881:35–53PubMedGoogle Scholar
  15. Ernsberger P, Piletz JE, Graff LM, Graves ME (1995) Optimization of radioligand binding assays for I1 imidazoline sites. Ann N Y Acad Sci 763:163–168PubMedGoogle Scholar
  16. Guyenet PG (1997) Is the hypotensive effect of clonidine and related drugs due to imidazoline binding sites? Am J Physiol 273(5 Pt 2):R1580–R1584Google Scholar
  17. Head GA (1995) Importance of imidazoline receptors in the cardiovascular actions of centrally acting antihypertensive agents. Ann N Y Acad Sci 763:531–540PubMedGoogle Scholar
  18. Head GA (1999) Central imidazoline- and alpha 2-receptors involved in the cardiovascular actions of centrally acting antihypertensive agents. Ann N Y Acad Sci 881:279–286PubMedGoogle Scholar
  19. Head GA, Mayorov DN (2006) Imidazoline receptors, novel agents and therapeutic potential. Cardiovasc Hematol Agents Med Chem 4(1):17–32PubMedGoogle Scholar
  20. Head GA, Chan CK, Burke SL (1998) Relationship between imidazoline and alpha2-adrenoceptors involved in the sympatho-inhibitory actions of centrally acting antihypertensive agents. J Auton Nerv Syst 72(2–3):163–169PubMedGoogle Scholar
  21. Hosseini AR, King PR, Louis WJ, Gundlach AL (1997) [3H]2- (2-Benzofuranyl)-2-imidazoline, a highly selective radioligand for imidazoline I2 receptor binding sites. Naunyn Schmiedeberg’s Arch Pharmacol 355:131–138Google Scholar
  22. Hudson AL, Chapleo CB, Lewis JW, Husbands S, Grivas K, Mallard NJ, Nutt DJ (1997) Identification of ligands selective for central I2 imidazoline binding sites. Neurochem Int 30:47–53PubMedGoogle Scholar
  23. Hudson AL, Luscombe S, Gouch RE, Nutt DJ, Tyacke RJ (1999) Endogenous indoleamines demonstrate moderate affinity for I2 binding sites. Ann N Y Acad Sci 881:212–216PubMedGoogle Scholar
  24. Jordan S, Jackson HC, Nutt DJ, Handley SL (1996) Discrimination stimulus produced by the imidazoline I2 site ligand, 2-BFI. J Psychopharmacol 10:273–278PubMedGoogle Scholar
  25. Khan ZP, Ferguson CN, Jones RM (1999) Alpha-2 and imidazoline receptor agonists. Their pharmacology and therapeutic role. Anaesthesia 54(2):146–165PubMedGoogle Scholar
  26. Lanier SM, Ivkovic B, Singh I, Neumeyer JL, Bakthavachalam V (1993) Visualization of multiple imidazoline/guanidinium-receptive sites. J Biol Chem 268:16047–16051PubMedGoogle Scholar
  27. Li G, Regunathan S, Barrow CJ, Eshraghi J, Cooper R, Reis DJ (1994) Agmatine: an endogenous clonidine-displacing substance in the brain. Science 263:966–969PubMedGoogle Scholar
  28. Lione LA, Nutt DJ, Hudson AL (1996) [3H]2-(2-benzofuranyl)- 2-imidazoline: a new selective high affinity radioligand for the study of rabbit brain imidazoline I2 receptors. Eur J Pharmacol 304:221–229PubMedGoogle Scholar
  29. MacKinnon AC, Stewart M, Olverman HJ, Spedding M, Brown CM (1993) [3H]p-aminoclonidine and [3H]idazoxan label different populations of imidazoline sites on rat kidney. Eur J Pharmacol 232:79–87PubMedGoogle Scholar
  30. MacKinnon AC, Redfern WS, Brown CM (1995) [3H]-RS- 45041-190: a selective high affinity ligand for I2 imidazoline receptors. Br J Pharmacol 116:1729–1736PubMedCentralPubMedGoogle Scholar
  31. Mc Pherson GA (1985) Analysis of radioligand binding experiments: a collection of computer programs for the IBM PC. J Pharmacol Methods 14:213–218Google Scholar
  32. Menargues A, Cedo M, Artiga O, Obach R, Garcia-Sevilla JA (1995) Effects of the I2 imidazoline receptor ligand LSL 60101 on various models of anorexia in rats. Ann N Y Acad Sci 763:494–496PubMedGoogle Scholar
  33. Molderings GJ, Göthert M (1995) Inhibitory presynaptic imidazoline receptors on sympathetic nerves in the rabbit aorta differ from I1- and I2-imidazoline binding sites. Naunyn-Schmiedeberg’s Arch Pharmacol 351:507–516Google Scholar
  34. Molderings GJ, Hentrich F, Göthert M (1991) Pharmacological characterization of the imidazoline receptor which mediates inhibition of noradrenaline release in the rabbit pulmonary artery. Naunyn-Schmiedeberg’s Arch Pharmacol 344:630–638Google Scholar
  35. Morgan NG, Chan SL, Mourtada M, Monks LK, Ramsden CA (1999) Imidazolines and pancreatic hormone secretion. Ann N Y Acad Sci 881:217–228PubMedGoogle Scholar
  36. Munk SA, Lai RK, Burke JE, Arasasingham PN, Kharlamb AB, Manlapaz CA, Padillo EU, Wijono MK, Hasson DW, Wheeler LA, Garst ME (1996) Synthesis and pharmacological evaluation of 2-endo-amino-3-exo-isopropylbicyclo[ 2.2.1]heptane: a potent imidazoline-1 receptor specific agent. J Med Chem 39:1193–1195PubMedGoogle Scholar
  37. Munson PJ, Rodbard D (1980) LIGAND, a versatile computerized approach for characterization of ligand binding systems. Anal Biochem 107:220–239PubMedGoogle Scholar
  38. Musgrave IF, Badoer E (2000) Harmane produces hypotension following microinjection into the RVLM: possible role of I(1)-imidazoline receptors. Br J Pharmacol 129(6):1057–1059PubMedCentralPubMedGoogle Scholar
  39. Mutolsky HJ, Ransnas LA (1987) Fitting curves for data using non-linear regression: a practical and non mathematical review. FASEB J 1:365–374Google Scholar
  40. Nikolic K, Agbaba D (2012) Imidazoline antihypertensive drugs: selective i(1) -imidazoline receptors activation. Cardiovasc Ther 30(4):209–216PubMedGoogle Scholar
  41. Parker CA, Hudson AL, Nutt DJ, Dillon MP, Eglen RM, Chan SL, Morgan NG, Crosby J (1999) Extraction of active clonidine-displacing substance from bovine lung and comparison with clonidine-displacing substance extracted from other tissues. Eur J Pharmacol 378(2):213–221PubMedGoogle Scholar
  42. Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83(2):346–56PubMedGoogle Scholar
  43. Piletz JE, Zhu H, Chikkala DN (1996) Comparison of ligand binding affinities at human I1 imidazole binding sites and the high affinity state of α2 adrenoceptor subtypes. J Pharmacol Exp Ther 279:694–702PubMedGoogle Scholar
  44. Prell GD, Martinelli GP, Holstein GR, Matulić-Adamić J, Watanabe KA, Chan SL, Morgan NG, Haxhiu MA, Ernsberger P (2004) Imidazoleacetic acid-ribotide: an endogenous ligand that stimulates imidazol(in)e receptors. Proc Natl Acad Sci U S A 101(37):13677–13682PubMedCentralPubMedGoogle Scholar
  45. Raasch W, Schäfer U, Chun J, Dominiak P (2001) Biological significance of agmatine, an endogenous ligand at imidazoline binding sites. Br J Pharmacol 133(6):755–780PubMedCentralPubMedGoogle Scholar
  46. Raasch W, Schäfer U, Qadri F, Dominiak P (2002) Agmatine, an endogenous ligand at imidazoline binding sites, does not antagonize the clonidine-mediated blood pressure reaction. Br J Pharmacol 135(3):663–672PubMedCentralPubMedGoogle Scholar
  47. Reis DJ, Li G, Regunathan S (1995) Endogenous ligands of imidazoline receptors: classic and immunoreactive Clonidine displacing substance and agmatine. Ann N Y Acad Sci 763:295–313PubMedGoogle Scholar
  48. Robinson ES, Anderson NJ, Crosby J, Nutt DJ, Hudson AL (2003) Endogenous beta-carbolines as clonidine-displacing substances. Ann N Y Acad Sci 1009:157–166PubMedGoogle Scholar
  49. Szabo B (2002) Imidazoline antihypertensive drugs: a critical review on their mechanism of action. Pharmacol Ther 93(1):1–35PubMedGoogle Scholar
  50. Szabo B, Bock C, Nordheim U, Niederhoffer N (1999) Mechanism of the sympathoinhibition produced by the clonidine-like drugs rilmenidine and moxonidine. Ann N Y Acad Sci 881:253–264PubMedGoogle Scholar
  51. Tesson F, Prip-Buus C, Lemoine A, Pegorier JP, Parini A (1991) Subcellular distribution of imidazoline-guanidinium-receptive sites in human and rabbit liver. J Biol Chem 266:155–160PubMedGoogle Scholar
  52. Tesson F, Limon-Boulez I, Urban P, Puype M, Vandekerckhove J, Coupry I, Pompon D, Parini A (1995) Localization of I2-imidazoline binding sites on monoamine oxidases. J Biol Chem 270(17):9856–9861PubMedGoogle Scholar
  53. Wiest SA, Steinberg MI (1997) Binding of [3H]2-(2-benzofuranyl)- 2-imidazoline (BFI) to human brain: potentiation by tranylcypromine. Life Sci 60:605–615PubMedGoogle Scholar

β-Adrenoreceptor Binding

  1. Abrahamsson T, Ek B, Nerme V (1988) The β 1- and β 2- adrenoceptor affinity of atenolol and metoprolol: a receptor-binding study performed with different ligands in tissues from the rat, the guinea pig and man. Biochem Pharmacol 37(2):203–8Google Scholar
  2. Ahlquist RP (1948) A study of the adrenotropic receptors. Am J Physiol 153(3):586–600Google Scholar
  3. Bristow MR, Anderson FL, Port JD, Skerl L, Hershberger RE, Larrabee P, O’Connell JB, Renlund DG, Volkman K, Murray J, Feldman AM (1991) Differences in beta-adrenergic neuroeffector mechanisms in ischemic versus idiopathic dilated cardiomyopathy. Circulation 84(3):1024–1039PubMedGoogle Scholar
  4. Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sageman WS, Lurie K, Billingham ME, Harrison DC, Stinson EB (1982) Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med 307(4):205–211PubMedGoogle Scholar
  5. Bristow MR, Ginsburg R, Umans V, Fowler M, Minobe W, Rasmussen R, Zera P, Menlove R, Shah P, Jamieson S, Stinson EB (1986) Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ Res 59(3):297–309PubMedGoogle Scholar
  6. Bristow MR, Port JD, Hershberger RE, Gilbert EM, Feldman AM (1989) The beta-adrenergic receptor-adenylate cyclase complex as a target for therapeutic intervention in heart failure. Eur Heart J 10(Suppl B):45–54PubMedGoogle Scholar
  7. Bristow MR, Hershberger RE, Port JD, Gilbert EM, Sandoval A, Rasmussen R, Cates AE, Feldman AM (1990) Beta-adrenergic pathways in nonfailing and failing human ventricular myocardium. Circulation 82(2 Suppl):I12–I25PubMedGoogle Scholar
  8. Brodde OE (2008) Beta-1 and beta-2 adrenoceptor polymorphisms: functional importance, impact on cardiovascular diseases and drug responses. Pharmacol Ther 117(1):1–29PubMedGoogle Scholar
  9. Brodde OE, Leineweber K (2005) Beta2-adrenoceptor gene polymorphisms. Pharmacogenet Genomics 15(5):267–275PubMedGoogle Scholar
  10. Brodde OE, Bruck H, Leineweber K (2006) Cardiac adrenoceptors: physiological and pathophysiological relevance. J Pharmacol Sci 100(5):323–337PubMedGoogle Scholar
  11. Buxton BF, Jones CR, Molenaar P, Summers RJ (1987) Characterization and autoradiographic localization of beta-adrenoceptor subtypes in human cardiac tissues. Br J Pharmacol 92(2):299–310PubMedCentralPubMedGoogle Scholar
  12. Bylund DB, Snyder SH (1976) Beta adrenergic receptor binding in membrane preparations from mammalian brain. Mol Pharmacol 12(4):568–580PubMedGoogle Scholar
  13. Calderone A, Bouvier M, Li K, Juneau C, de Champlain J, Rouleau JL (1991) Dysfunction of the beta- and alpha-adrenergic systems in a model of congestive heart failure. The pacing-overdrive dog. Circ Res 69(2):332–343PubMedGoogle Scholar
  14. Cartagena G, Sapag-Hagar M, Jalil J, Tapia V, Guarda E, Foncea R, Corbalan R, Ebensperger R, Lavandero S (1993) Changes in beta-adrenergic receptors of rat heart and adipocytes during volume-overload induced cardiac hypertrophy. Int J Clin Pharmacol Ther Toxicol 31(4):198–203PubMedGoogle Scholar
  15. Cheng YC, Prusoff WH (1973) Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108Google Scholar
  16. Daly CJ, McGrath JC (2011) Previously unsuspected widespread cellular and tissue distribution of β-adrenoceptors and its relevance to drug action. Trends Pharmacol Sci 32(4):219–226PubMedGoogle Scholar
  17. Emorine LJ, Marullo S, Briend-Sutren MM, Patey G, Tate K, Delavier-Klutchko C, Strosberg AD (1989) Molecular characterization of the human beta 3-adrenergic receptor. Science 245(4922):1118–1121Google Scholar
  18. Emorine LJ, Fève B, Pairault J, Briend-Sutren MM, Nahmias C, Marullo S, Delavier-Klutchko C, Strosberg DA (1992) The human beta 3-adrenergic receptor: relationship with atypical receptors. Am J Clin Nutr 55(1 Suppl):215S–218SPubMedGoogle Scholar
  19. Ferguson SS (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 53(1):1–24PubMedGoogle Scholar
  20. Fleisher JH, Pinnas JL (1985) In vitro studies on the relative potency of bronchodilator agents. Lung 163:161–171PubMedGoogle Scholar
  21. Frielle T, Collins S, Daniel KW, Caron MG, Lefkowitz RJ, Kobilka BK (1987) Cloning of the cDNA for the human beta 1-adrenergic receptor. Proc Natl Acad Sci U S A 84(22):7920–7924Google Scholar
  22. Gauthier C, Langin D, Balligand JL (2000) β3-adrenoceptors in the cardiovascular system. Trends Pharmacol Sci 21:426–431PubMedGoogle Scholar
  23. Gauthier C, Tavernier G, Charpentier F, Langin D, Le Marec H (1996) Functional beta3-adrenoceptor in the human heart. J Clin Invest 98(2):556–562PubMedCentralPubMedGoogle Scholar
  24. Gauthier C, Rozec B, Manoury B, Balligand JL (2011) Beta-3 adrenoceptors as new therapeutic targets for cardiovascular pathologies. Curr Heart Fail Rep 8(3):184–192PubMedGoogle Scholar
  25. Granneman JG (2001) The putative beta4-adrenergic receptor is a novel state of the beta1-adrenergic receptor. Am J Physiol Endocrinol Metab 280(2):E199–E202PubMedGoogle Scholar
  26. Hasenfuss G, Mulieri LA, Allen PD, Just H, Alpert NR (1996) Influence of isoproterenol and ouabain on excitation-contraction coupling, cross-bridge function, and energetics in failing human myocardium. Circulation 94(12):3155–3160PubMedGoogle Scholar
  27. Hedberg A, Minneman KP, Molinoff PB (1980) Differential distribution of beta-1 and beta-2 adrenergic receptors in cat and guinea-pig heart. J Pharmacol Exp Ther 212:503–508PubMedGoogle Scholar
  28. Kaumann AJ (1997) Four beta-adrenoceptor subtypes in the mammalian heart. Trends Pharmacol Sci 18(3):70–76PubMedGoogle Scholar
  29. Kaumann AJ, Preitner F, Sarsero D (1998) Molenaar P, Revelli JP, Giacobino JP (−)CGP 12177 causes cardiostimulation and binds to cardiac putative β4-adrenoceptors in both wild-type and β3-adrenoceptor knockout mice. Mol Pharmacol 53:670–675PubMedGoogle Scholar
  30. Kaumann AJ, Engelhardt S, Hein L, Molenaar P, Lohse M (2001) Abolition of (−)-CGP 12177-evoked cardiostimulation in double beta1/beta2-adrenoceptor knockout mice. Obligatory role of beta1-adrenoceptors for putative beta4-adrenoceptor pharmacology. Naunyn Schmiedebergs Arch Pharmacol 363(1):87–93PubMedGoogle Scholar
  31. Kirstein SL, Insel PA (2004) Autonomic nervous system pharmacogenomics: a progress report. Pharmacol Rev 56(1):31–52PubMedGoogle Scholar
  32. Kobilka BK, Dixon RA, Frielle T, Dohlman HG, Bolanowski MA, Sigal IS, Yang-Feng TL, Francke U, Caron MG, Lefkowitz RJ (1987) cDNA for the human beta 2-adrenergic receptor: a protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor. Proc Natl Acad Sci U S A A84(1):46–50Google Scholar
  33. Konkar AA, Zhai Y, Granneman JG (2000) Beta1-adrenergic receptors mediate beta3-adrenergic-independent effects of CGP 12177 in brown adipose tissue. Mol Pharmacol 57(2):252–258PubMedGoogle Scholar
  34. Lands AM, Arnold A, McAuliff JP, Luduena FP, Brown TG Jr (1967) Differentiation of receptor systems activated by sympathomimetic amines. Nature 214(5088):597–598PubMedGoogle Scholar
  35. Lefkowitz RJ, Williams LT (1977) Catecholamine binding to the beta-adrenergic receptor. Proc Natl Acad Sci U S A 74(2):515–519PubMedCentralPubMedGoogle Scholar
  36. Leineweber K, Büscher R, Bruck H, Brodde OE (2004) Beta-adrenoceptor polymorphisms. Naunyn Schmiedebergs Arch Pharmacol 369(1):1–22PubMedGoogle Scholar
  37. Lohse MJ, Engelhardt S, Eschenhagen T (2003) What is the role of beta-adrenergic signaling in heart failure? Circ Res 93(10):896–906PubMedGoogle Scholar
  38. Machida CA, Bunzow JR, Searles RP, Van Tol H, Tester B, Neve KA, Teal P, Nipper V, Civelli O (1990) Molecular cloning and expression of the rat beta 1-adrenergic receptor gene. J Biol Chem 265(22):12960–12965PubMedGoogle Scholar
  39. Minneman KP, Hegstrand LR, Molinoff PB (1979) The pharmacological specificity of beta-1 and beta-2 adrenergic receptors in rat heart and lung in vitro. Mol Pharmacol 16:21–33PubMedGoogle Scholar
  40. Mukherjee C, Caron MG, Coverstone M, Lefkowitz RJ (1975) Identification of adenylate cyclase-coupled β-adrenergic receptors in frog erythrocytes with (−)-3H-Alprenolol. J Biol Chem 250:4869–4876Google Scholar
  41. Pelá G, Missale C, Raddino R, Condorelli E, Spano PF, Visioli O (1990) Beta 1- and beta 2-receptors are differentially desensitized in an experimental model of heart failure. J Cardiovasc Pharmacol 16(5):839–846PubMedGoogle Scholar
  42. Pérez-Schindler J, Philp A, Hernandez-Cascales J (2013) Pathophysiological relevance of the cardiac β2-adrenergic receptor and its potential as a therapeutic target to improve cardiac function. Eur J Pharmacol 698(1–3):39–47PubMedGoogle Scholar
  43. Philipp M, Hein L (2004) Adrenergic receptor knockout mice: distinct functions of 9 receptor subtypes. Pharmacol Ther 101(1):65–74Google Scholar
  44. Rajagopal S, Rajagopal K, Lefkowitz RJ (2010) Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov 9(5):373–386PubMedCentralPubMedGoogle Scholar
  45. Rockman HA, Koch WJ, Lefkowitz RJ (2002) Seven-transmembrane-spanning receptors and heart function. Nature 415(6868):206–212PubMedGoogle Scholar
  46. Rugg EL, Barnett DB, Nahorski SR (1978) Coexistence of beta1 and beta2 adrenoceptors in mammalian lung: evidence from direct binding studies. Mol Pharmacol 14(6):996–1005PubMedGoogle Scholar
  47. Shore SA, Moore PE (2003) Regulation of beta-adrenergic responses in airway smooth muscle. Respir Physiol Neurobiol 137(2–3):179–195PubMedGoogle Scholar
  48. Small KM, McGraw DW, Liggett SB (2003) Pharmacology and physiology of human adrenergic receptor polymorphisms. Annu Rev Pharmacol Toxicol 43:381–411PubMedGoogle Scholar
  49. Steinberg SF (1999) The molecular basis for distinct beta-adrenergic receptor subtype actions in cardiomyocytes. Circ Res 85(11):1101–1111PubMedGoogle Scholar
  50. Steinfath M, Geertz B, Schmitz W, Scholz H, Haverich A, Breil I, Hanrath P, Reupcke C, Sigmund M, Lo HB (1991) Distinct down-regulation of cardiac beta 1- and beta 2-adrenoceptors in different human heart diseases. Naunyn Schmiedebergs Arch Pharmacol 343(2):217–220PubMedGoogle Scholar
  51. Strosberg AD (1998) Structure and function of the beta 3 adrenoreceptor. Adv Pharmacol 42:511–513PubMedGoogle Scholar
  52. Tate KM, Briend-Sutren MM, Emorine LJ, Delavier-Klutchko C, Marullo S, Strosberg AD (1991) Expression of three human beta-adrenergic-receptor subtypes in transfected Chinese hamster ovary cells. Eur J Biochem 196(2):357–361PubMedGoogle Scholar
  53. Teerlink JR, Pfeffer JM, Pfeffer MA (1994) Progressive ventricular remodeling in response to diffuse isoproterenol-induced myocardial necrosis in rats. Circ Res 75(1):105–113PubMedGoogle Scholar
  54. U’Prichard DC, Bylund DB, Snyder SH (1978) (±)-3H-Epinephrine and (−)-3H-dihydroalprenolol binding to β1 and β2 noradrenergic receptors in brain, heart and lung membranes. J Biol Chem 253:5090–5102Google Scholar
  55. Vasudevan NT, Mohan ML, Goswami SK, Naga Prasad SV (2011) Regulation of β-adrenergic receptor function: an emphasis on receptor resensitization. Cell Cycle 10(21):3684–3691PubMedCentralPubMedGoogle Scholar
  56. Wachter SB, Gilbert EM (2012) Beta-adrenergic receptors, from their discovery and characterization through their manipulation to beneficial clinical application. Cardiology 122(2):104–112PubMedGoogle Scholar
  57. Waitling KJ (2006) The Sigma RBI handbook of receptor classification and signal transduction, 5th edn. Sigma-Aldrich, St Louis, pp 92–93Google Scholar
  58. Wang X, Dhalla NS (2000) Modification of beta-adrenoceptor signal transduction pathway by genetic manipulation and heart failure. Mol Cell Biochem 214(1–2):131–155PubMedGoogle Scholar
  59. Weiland GA, Minneman KP, Molinoff PB (1980) Thermodynamics of agonist and antagonist interactions with mammalian beta-adrenergic receptors. Mol Pharmacol 18(3):341–347PubMedGoogle Scholar
  60. White M, Roden R, Minobe W, Khan MF, Larrabee P, Wollmering M, Port JD, Anderson F, Campbell D, Feldman AM, Bristow MR (1994) Age-related changes in beta-adrenergic neuroeffector systems in the human heart. Circulation 90(3):1225–1238PubMedGoogle Scholar
  61. Wiemer G, Wellstein A, Palm D, Hattingberg HM, Brockmeier D (1982) Properties of agonist binding at the β- adrenoceptor of the rat reticulocyte. Naunyn-Schmiedeberg’s Arch Pharmacol 321:11–19Google Scholar
  62. Woo AY, Xiao RP (2012) β-Adrenergic receptor subtype signaling in heart: from bench to bedside. Acta Pharmacol Sin 33(3):335–341PubMedCentralPubMedGoogle Scholar
  63. Xiao RP, Lakatta EG (1993) β1-adrenoceptor stimulation and β2-adrenoceptor stimulation differ in their effect on contraction, cytosolic Ca2+, and Ca2+ current in single rat ventricular cells. Circ Res 73:286–300PubMedGoogle Scholar

β 1-Adrenoreceptor Binding

  1. Dooley DJ, Bittiger H, Reymann NC (1986) CGP 20712 A: a useful tool for quantitating β1 and β2 adrenoceptors. Eur J Pharmacol 130:137–139Google Scholar
  2. Wolfe BB, Minneman KP, Molinoff PB (1982) Selective increases in the density of cerebellar β1-adrenergic receptors. Brain Res 234:474–479PubMedGoogle Scholar

β 2-Adrenoreceptor Binding

  1. Alexander S, Peters J, Mathie A, MacKenzie G, Smith A (2001) Nomenclature supplement. Trends Pharmacol Sci (12th Ed.) pp. 118–125Google Scholar
  2. Ariens EJ, Simonis AM (1983) Physiological and pharmacological aspects of adrenergic receptor classification. Biochem Pharmacol 32:1539–1545PubMedGoogle Scholar
  3. Chen C, Okayama H (1987) High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7:2745–2752PubMedCentralPubMedGoogle Scholar
  4. Cheng YC, Prusoff WH (1973) Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108Google Scholar
  5. Collis MG (1983) Evidence for an A1 adenosine receptor in the guinea pig atrium. Br J Pharmacol 78:207–212PubMedCentralPubMedGoogle Scholar
  6. Deighton NM, Motomura S, Bals S, Zerkowski HR, Brodde OE (1992) Characterization of the beta adrenoceptor subtype( s) mediating the positive inotropic effects of epinine, dopamine, dobutamine, denopamine and xamoterol in isolated human right atrium. J Pharmacol Exp Ther 262:532–538PubMedGoogle Scholar
  7. Dooley DJ, Bittiger H, Reymann NC (1986) CGP 20712: a useful tool for quantitating β1- and β2-adrenoceptors. Eur J Pharmacol 130:137–139Google Scholar
  8. Emorine LJ, Marullo S, Briend-Sutren MM, Patey G, Tate K, Delavier-Klutchko C, Strosberg AD (1989) Molecular characterization of the human beta 3-adrenergic receptor. Science 245(4922):1118–1121Google Scholar
  9. Freund S, Ungerer M, Lohse MJ (1994) A1 adenosine receptors expressed in CHO-cells couple to adenylyl cyclase and phospholipase C. Naunyn-Schmiedebergs Arch Pharmacol 350:49–56PubMedGoogle Scholar
  10. Frielle T, Collins S, Daniel KW, Caron MG, Lefkowitz RJ, Kobilka BK (1987) Cloning of the cDNA for the human beta β1-adrenergic receptor. Proc Natl Acad Sci U S A 84(22):7920–7924Google Scholar
  11. Hoffmann C, Leitz MR, Ober-dorf-Maass S, Lohse MJ, Klotz KN (2004) Comparative pharmacology of human β- adrenergic receptor subtypes – characterization of stably transfected receptors in CHO cells. Naunyn Schmiedbergs Arch Pharmacol 369:151–159Google Scholar
  12. Jakobs KH, Saur W, Schultz G (1976) Reduction of adenylyl cyclase activity in lysates of human platelets by the alpha-adrenergic component of epinephrine. J Cyclic Nucleotide Res 2:381–392PubMedGoogle Scholar
  13. Klotz K-N, Cristalli G, Grifantini M, Vittori S, Lohse MJ (1985) Photoaffinity labeling of A1-adenosine receptors. J Biol Chem 260:14659–14664PubMedGoogle Scholar
  14. Klotz K-N, Hessling J, Hegler J, Owman C, Kull B, Fredholm BB, Lohse MJ (1998) Comparative pharmacology of human adenosine receptor subtypes – characterization of stably transfected receptors in CHO cells. Naunyn-Schmiedebergs Arch Pharmacol 357:1–9PubMedGoogle Scholar
  15. Lefkowitz RJ, Stadel JM, Caron MG (1983) Adenylate cyclase coupled beta-adrenergic receptors: structure and mechanisms of activation and desensitization. Annu Rev Biochem 52:159–186PubMedGoogle Scholar
  16. McConnell HM, Rice P, Wada GH, Owicki JC, Parce JW (1991) The microphysiometer biosensor. Curr Opin Struct Biol 1:647–652Google Scholar
  17. McConnell HM, Owicki JC, Parce JW, Miller DL, Baxter GT, Wada HG, Pitchford S (1992) The cytosensor microphysiometer: biological applications of silicon technology. Science 257:1906–1912PubMedGoogle Scholar
  18. McCrea KE, Hill SJ (1993) Salmeterol, a long acting β- adrenoceptor agonist mediating cyclic AMP accumulation in a neuronal cell line. Br J Pharmacol 110:619–626PubMedCentralPubMedGoogle Scholar
  19. Minneman KP, Wolfe BB, Pittman RN, Molinoff PB (1983) β- adrenergic receptor subtypes in rat brain. In: Segawa T (ed) Molecular Pharmacology of Neurotransmitter Receptors. Raven Press, New YorkGoogle Scholar
  20. Mukherjee C, Caron MG, Coverstone M, Lefkowitz RJ (1975) Identification of adenylate cyclase-coupled β-adrenergic receptors in frog erythrocytes with (−)-3H-Alprenolol. J Biol Chem 250:4869–4876Google Scholar
  21. Nahorski SR (1981) Identification and significance of betaadrenoceptor subtypes. TIPS 1981:95–98Google Scholar
  22. Nathanson JA (1985) Differential inhibition of beta adrenergic receptors in human and rat ciliary process and heart. J Pharmacol Exp Ther 232:119–126PubMedGoogle Scholar
  23. Niclauss N, Michel-Reher MB, Alewijnse AE, Michel MC (2006) Comparison of three radioligands for the human b-adrenoceptor types. Naunyn-Schmiedebergs Arch Pharmacol 374:99–105PubMedGoogle Scholar
  24. Owicki JC, Parce JW (1992) Biosensors based on the energy metabolism of living cells: the physical chemistry and cell biology of extracellular acidification. Biosens Bioelectron 7:255–272PubMedGoogle Scholar
  25. Schofield PR, Rhee LM, Peralta EG (1987) Primary structure of the human beta-adrenergic receptor gene. Nucleic Acids Res 15:3636PubMedCentralPubMedGoogle Scholar
  26. U’Prichard DC, Bylund DB, Snyder SH (1978) (±)-3H-Epinephrine and (−)-3H-dihydroalprenolol binding to β1 and β2 noradrenergic receptors in brain, heart and lung membranes. J Biol Chem 253:5090–5102Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Michael Gralinski
    • 1
  • Liomar A. A. Neves
    • 1
  • Olga Tiniakova
    • 1
  1. 1.CorDynamics Inc.ChicagoUSA

Personalised recommendations