Advertisement

Metabolism Studies In Vitro and In Vivo

  • Angela Dudda
  • Gert Ulrich Kuerzel
Reference work entry

Abstract

In the era of combinatorial chemistry and high-throughput screening, a huge number of hits and structural analogs potentially interesting as new chemical entities (NCEs) can be produced in a short period of time. Drug metabolism is a decisive determinant of the pharmacokinetic behavior of these compounds. Approximately three quarters of the top 200 prescribed drugs in the United States in 2002 are cleared by metabolism, one-third are cleared via the kidney, while biliary clearance of unchanged drug plays only a minor role (Williams et al. 2004). Thus, understanding and description of the metabolism of a new chemical entity is an essential part of the submission dossier (Weaver and Jochemsen 2009) as well as an important optimization parameter in drug discovery programs to reduce attrition in drug development (Kola and Landis 2004)

Keywords

Drug Metabolism Human Liver Microsome Accelerator Mass Spectrometry Liver Slice Metabolic Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

  1. Aragon CMG, Rogan F, Amit Z (1992) Ethanol metabolism in rat brain homogenate by catalase-H2O2 system. Biochem Pharmacol 44:93–98PubMedCrossRefGoogle Scholar
  2. Arinc E (2010) The role of polymorphic cytochrome P450 enzymes in drug design, development and drug interactions with a special emphasis on phenotyping. J Mol Catal B Enzym 64:120–122CrossRefGoogle Scholar
  3. Baciewicz FA Jr, Arredondo M, Chaudhuri B, Crist KA, Basilius D, Bandyopadhyah S, Thomford NR, Chaudhuri PK (1991) Pharmacokinetics and toxicity of isolated perfusion of lung with doxorubicin. J Surg Res 50:124–128PubMedCrossRefGoogle Scholar
  4. Bader A, Fruehauf N, Zech K, Haverich A, Borlak JT (1998) Development of a small-scale bioreactor for drug metabolism studies maintaining hepatospecific functions. Xenobiotica 9:815–825CrossRefGoogle Scholar
  5. Baillie TA, Cayen MN, Fouda H, Gerson RJ, Green JD, Grossmann SJ, Klunk LJ, LeBlanc B, Perkins DG, Shipley LA (2002) Drug metabolites in safety testing. Toxicol Appl Pharmacol 182:188–196PubMedCrossRefGoogle Scholar
  6. Baillie TA, Cayen MN, Fouda H, Gerson RJ, Green JD, Grossmann SJ, Klunk LJ, LeBlanc B, Perkins DG, Shipley LA (2003) Reply to the editor (see also Hastings et al. 2003). Toxicol Appl Pharmacol 190:93–94CrossRefGoogle Scholar
  7. Balbach S, Korn C (2004) Pharmaceutical evaluation of early development candidates: “the 100 mg-approach”. Int J Pharm 275:1–12PubMedCrossRefGoogle Scholar
  8. Balimane P, Sinko P (2000) Effect of ionization on the variable uptake of valacyclovir via the human intestinal peptide transporter (hPepT1) in CHO cells. Biopharm Drug Dispos 21:165–174PubMedCrossRefGoogle Scholar
  9. Baranczewski P, Stanczak A, Sundberg K, Svensson R, Wallin A, Jansson J, Garberg P, Postlind H (2006) Introduction to in vitro estimation of metabolic stability and drug interactions of new chemical entities in drug discovery and development. Pharmacol Rep 58:453–472PubMedGoogle Scholar
  10. Beaune P, Kremers PG, Kaminsky LS, De Graeve J, Albert A, Guengerich FP (1986) Comparison of monooxygenase activities and cytochrome P-450 isozyme concentration in human liver microsomes. Drug Metab Dispos 14:437–442PubMedGoogle Scholar
  11. Benedetti MS, Whomsley R, Baltes E (2006) Involvement of enzymes other than CYPs in the oxidative metabolism of xenobiotics. Expert Opin Drug Metab Toxicol 2:895–921CrossRefGoogle Scholar
  12. Bernardelli P, Gaudillière B, Vergne F (2002) Trends and perspectives. In: Doherty AM (ed) To market, to market – 2001, vol 37, Annual reports in medicinal chemistry. Academic, San Diego, pp 257–277 (Chap 26)Google Scholar
  13. Birkett DJ, Mackenzie PI, Veronese ME, Miners JO (1993) In vitro approaches can predict human drug metabolism. Trends Pharmacol Sci 14:292–294CrossRefGoogle Scholar
  14. Bjornsson TD, Callaghan JT, Einolf HJ, Fischer V, Gan L, Grimm S, Kao J, King SP, Miwa G, Ni L, Kumar G, McLeod J, Obach RS, Roberts S, Roe A, Shah A, Snikeris F, Sullivan JT, Tweedie D, Vega JM, Walsh J, Wrighton SA (2003) The conduct of in vitro and in vivo drug-drug interaction studies: a PhRMA perspective. Drug Metab Dispos 31:815–832PubMedCrossRefGoogle Scholar
  15. Blanchard N, Alexandre E, Abadie C, Lave T, Heyd B, Mantion G, Jaeck D, Richert L, Coassoli P (2005) Comparison of clearance predictions using primary cultures and suspensions of human hepatocytes. Xenobiotica 35(1):1–15PubMedCrossRefGoogle Scholar
  16. Blanchard N, Richert L, Notter B, Delobel F, David P, Coassolo P, Lave T (2004) Impact of serum on clearance predictions obtained from suspensions and primary cultures of rat hepatocytes. Eur J Pharm Sci 23:189–199PubMedCrossRefGoogle Scholar
  17. Bloomer JC, Boyd HF, Hickey DMB, Ife RJ, Leach CA, Macphee CH, Milliner KJ, Pinto IL, Rawlings DA, Smith SA, Stansfield JG, Stanway SJ, Taylor MA, Theobald CJ, Whittaker CM (2001) 1-(Arylpiperazinylamidoalkyl)-pyrimidones: orally active inhibitors of lipoprotein-associated phospholipase A2. Bioorg Med Chem Lett 11:1925–1929PubMedCrossRefGoogle Scholar
  18. Boernsen KO, Floeckher JM, Bruin GJM (2000) Use of a microplate scintillation counter as a radioactivity detector for miniaturized separation techniques in drug metabolism. Anal Chem 72:3956–3959PubMedCrossRefGoogle Scholar
  19. Boyer-Joubert C, Lorthiois E, Moreau F (2003) Trends and perspectives. In: Doherty AM (ed) To market, to market – 2002, vol 38, Annual reports in medicinal chemistry. Academic, San Diego, pp 347–374 (Chap 33)Google Scholar
  20. Brandon EFA, Raap CD, Meijerman I, Beijnen JH, Schellens JHM (2003) An update on in vitro test methods in human hepatic drug biotransformation research: pros and cons. Toxicol Appl Pharmacol 189:233–246PubMedCrossRefGoogle Scholar
  21. Browne TR, Szabo GK, Ajami A, Wagner D (1993) Performance of human mass balance/metabolite identification studies using stable isotope (13C, 15N) labeling and continuous-flow isotope-ratio mass spectrometry as an alternative to radioactive labeling methods. J Clin Pharmacol 33:246–252PubMedGoogle Scholar
  22. Bu HZ, Pool WF, Wu EY, Raber SR, Amantea MA, Shetty BV (2004) Metabolism and excretion of capravirine, a new non-nucleoside reverse transcriptase inhibitor, alone and in combination with ritonavir in healthy volunteers. Drug Metab Dispos 32:689–698PubMedCrossRefGoogle Scholar
  23. Bugrim A, Nikolkaya T, Nikolsky Y (2004) Early prediction of drug metabolism and toxicity: systems biology approach and modelling. Drug Discov Today 9:127–135PubMedCrossRefGoogle Scholar
  24. Busby WF, Ackermann JM, Crespi CL (1999) Effect of methanol, ethanol, dimethyl sulfoxide, and acetonitrile on in vitro activities of cDNA-expressed human cytochromes P-450. Drug Metab Dispos 27:246–249PubMedGoogle Scholar
  25. Chen G, Zhang D, Jing N, Yin S, Falany CN, Radominska-Pandya A (2003) Human intestinal sulfotransferases: identification and distribution. Toxicol Appl Pharmacol 187:186–197PubMedCrossRefGoogle Scholar
  26. Chen GP, Battaglia E, Senay C, Falany CN, Radominska-Pandya A (1999) Photoaffinity labelling probe for the substrate binding site of human phenol sulfotransferase (SULT1A1): 7-azido-methylcoumarin. Protein Sci 8:2151–2157PubMedCrossRefGoogle Scholar
  27. Chien DS, Tang-Lieu DDS (1990) Enzymatic hydrolysis of 1-isopropyl prostaglandin F2-alpha in human plasma and liver homogenate. Pharm Res 7(Suppl):S216CrossRefGoogle Scholar
  28. Chohan KK, Paine SW, Waters NJ (2006) Quantitative structure activity relationships in drug metabolism. Curr Top Med Chem 6:1569–1578PubMedCrossRefGoogle Scholar
  29. Clarke NJ, Rindgen D, Korfmacher WA, Cox KA (2001) Systematic LC/MS metabolite identification in drug discovery. Anal Chem 73:430A–439APubMedGoogle Scholar
  30. Clement B, Lopian K (2003) Characterization of in vitro biotransformation of new, orally active, direct thrombin inhibitor ximelagatran, an amidoxime and ester prodrug. Drug Metab Dispos 31:645–651PubMedCrossRefGoogle Scholar
  31. Clohs L, Wong J (2002) Validation of a capillary electrophoresis assay for assessing the metabolic stability of verapamil in human liver microsomes. J Capill Electrophor Microchip Technol 7:113PubMedGoogle Scholar
  32. Coleman RA, Bowen WP, Baines IA, Woodrooffe AJ, Brown AM (2001) Use of human tissue in ADME and safety profiling of development candidates. Drug Discov Today 6:1116–1126PubMedCrossRefGoogle Scholar
  33. Coller JK, Krebsfaenger N, Klein K, Endrizzi K, Wolbold R, Lang T, Nuessler A, Neuhaus P, Zanger UM, Eichelbaum M, Muerdter TE (2002) The influence of CYP2B6, CYP2C9 and CYP2D6 genotypes on the formation of the potent antiestrogen Z-4-hydroxy-tamoxifen in human liver. Br J Clin Pharmacol 54:157–167PubMedCrossRefGoogle Scholar
  34. Combes RD, Berridge T, Connelly J, Eve MD, Garner RC, Toon S, Wilcox P (2003) Early microdose drug studies in human volunteers can minimise animal testing: proceedings of a workshop organised by volunteers in research and testing. Eur J Pharm Sci 19:1–11PubMedCrossRefGoogle Scholar
  35. Cong D, Fong AK, Lee R, Pang KS (2001) Absorption of benzoic acid in segmental regions of the vascularly perfused rat small intestine preparation. Drug Metab Dispos 29:1539–1547PubMedGoogle Scholar
  36. Cook CS, Berry LM, Bible RH, Hribar JD, Hajdu E, Liu NW (2003) Pharmacokinetics and metabolism of [14C]eplerenone after oral administration to humans. Drug Metab Dispos 31:1448–1455PubMedCrossRefGoogle Scholar
  37. Coughtrie MWH, Fisher MB (2003) The role of sulfotransferase and UDP-glucuronosyltransferases. In: Lee JS, Obach RS, Fisher MB (eds) Drug metabolizing enzymes. Marcel Dekker, New York, pp 541–575CrossRefGoogle Scholar
  38. Cross DM, Bayliss MK (2000) A commentary on the use of hepatocytes in drug metabolism studies during drug discovery and development. Drug Metabol Rev 32:219–240CrossRefGoogle Scholar
  39. Csala M, Staines AG, Banhegyi G, Mandl J, Coughtrie MW, Burchell B (2004) Evidence for multiple glucuronide transporters in rat liver microsomes. Biochem Pharmacol 68:1353–1362PubMedCrossRefGoogle Scholar
  40. Cui D, Subramanian R, Shou M, Yu X, Wallace MA, Braun MP, Arison BH, Yergey JA, Prueksaritanont T (2004) In vitro and in vivo metabolism of a potent and selective integrin αvβ3 antagonist in rats, dogs, and monkeys. Drug Metab Dispos 32:848–861PubMedCrossRefGoogle Scholar
  41. Davis-Bruno KL, Atrakchi A (2006) A regulatory perspective on issues and approaches in characterizing human metabolites. Chem Res Toxicol 19:1561–1563PubMedCrossRefGoogle Scholar
  42. De Graaf IAM, Van Meijern CE, Pektas F, Koster HJ (2002) Comparison of in vitro preparations for semi-quantitative prediction of in vivo drug metabolism. Drug Metab Dispos 30:1129–1136PubMedCrossRefGoogle Scholar
  43. De Kanter R, Koster HJ (1995) Cryopreservation of rat and monkey liver slices. Altern Lab Anim 23:653–665Google Scholar
  44. De Kanter R, Olinga P, De Jager MH, Merema MT, Meijer DKF, Groothius GMM (1999) Organ slices as an in vitro test system for drug metabolism in human liver, lung and kidney. Toxicol In Vitro 13:737–744PubMedCrossRefGoogle Scholar
  45. Dear GJ, Plumb RS, Sweatman BC, Parry PS, Roberts AD, Lindon JC, Nicholson JK, Ismail IM (2000a) Use of directly coupled ion-exchange liquid chromatography-mass spectrometry and liquid chromatography-nuclear magnetic resonance spectroscopy as a strategy for polar metabolite identification. J Chromatogr B Biomed Sci Appl 748:295–309PubMedCrossRefGoogle Scholar
  46. Dear GJ, Plumb RS, Sweatman BC, Ayrton J, Lindon JC, Nicholson JK, Ismail IM (2000b) Mass directed peak selection, an efficient method of drug metabolite identification using directly coupled liquid chromatography-mass spectrometry-nuclear magnetic resonance spectroscopy. J Chromatogr B Biomed Sci Appl 748:281–293PubMedCrossRefGoogle Scholar
  47. Di D, Kerns EH, Hong Y, Kleintop TA, McConnell OJ, Huryn DM (2003) Optimization of a Higher Throughput Microsomal Stability Screening Assay for Profiling Drug Discovery Candidates. J Biomolecular Screening 8:453–462CrossRefGoogle Scholar
  48. Diana GD, Rudewicz P, Pevear DC, Nitz T, Aldous SC, Aldous DJ, Robinson DT, Draper T, Dutko FJ, Aldi C, Gendron G, Oglesby RC, Volkots DB, Reuman M, Bailey TR, Czerniak R, Block T, Roland R, Oppermann J (1995) Picornavirus inhibitors: trifluoromethyl substitution provides a global protective effect against hepatic metabolism. J Med Chem 38:1355–1371PubMedCrossRefGoogle Scholar
  49. Di-Stefano A, Mosciatti B, Cingolani GM, Giorgioni G, Ricciutelli M, Cacciatore I (2001) Dimeric L-dopa derivatives as potential prodrugs. Bioorg Med Chem Lett 11:1085–1088PubMedCrossRefGoogle Scholar
  50. Dogterom P (1993) Development of a simple incubation system for metabolism studies with precision-cut liver slices. Drug Metab Dispos 21:699–704PubMedGoogle Scholar
  51. Donato MT, Castell JV (2003) Strategies and molecular probes to investigate the role of cytochrome P450 in drug metabolism – focus on in vitro studies. Clin Pharmacokinet 42:153–178PubMedCrossRefGoogle Scholar
  52. Dutheil F, Dauchy S, Diry M, Sazdovitch V, Cloarec O, Mellottée L, Bièche I, Ingelman-Sundberg M, Flinois JP, de Waziers I, Beaune P, Declèves X, Duyckaerts C, Loriot M-A (2009) Xenobiotic-metabolizing enzymes and transporters in the normal human brain: regional and cellular mapping as a basis for putative roles in cerebral function. Drug Metab Dispos 37:1528–1538PubMedCrossRefGoogle Scholar
  53. Easterbrook J, Lu C, Sakai Y, Li AL (2001) Effects of organic solvents on the activities of cytochrome P450 isoforms, UDP-dependent glucuronyl transferase, and phenol sulfotransferase in human hepatocytes. Drug Metab Dispos 29:141–144PubMedGoogle Scholar
  54. Eddershaw PJ, Beresford AP, Bayliss MK (2000) ADME/PK as part of a rational approach to drug discovery. Drug Discov Today 5:409–414PubMedCrossRefGoogle Scholar
  55. Ekins S, Mäenpää J, Wrighton S (1999) In vitro metabolism: subcellular fractions. In: Wolf TF (ed) Handbook of drug metabolism. Marcel Dekker, New York, pp 363–399Google Scholar
  56. EMA (European Medicines Agency) Guidance (2012) Guideline on the investigation of drug interactions. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf. Accessed in July 2012
  57. Enser MB, Kunz F, Borensztajn J, Opie LH, Robinson DS (1967) Metabolism of triglyceride fatty acid by the perfused rat heart. Biochem J 104:306–317PubMedGoogle Scholar
  58. Epperly AH, Cai Z, Depée SP, Harrelson SL, Sinhababu AK, Tyler LO, Wells-Knecht MC, Davis-Ward RG, Harris P, Mook RA, Luttrell DK, Stafford JA (2001) Pharmacokinetic analysis of a series of dianilinopyrimidine inhibitors of VEGFR2 tyrosine kinase: correlation of the in vitro and in vivo metabolic stability of a specific glucuronidation reaction and the discovery of GW2286. Drug Metab Rev 33:243Google Scholar
  59. Ethell BT, Anderson GD, Beaumont K, Rance DJ, Burchell B (1998) A universal radiochemical HPLC assay for the determination of UDP-glucuronosyltransferase activity. Biochemistry 255:142–147Google Scholar
  60. Ethell BT, Riedel J, Englert H, Jantz H, Oekonomopulos R, Burchell B (2003) Glucuronidation of HMR1098 in human microsomes: evidence for the involvement of UGT1A1 in the formation of S-glucuronides. Drug Metab Dispos 31:1027–1034PubMedCrossRefGoogle Scholar
  61. Favetta P, Guitton J, Degoute CS, Van Deale L, Boulieu R (2000) High-performance liquid chromatographic assay to detect hydroxylated and conjugated metabolites of propofol in human urine. J Chromatogr B 742:25–35CrossRefGoogle Scholar
  62. Fisher MB, Campanale K, Ackermann BL, Vandenbranden M, Wrighton S (2000) In vitro glucuronidation using human liver microsomes and the pore-forming peptide alamethicin. Drug Metab Dispos 28:560–566PubMedGoogle Scholar
  63. Fisher RL, Shaughnessy RP, Jenkins PM, Austin ML, Roth GL, Gandolfi AJ, Brendel K (1995) Dynamic organ culture is superior to multiwell plate culture for maintaining precision-cut tissue slices. 1. Optimization of the tissue slice culture. Toxicol Methods 5:99–113CrossRefGoogle Scholar
  64. Forster RP (1948) Use of thin kidney slices and isolated renal tubules for direct study of cellular transport kinetics. Science 108:65–67PubMedCrossRefGoogle Scholar
  65. Frandsen H, Alexander J (2000) N-Acetyltransferase-dependent activation of 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine: formation of 2-amino-1-methyl-6-(5-hydroxy)phenylimidazo[4,5-b]pyridine, a possible biomarker for the reactive dose of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Carcinogenesis 21:1197–1203PubMedCrossRefGoogle Scholar
  66. Friedberg T, Henderson CJ, Pritschard MP, Wolf CR (1999) In vivo and in vitro recombinant DNA technology as a powerful tool in drug development. In: Wolf TF (ed) Handbook of drug metabolism. Marcel Dekker, New York, pp 321–362Google Scholar
  67. Galetin A, Gertz M, Houston JB (2008) Potential role of intestinal first-pass metabolism in the prediction of drug-drug interactions. Expert Opin Drug Metab Toxicol 4:909–922PubMedCrossRefGoogle Scholar
  68. Gao H, Deng S, Obach RS (2010) A simple liquid chromatography-tandem mass spectrometry method to determine relative plasma exposures of drug metabolites across species for metabolite safety assessments. Drug Metab Dispos 38:2147–2156PubMedCrossRefGoogle Scholar
  69. Garattini E, Fratelli M, Terao M (2008) Mammalian aldehyde oxidases: genetics, evolution and biochemistry. Cell Mol Life Sci 65:1019–1048PubMedCrossRefGoogle Scholar
  70. Garner RC (2000) Accelerator mass spectrometry in pharmaceutical research and development – a new ultrasensitive analytical method for isotope measurement. Curr Drug Metab 1:205–213PubMedCrossRefGoogle Scholar
  71. Garner RC, Barker J, Flavell C, Garner JV, Whattam M, Young GC, Cussans N, Jezequel S, Leong D (2000) A validation study comparing accelerator MS and liquid scintillation counting for analysis of 14C-labelled drugs in plasma, urine and faecal extracts. J Pharm Biomed Anal 24:197–209PubMedCrossRefGoogle Scholar
  72. Gebhardt R, Hengstler JG, Mueller D, Gloeckner R, Buenning P, Laube B, Schmelzer E, Ullrich M, Utesch D, Hewitt N, Ringel M, Reeder Hilz B, Bader A, Langsch A, Koose T, Burger HJ, Maas J, Oesch F (2003) New hepatocyte in vitro systems for drug metabolism: metabolic capacity and recommendation for application in basic research and drug development, standard operation procedures. Drug Metab Rev 35:145–213PubMedCrossRefGoogle Scholar
  73. Gergel D, Misik V, Ondrias K (1992) Effect of cisplatin, carboplatin and stobadine on lipid peroxidation of kidney homogenate and phosphatidylcholine liposomes. Physiol Res 41:129–134PubMedGoogle Scholar
  74. Gombar VK, Silver IS, Zhao Z (2003) Role of ADME characteristics in drug discovery and their in silico evaluation: in silico screening of chemicals for their metabolic stability. Curr Top Med Chem 3:1205–1225PubMedCrossRefGoogle Scholar
  75. Gómez-Lechón MJ, Castell JV, Donato MT (2008) An update on metabolism studies using human hepatocytes in primary culture. Expert Opin Drug Metab Toxicol 4:837–854PubMedCrossRefGoogle Scholar
  76. Gonzalez FJ, Kimura S (2003) Study of P450 function using gene knockout and transgenic mice. Arch Biochem Biophys 409:153–158PubMedCrossRefGoogle Scholar
  77. Griffin SJ, Houston JB (2005) Prediction of in vitro intrinsic clearance from hepatocytes: comparison of suspensions and monolayer cultures. Drug Metab Dispos 33:115–120PubMedGoogle Scholar
  78. Guengerich FP (2006) Safety assessment of stable drug metabolites. Chem Res Toxicol 19:1559–1560CrossRefGoogle Scholar
  79. Guillouzo A (1995) Acquisition and use of human in vitro liver preparations. Cell Biol Toxicol 11:141–145PubMedCrossRefGoogle Scholar
  80. Gupta RC, Atul BV (2000) Drug metabolism studies in animal models. Indian J Pharmacol 32:S62–S66Google Scholar
  81. Guyomard C, Rialland L, Fremond B, Chesne C, Guillouzo A (1996) Influence of alginate gel entrapment and cryopreservation on survival and xenobiotic metabolism capacity of rat hepatocytes. Toxicol Appl Pharmacol 141:349–356PubMedCrossRefGoogle Scholar
  82. Hassett C, Lin J, Carty CL, Laurenzana EM, Omiecinski CJ (1997) Human hepatic microsomal epoxide hydrolase: comparative analysis of polymorphic expression. Arch Biochem Biophys 337:275–283PubMedCrossRefGoogle Scholar
  83. Hastings KL, El-Hage J, Jacobs A, Leighton J, Morse D, Osterberg RE (2003) Letter to the editor (see also Baillie et al. 2003). Toxicol Appl Pharmacol 190:91–92PubMedCrossRefGoogle Scholar
  84. Hayakawa H, Fukushima Y, Kato H, Fukumoto H, Kadota T, Yamamoto H, Kuroiwa H, Nishigaki J, Tsuji A (2003) Metabolism and disposition of novel des-fluoro quinolone garenoxacin in experimental animals and an interspecies scaling of pharmacokinetic parameters. Drug Metab Dispos 31:1409–1418PubMedCrossRefGoogle Scholar
  85. Hengstler JG, Arand M, Herrero ME, Oesch F (1998) Polymorphisms of N-acetyltransferases, glutathione S-transferases, microsomal epoxide hydrolase and sulfotransferases: influence on cancer susceptibility. Recent Results Cancer Res 154:47–85PubMedCrossRefGoogle Scholar
  86. Hengstler JG, Ringel M, Biefang K, Hammel S, Milbert U, Gerl M, Klebach M, Diener B, Platt KL, Böttger T, Steinberg P, Oesch F (2000a) Cultures with cryopreserved hepatocytes: applicability for studies of enzyme induction. Chem Biol Interact 125:51–73PubMedCrossRefGoogle Scholar
  87. Hengstler JG, Utesch D, Steinberg P, Platt KL, Diener B, Swales N, Fischer T, Biefang K, Gerl M, Böttger T, Oesch F (2000b) Cryopreserved primary hepatocytes as a constantly available in vitro model for the evaluation of human and animal drug metabolism and enzyme induction. Drug Metab Rev 32:81–118PubMedCrossRefGoogle Scholar
  88. Hewawasam P, Erway M, Moon SL, Knipe J, Weiner H, Boissard CG, Post-Munson DJ, Gao Q, Huang S, Gribkoff VK, Meanwell NA (2002) Synthesis and structure-activity relationships of 3-aryloxindoles: a new class of calcium-dependent, large conductance potassium (maxi-K) channel openers with neuroprotective properties. J Med Chem 45:1487–1499PubMedCrossRefGoogle Scholar
  89. Hewitt NJ, Lechón MJG, Houston JB, Hallifax D, Brown HS, Maurel P, Kenna JG, Gustavsson L, Lohmann C, Skonberg C, Guillouzo A, Tuschl G, Li AP, Lecluyse E, Groothuis GMM, Hengstler JG (2007) Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab Rev 39:159–234PubMedCrossRefGoogle Scholar
  90. Holland JF, Leary JJ, Sweeley CC (1986) Advanced instrumentation and strategies for metabolic profiling. J Chromatogr 379:3–26PubMedCrossRefGoogle Scholar
  91. Hornykiewicz O (2002) Dopamine miracle: from brain homogenate to dopamine replacement. Mov Disord 17:501–508PubMedCrossRefGoogle Scholar
  92. Houston JB (1994a) Relevance of in vitro kinetic parameters to in vivo metabolism of xenobiotics. Toxicol In Vitro 8:507PubMedCrossRefGoogle Scholar
  93. Houston JB (1994b) Utility of in vitro drug metabolism data in predicting in vivo metabolic clearance. Biochem Pharmacol 47:1469PubMedCrossRefGoogle Scholar
  94. Humphreys WG, Unger SE (2006) Safety assessment of drug metabolites: characterization of chemically stable metabolites. Chem Res Toxicol 19:1564–1569PubMedCrossRefGoogle Scholar
  95. Huryn DM, Ashwell S, Baudy R, Dressen DB, Gallaway W, Grant FS, Konradi A, Ley RW, Petusky S, Pleiss MA, Sarantakis D, Semko CM, Sherman MM, Tio C, Zhang L (2004) Synthesis, characterization and evaluation of pro-drugs of VLA-4 antagonists. Bioorg Med Chem Lett 14:1651–1654PubMedCrossRefGoogle Scholar
  96. Huskey SEW, Dean BJ, Doss GA, Wang Z, Hop CECA, Anari R, Finke PE, Robichaud AJ, Zhang M, Wang B, Strauss JR, Cunningham PK, Feeney WP, Franklin RB, Naillie TA, Chiu SHL (2004) The metabolic disposition of aprepitant, a substance P receptor antagonist, in rats and dogs. Drug Metab Dispos 32:246–258PubMedCrossRefGoogle Scholar
  97. ICH Topic M3 (R2) (2009) Non-clinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002720.pdf. Accessed in Dec 2011
  98. Igarashi T, Satoh T (1989) Sex and species differences in glutathione S-transferase activities. Drug Metabol Drug Interact 7:191–212PubMedCrossRefGoogle Scholar
  99. Iley J, Mendes E, Moreira R, Souza S (1999) Cleavage of tertiary amidomethyl ester prodrugs of carboxylic acids by rat liver homogenate. Eur J Pharm Sci 9:201–205PubMedCrossRefGoogle Scholar
  100. Inaba T, Kovacs J (1989) Haloperidol reductase in human and guinea pig livers. Drug Metab Dispos 17:330–333PubMedGoogle Scholar
  101. Inskeep PB, Day WW (1999) Preclinical drug metabolism studies and strategies. In: Wolf TF (ed) Handbook of drug metabolism. Marcel Dekker, New York, pp 551–576Google Scholar
  102. Iwatsubo T, Hirota N, Ooie T, Suzuki H, Sugiyama Y (1996) Prediction of in vivo drug disposition from in vitro data based on physiological pharmacokinetics. Biopharm Drug Dispos 17:273PubMedCrossRefGoogle Scholar
  103. Iyer RA, Malhotra B, Khan S, Mitroka J, Bonacorsi S, Waller SC, Rinehart JK, Kripalani K (2003) Comparative biotransformation of radiolabelled [14C]omapatrilat and stable-labeled [13C2]omapatrilat after oral administration to rats, dogs and humans. Drug Metab Dispos 31:67–75PubMedCrossRefGoogle Scholar
  104. Iyer RA, Mitroka J, Malhotra B, Bonacorsi S, Waller SC, Rinehart JK, Roongta VA, Kripalani K (2001) Metabolism of [14C]omapatrilat, a sulfhydryl-containing vasopeptidase inhibitor in humans. Drug Metab Dispos 29:60–69PubMedGoogle Scholar
  105. Jones H, Houston JB (2004) Substrate depletion approach for determining in vitro metabolic clearance: time dependencies in hepatocyte and microsomal incubations. Drug Metab Dispos 32:973–982PubMedCrossRefGoogle Scholar
  106. Jones BC, Hyland R, Ackland M, Tyman C, Smith DD (1998) Interaction of terfenadine and its primary metabolites with cytochrome P450 2D6. Drug Metab Dispos 26:875–882PubMedGoogle Scholar
  107. Kalgutkar AS, Gardner I, Obach RS, Shaffer CL, Callegari E, Henne KR, Mutlib AE, Dalvie DK, Lee JS, Nakai Y, O'Donnell JP, Boer J, Harriman SP (2005) A comprehensive listing of bioactivation pathways of organic functional groups. Curr Drug Metab 6:161–225PubMedCrossRefGoogle Scholar
  108. Kaminsky LS, Zhang QY (2003) The small intestine as a xenobiotic-metabolizing organ. Drug Metab Dispos 31:1520–1525PubMedCrossRefGoogle Scholar
  109. Kaneda Y, Liu D, Brooks A, Abolhoda A, Labow D, Burt ME, Ginsberg RJ (2001) Toxicity and pharmacokinetics of isolated lung perfusion with cisplatin in rat. Jpn J Thorac Cardiovasc Surg 49:443–448PubMedCrossRefGoogle Scholar
  110. Kern A, Bader A, Pichlmayr R, Sewing K-F (1997) Drug metabolism in hepatocytes sandwich cultures of rats and humans. Biochem Pharmacol 54:761–772PubMedCrossRefGoogle Scholar
  111. Kiffe M, Jehle A, Ruembeli R (2003) Combination of high-performance liquid chromatography and microplate scintillation counting for crop and animal metabolism studies: a comparison with classical on-line and thin-layer chromatography radioactivity detection. Anal Chem 75:723–730PubMedCrossRefGoogle Scholar
  112. Klieber S, Torreilles F, Guillou F, Fabre G (2010) The use of human hepatocytes to investigate drug metabolism and CYP enzyme induction. Methods Mol Biol 640:295–308PubMedCrossRefGoogle Scholar
  113. Kling A, Backfisch G, Delzer J, Geneste H, Graef C, Hornberger W, Lange UEW, Lauterbach A, Seitz W, Subkowski T (2003) Design and synthesis of 1,5- and 2,5-substituted tetrahydrobenzazepinones as novel potent and selective integrin αvβ3 antagonists. Bioorg Med Chem 11:1319–1341PubMedCrossRefGoogle Scholar
  114. Knudsen CA, Tappel AL, North JA (1996) Multiple antioxidants protect against heme protein and lipid oxidation in kidney tissue. Free Radic Biol Med 20:165–173PubMedCrossRefGoogle Scholar
  115. Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates. Nat Rev Drug Discov 3:711–715PubMedCrossRefGoogle Scholar
  116. Koop DR (1992) Oxidative and reductive metabolism by cytochrome P450 2E1. FASEB J 6:724–730PubMedGoogle Scholar
  117. Krone V, Kuerzel GU, Shackleton G, Zimmer M (2011) The human ADME study. In: Vogel HG (ed) Drug discovery and evaluation: methods in clinical pharmacology. Springer, Heidelberg, pp 73–104Google Scholar
  118. Krumdieck CL, Dos Santos JE, Ho K-J (1980) A new instrument for the rapid preparation of tissue slices. Anal Biochem 104:118–123PubMedCrossRefGoogle Scholar
  119. Kuehl G, Murphy S (2003) N-glucuronidation of nicotine and cotinine by human liver microsomes and heterologously expressed UDP-glucuronosyltransferases. Drug Metab Dispos 31:1361–1368PubMedCrossRefGoogle Scholar
  120. Kumar GN, Surapaneni S (2001) Role of drug metabolism in drug discovery and development. Med Res Rev 21:397–411PubMedCrossRefGoogle Scholar
  121. Lafleur MA, Hollenberg MD, Atkinson SJ, Knauper V, Murphy G, Edwards DR (2001) Activation of pro-(matrix metalloproteinase-2) (pro-MMP-2) by thrombin is membrane-type-MMP-dependent in human umbilical vein endothelial cells and generates a distinct 63 kDa active species. Biochem J 357:107–115PubMedCrossRefGoogle Scholar
  122. Lan SJ, Scanlan LM, Weinstein SH, Varma RK, Warrack BM, Unger SE, Porubcan MA, Migdalof BH (1989) Biotransformation of tipredane, a novel topical steroid, in mouse, rat and human liver homogenates. Drug Metab Dispos 17:532–541PubMedGoogle Scholar
  123. Lang D, Kalgutkar AS (2003) Non-P450 mediated oxidative metabolism of xenobiotics. In: Lee JS, Obach RS, Fisher MB (eds) Drug Metabolizing Enzymes. Marcel Dekker, New York, pp 483–539CrossRefGoogle Scholar
  124. Lantz RJ, Gillespie TA, Rash TJ, Kuo F, Skinner M, Kuan HY, Knadler MP (2003) Metabolism, excretion, and pharmacokinetics of duloxetine in healthy human subjects. Drug Metab Dispos 31:1142–1150PubMedCrossRefGoogle Scholar
  125. Lappin G, Stevens L (2008) Biomedical accelerator mass spectrometry: recent applications in metabolism and pharmacokinetics. Expert Opin Drug Metab Toxicol 4:1021–1033PubMedCrossRefGoogle Scholar
  126. Lee JS, Obach RS, Fisher MB (eds) (2003) Drug metabolizing enzymes, cytochrome P450 and other enzymes in drug discovery and development. Marcel Dekker, New YorkGoogle Scholar
  127. Lee ML, Stavchansky S (1995) Enhancement of thymopentin stability in human plasma. Pharm Res 12:S323CrossRefGoogle Scholar
  128. Lee PC, Marquardt M, Lech JJ (1998) Metabolism of nonylphenol by rat and human microsomes. Toxicol Lett 99:117–126PubMedCrossRefGoogle Scholar
  129. Lee SH, Slattery JT (1997) Cytochrome P450 isozymes involved in lisofylline metabolism to pentoxifylline in human liver microsomes. Drug Metab Dispos 25:1354–1358PubMedGoogle Scholar
  130. Lewis AJ, Otake Y, Walle UK, Walle T (2000) Sulphonation of N-hydroxy-2-acetylaminofluorene by human dehydroepiandrosterone sulphotransferase. Xenobiotica 30:253–261PubMedCrossRefGoogle Scholar
  131. Li AP (1999) Cryopreserved human hepatocytes: characterization of DME activities and applications in higher throughput screening assays for hepatotoxicity, metabolic stability, and drug-drug interaction potential. Chem Biol Interact 121:17–35PubMedCrossRefGoogle Scholar
  132. Li AP (2002) Early ADME/Tox studies and in silico screening. Drug Discov Today 7:25–27PubMedCrossRefGoogle Scholar
  133. Li AP (2004) In vitro approaches to evaluate ADMET drug properties. Curr Top Med Chem 4:701–706PubMedCrossRefGoogle Scholar
  134. Li AP (2007) Human hepatocytes: isolation, cryopreservation and applications in drug development. Chem Biol Int 168:16–29CrossRefGoogle Scholar
  135. Li W, Escarpe PA, Eisenberg EJ, Cundy KC, Sweet C, Jakeman KJ, Merson J, Lew W, Williams M, Zhang L, Kim CU, Bischofberger N, Chen MS, Mendel DB (1998) Identification of GS 4104 as an orally bioavailable prodrug of the influenza virus neuraminidase inhibitor GS 4071. Antimicrob Agents Chemother 42:647–653PubMedCrossRefGoogle Scholar
  136. Linget JM, du Vignaud P (1999) Automation of metabolic stability studies in microsomes, cytosol and plasma using a 215 Gilson liquid handler. J Pharm Biomed Anal 19:893–901PubMedCrossRefGoogle Scholar
  137. Lipscomp JC, Poet TS (2008) In vitro measurements of metabolism for application in pharmacokinetic modeling. Pharmacol Ther 118:82–103CrossRefGoogle Scholar
  138. Long L, Dolan RC, Dolan ME (2001) Debenzylation of O6-benzyl-8-oxoguanine in human liver: implications for O6-benzylguanine metabolism. Biochem Pharmacol 61:721–726PubMedCrossRefGoogle Scholar
  139. Los LE, Welsh DA, Herold EG, Bagdon WJ, Zacchei A (1996) Gender differences in toxicokinetics, liver metabolism, and plasma esterase activity: observations from a chronic (27-week) toxicity study of enalapril/diltiazem combinations in rats. Drug Metab Dispos 24:28–33PubMedGoogle Scholar
  140. Lu AYH, Wang RW, Lin JH (2003) Cytochrome P450 in vitro reaction phenotyping: a re-evaluation of approaches used for P450 isoform identification. Drug Metab Dispos 31:345–350PubMedCrossRefGoogle Scholar
  141. Luffer-Atlas D (2008) Unique/major human metabolites: why, how, and when to test for safety in animals. Drug Metab Rev 40:447–463PubMedCrossRefGoogle Scholar
  142. MacKenzie AR, Marchington AP, Middleton DS, Newman SD, Jones BC (2002) Structure-activity relationships of 1-alkyl-5-(3,4-dichlorophenyl)-5-(2-((3-substituted)-1-azetidinyl)-ethyl)-2-piperidones. 1. Selective antagonists of the neurokinin-2 receptor. J Med Chem 45:5365–5377PubMedCrossRefGoogle Scholar
  143. Mae T, Inaba T, Konishi E, Hosoe K, Hidaka T (2000) Identification of enzymes responsible for rifalazil metabolism in human liver microsomes. Xenobiotica 30:565–574PubMedCrossRefGoogle Scholar
  144. Mahfouz NM, Omar FA, Aboul-Fadl T (1999) Cyclic amide derivatives as potential prodrugs II: N-hydroxymethylsuccinimide-/isatin esters of some NSAIDs as prodrugs with an improved therapeutic index. Eur J Med Chem 34:551–562PubMedGoogle Scholar
  145. Manautou JE, Buss NJ, Carlson GP (1992) Oxidative and non-oxidative metabolism of ethanol by the rabbit lung. Toxicol Lett 62:93–99PubMedCrossRefGoogle Scholar
  146. Mandagere AK, Thompson TN, Hwang KK (2002) Graphical model for estimating the oral bioavailability of drugs in humans and other species from their CaCo-2 permeability and in vitro liver enzyme metabolic stability rates. J Med Chem 45:304–311PubMedCrossRefGoogle Scholar
  147. Mandan A, Usuki E, Burton LA, Ogilvie BW, Parkinson A (2002) In vitro approaches for Studying the inhibition of drug-metabolizing enzymes and the identifying the drug-metabolizing enzymes responsible for the metabolism of drugs. In: Rodrigues AD (ed) Drug-drug interactions. Marcel Dekker, Inc. pp 217–294Google Scholar
  148. Maron DM, Ames BN (1983) Revised methods for the Salmonella mutagenicity test. Mutat Res 113:173–215PubMedCrossRefGoogle Scholar
  149. Martignoni M, Groothuis GMM, de Kanter R (2006) Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol 2:875–894PubMedCrossRefGoogle Scholar
  150. Masimirembwa CM, Bredberg U, Andersson TB (2003) Metabolic stability for drug discovery and development. Pharmacokinetic and biochemical challenges. Clin Pharmacokinet 42:515–528PubMedCrossRefGoogle Scholar
  151. Maslansky CJ, Williams GM (1982) Primary cultures and the levels of cytochrome P450 in hepatocytes from mouse, rat, hamster and rabbit liver. In Vitro 18:683–693PubMedCrossRefGoogle Scholar
  152. Maurel P (1996) The use of adult human hepatocytes in primary culture and other in vitro systems to investigate drug metabolism in man. Adv Drug Deliv Rev 22:105–132CrossRefGoogle Scholar
  153. McGinnity DF, Parker AJ, Soars M, Riley RJ (2000) Automated definition of the enzymology of drug oxidation by the major human drug metabolizing cytochrome P450s. Drug Metab Dispos 28:1327–1334PubMedGoogle Scholar
  154. Meier PJ, Mueller HK, Dick B, Meyer UA (1983) Hepatic monooxygenase activities in subjects with a genetic defect in drug oxidation. Gastroenterology 85:682–692PubMedGoogle Scholar
  155. Mitsuya M, Kobayashi K, Kawakami K, Satoh A, Ogino Y, Kakikawa T, Ohtake N, Kimura T, Hirose H, Sato A, Numazawa T, Hasegawa T, Noguchi K, Mase T (2000) A Potent, Long-Acting, Orally Active (2R)-2-[(1R)-3,3-Difluorocyclopentyl]-2-hydroxy-2-phenylacetamide: A Novel Muscarinic M3 Receptor Antagonist with High Selectivity for M3 over M2 Receptors. J Med Chem 43:5017–5029PubMedCrossRefGoogle Scholar
  156. Murray M (1984) Mechanisms of the inhibition of cytochrome P-450- mediated drug oxidation by therapeutic agents. Drug Metab Rev 18:55–8149CrossRefGoogle Scholar
  157. Nassar AEF, Talaat RE (2004a) Strategies for dealing with metabolite elucidation in drug discovery and development. Drug Discov Today 9:317–327PubMedCrossRefGoogle Scholar
  158. Nassar AE, Parmentier Y, Martinet M, Lee DY (2004b) Liquid chromatography-accurate radioisotope counting and microplate scintillation counter technologies in drug metabolism studies. J Chromatogr Sci 42:348–353PubMedGoogle Scholar
  159. Nedderman ANR, Dear GJ, North S, Obach RS, Higton D (2011) From definition to implementation: a cross-industry perspective of past, current and future MIST strategies. Xenobiotica 41:605–622PubMedCrossRefGoogle Scholar
  160. Newton DJ, Wang RW, Lu AYH (1995) Cytochrome P450 inhibitors – evaluation of specificities in the in vitro metabolism of therapeutic agents by human liver microsomes. Drug Metab Dispos 23:154–158PubMedGoogle Scholar
  161. Newton JF Jr, Hook JB (1981) Isolated perfused rat kidney. Methods Enzymol 77:94–105PubMedCrossRefGoogle Scholar
  162. Nizet A (1975) The isolated perfused kidney: possibilities, limitations and results. Kidney Int 7:1–11PubMedCrossRefGoogle Scholar
  163. Norton RM, White HL, Cooper BR (1992) Metabolism of BW1370U87 by crude liver homogenate from several species: an in vitro method for preliminary investigation of species differences in metabolism. Drug Dev Res 25:229–234CrossRefGoogle Scholar
  164. Obach RS, Baxter JG, Liston TE, Silber BM, Jones BC, MacIntyre F, Rance DJ, Wastall P (1997) The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J Pharmacol Exp Ther 283:46–58PubMedGoogle Scholar
  165. Obach RS, Huynh P, Allen MC (2004) Human liver aldehyde oxidase: inhibition by 239 drugs. J Clin Pharmacol 44:7–19PubMedCrossRefGoogle Scholar
  166. Obach RS, Nedderman AN, Smith DA (2012) Radiolabelled mass-balance excretion and metabolism studies in laboratory animals: are they still necessary? Xenobiotica 42:46–56PubMedCrossRefGoogle Scholar
  167. Obach RS, Reed-Hagem AE (2002) Measurement of Michaelis constants for cytochrome P450-mediated biotransformation reactions using a substrate depletion approach. Drug Metab Dispos 30:831–837PubMedCrossRefGoogle Scholar
  168. Oesch F, Fabian E, Oesch-Bartlomowicz B, Werner C, Landsiedel R (2007) Drug-metabolizing enzymes in the skin of man, rat, and pig. Drug Metab Rev 39:659–698PubMedCrossRefGoogle Scholar
  169. Ohno S, Nakajin S (2009) Determination of mRNA expression of human UDP-glucuronosyltransferases and application for localization in various human tissues by real-time reverse transcriptase-polymerase chain reaction. Drug Metab Dispos 37:32–40PubMedCrossRefGoogle Scholar
  170. Ohta N, Yotsuyanagi T, Ikeda K (1987) Esterase-like activity of human serum albumin toward 4′-methylumbelliferyl 4-guanidinobenzoate. J Pharm Sci 76:S285Google Scholar
  171. Olinga P, Merema M, Hof IH, De Jong KP, Sloof MJH, Meijer DKF, Groothuis GMM (1998) Effect of human liver source on the functionality of isolated hepatocytes and liver slices. Drug Metab Dispos 26:5–11PubMedGoogle Scholar
  172. Omiecinski CJ, Hassett C, Hosagrahara V (2000) Epoxide hydrolase-polymorphism and role in toxicology. Toxicol Lett 112–113:365–370PubMedCrossRefGoogle Scholar
  173. Otsuka M, Mine T, Ohuchi K, Ohmori S (1996) A detoxification route for aldehyde: metabolism of diacetyl, acetoin and 2,3-butanediol in liver homogenate and perfused liver of rats. J Biochem 119:246–251PubMedCrossRefGoogle Scholar
  174. Paine MF, Thummel KE (2003) Role of intestinal cytochrome P450 in drug disposition. In: Lee JS, Obach RS, Fisher MB (eds) Drug metabolizing enzymes, cytochrome P450 and other enzymes in drug discovery and development. Marcel Dekker, New York, pp 421–453Google Scholar
  175. Pang KS, Cherry WF, Ulm EH (1985) Disposition of enalapril in the perfused rat intestine-liver preparation: absorption, metabolism and first-pass effect. J Pharmacol Exp Ther 233:788–795PubMedGoogle Scholar
  176. Pearce RE, McIntyre CJ, Madan A, Sanzgiri U, Draper AJ, Bullock PL, Cook DC, Burton LA, Latham J, Nevins C, Parkinson A (1996) Effects of freezing, thawing, and storing human liver microsomes on cytochrome P450 activity. Arch Biochem Biophys 331:145–169PubMedCrossRefGoogle Scholar
  177. Pichard L, Raulet E, Fabre G, Ferrini JB, Ourlin JC, Maurel P (2006) Human hepatocyte culture. Methods Mol Biol 320:283–293PubMedGoogle Scholar
  178. Plant N (2004) Strategies for using in vitro screens in drug metabolism. Drug Discov Today 9:328–336PubMedCrossRefGoogle Scholar
  179. Plobeck N, Delorme D, Wie Z-Y, Yang H, Zhou F, Schwarz P, Gawell L, Gagnon H, Pelcman B, Schmidt R, Yue SY, Walpole C, Brown W, Zhou E, Labarre M, Payza K, St-Onge S, Kamassah A, Morin P-E, Projean D, Ducharme J, Roberts E (2000) New Diarylmethylpiperazines as Potent and Selective Nonpeptidic ‰ Opioid Receptor Agonists with Increased In Vitro Metabolic Stability. J Med Chem 43:3878–3894Google Scholar
  180. Pool WF (1999) Clinical drug metabolism studies. In: Wolf TF (ed) Handbook of drug metabolism. Marcel Dekker, New York, pp 577–587Google Scholar
  181. Poon GK, Walter B, Lonning PE, Horton MN, McCague R (1995) Identification of Tamoxifen metabolites in human HEP G2 cell line, liver homogenate, and patients on long-term therapy for breast cancer. Drug Metab Dispos 23:377–382PubMedGoogle Scholar
  182. Potter VR, Elvehjem CA (1936) A modified method for the study of tissue oxidation. J Biol Chem 114:495–504Google Scholar
  183. Powell MF, Stewart T, Otvos L Jr, Urge L, Gaeta FC, Sette A, Arrhenius T, Thomson D, Soda K, Colon SM (1993) Peptide stability in drug development. II. Effect of single amino acid substitution and glycosylation on peptide reactivity in human serum. Pharm Res 10:1268–1273PubMedCrossRefGoogle Scholar
  184. Prakash C, Sharma R, Gleave M, Nedderman A (2008) In vitro screening techniques for reactive metabolites for minimizing bioactivation potential in drug discovery. Curr Drug Metab 9:952–964PubMedCrossRefGoogle Scholar
  185. Price-Evans DA (1989) N-acetyltransferase. Pharmacol Ther 42:157–234CrossRefGoogle Scholar
  186. Quon CY, Stampfli H (1985) Biochemical properties of blood esmolol esterase. Drug Metab Dispos 13:420–424PubMedGoogle Scholar
  187. Quon CY, Stampfli HF (1993) Biochemical characterization of flestolol esterase. Res Commun Chem Pathol Pharmacol 81:309–322PubMedGoogle Scholar
  188. Rajanikanth M, Madhusudanan KP, Gupta RC (2003) Simultaneous quantitative analysis of three drugs by high-performance liquid chromatography/electrospray ionization mass spectrometry and its application to cassette in vitro metabolic stability studies. Rapid Commun Mass Spectrom 17:2063–2070PubMedCrossRefGoogle Scholar
  189. Raney KD, Meyer DJ, Ketterer B, Harris TM, Guengerich FP (1992) Glutathione conjugation of aflatoxin B1 exo- and endo-epoxides by rat and human glutathione S-transferases. Chem Res Toxicol 5:470–478PubMedCrossRefGoogle Scholar
  190. Raucy JI, Laskor JM (1991) Isolation of P450 enzyme from human liver. Methods Enzymol 206:577–587PubMedCrossRefGoogle Scholar
  191. Rettie AE, Meier GP, Sadeque AJM (1995) Prochiral sulfides as in vitro probes for multiple forms of the flavin-containing monooxygenase. Chem Biol Interact 96:3PubMedCrossRefGoogle Scholar
  192. Rialland L, Guyomard C, Scotte M, Chesne C, Guillouzo A (2000) Viability and drug metabolism capacity of alginate-entrapped hepatocytes after cryopreservation. Cell Biol Toxicol 16:105–116PubMedCrossRefGoogle Scholar
  193. Ritter JK (2000) Roles of glucuronidation and UDP-glucuronosyltransferases in xenobiotic bioactivation reactions. Chem Biol Interact 129:171–193PubMedCrossRefGoogle Scholar
  194. Ritter JK (2006) Intestinal UGT’s as potential modifiers of pharmacokinetics and biological responses to drugs and xenobiotics. Expert Opin Drug Metab Toxicol 3:93–107CrossRefGoogle Scholar
  195. Rodrigues AD (1999) Applications of heterologous expressed and purified human drug-metabolizing enzymes: an industrial perspective. In: Wolf TF (ed) Handbook of drug metabolism. Marcel Dekker, New York, pp 279–320Google Scholar
  196. Rodrigues AD, Halpin RA, Geer LA, Cui D, Woolf EJ, Matthews CZ, Gottesdiener KM, Larson PJ, Lasseter KC, Agrawal NGB (2003) Absorption, metabolism, and excretion of etoricoxib, a potent and selective cyclooxygenase-2 inhibitor, in healthy male volunteers. Drug Metab Dispos 31:224–232PubMedCrossRefGoogle Scholar
  197. Roediger WEW, Babidge W (1997) Human colonocyte detoxification. Gut 41:731–734PubMedCrossRefGoogle Scholar
  198. Ruegg CE, Gandolfi AJ, Nagle RB, Krumdieck CL, Brendel K (1987) Preparation of positional renal slices for study cell specific toxicity. J Pharmacol Methods 17:111–123PubMedCrossRefGoogle Scholar
  199. Sandvoss M, Roberts AD, Ismail IM, North SE (2004) Direct on-line hyphenation of capillary liquid chromatography to nuclear magnetic resonance spectroscopy: practical aspects and application to drug metabolite identification. J Chromatogr A 1028:259–266PubMedCrossRefGoogle Scholar
  200. Scheuer J, Olson RE (1967) Metabolism of exogenous triglyceride by the isolated perfused rat heart. Am J Physiol 212:301–307PubMedGoogle Scholar
  201. Scriba GKE (1993) In-vitro evaluation of 4-(2-glyceryl)-butyric acid for lipase-driven drug delivery. Pharm Res 10:S295CrossRefGoogle Scholar
  202. Seglen PO (1976) Preparation of isolated rat liver cells. Methods Cell Biol 13:29–83PubMedCrossRefGoogle Scholar
  203. Shearer T, Rettberg B, Milhous W, Weina P, Hanahan J, Quartucci S (2002) In vitro metabolism of anticolates candidate antimalaria drugs. Am J Trop Med Hyg 67:306Google Scholar
  204. Shin H-C, Kim H-R, Cho H-J, Yi H, Cho S-M, Lee D-G, El-Aty AMA, Kim J-S, Sun D, Amidon GL (2009) Comparative gene expression of intestinal metabolizing enzymes. Biopharm Drug Dispos 30:411–421PubMedCrossRefGoogle Scholar
  205. Shipkova M, Armstrong VW, Oellerich M, Wieland E (2003) Acyl glucuronide drug metabolites: toxicological and analytical implications. Ther Drug Monit 25:1–16PubMedCrossRefGoogle Scholar
  206. Sidelmann UG, Comett C, Tjornelund J, Hansen SH (1996) A comparative study of precision cut liver slices, hepatocytes and liver microsomes from the Wistar rat using metronidazole as a model substance. Xenobiotica 26:709–722PubMedCrossRefGoogle Scholar
  207. Sindhu RK, Kikkawa Y (1995) Metabolism of (+)-trans-benzo[a]pyrene-7,8-dihydrodiol by 3-methylcholanthrene-induced liver homogenate. Toxicol Lett 82:5–13CrossRefGoogle Scholar
  208. Slone DH, Gallagher EP, Ramsdell HS, Rettie AE, Stapleton PL, Berlad LG, Eaton DL (1995) Human variability in hepatic glutathione S-transferase-mediated conjugation of aflatoxin B1-epoxide and other substrates. Pharmacogenetics 5:224–233PubMedCrossRefGoogle Scholar
  209. Smith DA (2011) The debate is over: accelerator MS provides the route to better drug-development paradigms/protocols. Bioanalysis 3:391–392PubMedCrossRefGoogle Scholar
  210. Smith DA, Obach RC (2006) Metabolites and safety: what are the concerns, and how should we address them? Chem Res Toxicol 19:1570–1579PubMedCrossRefGoogle Scholar
  211. Smith PF, Gandolfi AJ, Krumdieck CL, Putnam CW, Zukosi CF III, Davies WM, Brendel K (1985) Dynamic organ culture of precision liver slices for in vitro toxicology. Life Sci 36:1367–1375PubMedCrossRefGoogle Scholar
  212. Srivastava PK, Sharma VK, Kalonia DS, Grant DF (2004) Polymorphisms in human soluble epoxide hydrolase: effects on enzyme activity, enzyme stability, and quaternary structure. Arch Biochem Biophys 427:164–169PubMedCrossRefGoogle Scholar
  213. Stadie WC, Riggs BC (1944) Microtome for the preparation of tissue slices for metabolic studies of surviving tissue in vitro. J Biol Chem 154:687–690Google Scholar
  214. Stefaniak MS, Gandolfi AJ, Brendel K (1988) Adult rat lung in dynamic organ culture: a new tool in pharmacology. Proc West Pharmacol Soc 31:149–151PubMedGoogle Scholar
  215. Strange RC, Spiteri MA, Ramachandran S, Fryer AA (2001) Glutathione-S-transferase family of enzymes. Mutat Res Fundam Mol Mech Mutagen 482:21–26CrossRefGoogle Scholar
  216. Stratford RE, Clay MP, Heinz BA, Kuhfeld MT, Osborne SJ, Philips DL, Swetana SA, Tebbe MJ, Vasudevan V, Zornes LZ, Lindstrom TD (1999) Application of oral bioavailability surrogates in the design of orally active inhibitors of rhinovirus replication. J Pharm Sci 88:747–753PubMedCrossRefGoogle Scholar
  217. Sumida K, Ooe N, Nagahori H, Saito K, Isobe N, Kaneko H, Nakatsuka I (2001) An in vitro reporter gene assay method incorporating metabolic activation with human and rat S9 or liver microsomes. Biochem Biophys Res Commun 280:85–91PubMedCrossRefGoogle Scholar
  218. Swift B, Pfeifer ND, Brouwer KLR (2010) Sandwich-cultured hepatocytes: an in vitro model to evaluate hepatobiliary transporter-based drug interactions and hepatotoxicity. Drug Metab Rev 42:446–471PubMedCrossRefGoogle Scholar
  219. Syme MR, Paxton JW, Keelan JA (2004) Drug transfer and metabolism by the human placenta. Clin Pharmacokinet 43:487–514PubMedCrossRefGoogle Scholar
  220. Tabrett CA, Coughtrie MWH (2003) Phenol sulfotransferase 1A1 activity in human liver: kinetic properties, interindividual variation and re-evaluation of the suitability of 4-nitrophenol as a probe substrate. Biochem Pharmacol 66:2089–2097PubMedCrossRefGoogle Scholar
  221. Testa B, Jenner P (1976) Drug metabolism: chemical and biochemical aspects. Part II: biochemical aspects of drug oxidation. In: Swarbrick J (ed) Drug and the pharmaceutical science. Marcel Dekker Inc, New York, pp 271–312Google Scholar
  222. Thomas NL, Coughtrie MWH (2003) Sulfation of apomorphine by human sulfotransferases: evidence of a major role for the polymorphic phenol sulfotransferase, SULT1A1. Xenobiotica 33:1139–1148PubMedCrossRefGoogle Scholar
  223. Thompson AM, Robertson RC, Bauer TA (1968) A rat head-perfusion technique developed for the study of brain uptake of materials. J Appl Physiol 24:407–411PubMedGoogle Scholar
  224. Tucker GT, Houston JB, Huang SM (2001) Optimizing drug development: strategies to assess drug metabolism/transporter interaction potential – towards a consensus. Pharm Res 18:1071–1080PubMedCrossRefGoogle Scholar
  225. Tynes E, Hodgson E (1984) The measurement of FAD-containing monooxygenase activity in microsomes containing cytochrome P-450. Xenobiotica 14:515PubMedCrossRefGoogle Scholar
  226. Udata C, Tirucherai G, Mitra AK (1999) Synthesis, stereoselective enzymatic hydrolysis and skin permeation of diastereomeric propranolol ester prodrugs. J Pharm Sci 88:544–550PubMedCrossRefGoogle Scholar
  227. US-FDA (U.S. Food and Drug Administration) Guidance (2008) Guidance for industry. Safety testing of drug metabolites. www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm079266.pdf. Accessed in Dec 2011
  228. US-FDA (U.S. Food and Drug Administration) Guidance (2012) Guidance for industry. Drug interaction studies – study design, data analysis, implications for dosing and labeling recommendations. Draft guidance. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM292362.pdf. Accessed in July 2012
  229. Vandenbranden M, Wrighton SA, Ekins S, Gillespie JS, Binkley SN, Ring BJ, Gadberry MG, Mullins DC, Strom SC, Jensen CB (1998) Alterations of the catalytic activities of drug-metabolizing enzymes in cultures of human liver slices. Drug Metab Dispos 26:1063–1068PubMedGoogle Scholar
  230. Vere-Hodge RA, Sutton D, Boyd MR, Harnden MR, Jarvest RL (1989) Selection of an oral prodrug (BRL 42810, famciclovir) for the antiherpesvirus agent BRL 39123 [9-(4-hydroxy-3-hydroxymethylbut-1-yl)guanine, penciclovir]. Antimicrob Agents Chemother 33:1765–1773PubMedCrossRefGoogle Scholar
  231. Vinci B, Duret C, Klieber S, Gerbal-Chaloin S, Sa-Cunha A, Laporte S, Suc B, Maurel P, Ahluwalia A, Daujat-Chavanieu M (2011) Modular bioreactor for primary human hepatocyte culture: medium flow stimulates expression and activity of detoxification genes. Biotechnol J 6:554–564PubMedCrossRefGoogle Scholar
  232. Von Bahr C, Groth CG, Jansson H, Lundgren G, Lind M, Glauman H (1980) Drug metabolism in human liver in vitro: establishment of a human liver bank. Clin Pharmacol Ther 27:711CrossRefGoogle Scholar
  233. Walle T, Walle UK, Knapp DR, Conradi EC, Bargar EM (1983) Identification of major sulfate conjugates in the metabolism of propranolol in dog and man. Drug Metab Dispos 11:344–349PubMedGoogle Scholar
  234. Wang J (2009) Comprehensive assessment of ADMET risks in drug discovery. Curr Pharm Des 15:2195–2219PubMedCrossRefGoogle Scholar
  235. Wang RW, Lu AY (1997) Inhibitory anti-peptide antibody against human CYP3A4. Drug Metab Dispos 25:762PubMedGoogle Scholar
  236. Wang A, Xia T, Ran P, Chen X, Nuessler A-K (2002) Qualitative study of three cell culture methods. J Huazhong Univ Sci Technolog Med Sci 22:288–291PubMedCrossRefGoogle Scholar
  237. Watt AP, Mortishire-Smith RJ, Gerhard U, Thomas SR (2003) Metabolite identification in drug discovery. Curr Opin Drug Discov Devel 6:57PubMedGoogle Scholar
  238. Weaver RJ, Jochemsen R (2009) Nonclinical pharmacokinetics and toxicokinetics. In: Cartwright AC, Mathews BC (eds) International pharmaceutical product registration. Informa Healthcare, London, New York, pp 336–376Google Scholar
  239. Wei ZY, Brown W, Takaski B, Plobeck N, Delorme D, Zhou F, Yang H, Jones P, Gawell L, Ggnon H, Schmidt R, Yue SY, Walpole C, Payza K, St-Onge S, Labrre M, Godbout C, Jakob A, Butterworth J, Kamassah A, Morin PE, Projean D, Ducharme J, Robert E (2000) N, N-diethyl-4-(phenylpiperidin-4-ylidenemethyl)benzamide: a novel, exceptionally selective, potent & opioid receptor agonist with oral bioavailability and its analogues. J Med Chem 43:3895–3905PubMedCrossRefGoogle Scholar
  240. Weinshilboum RM, Otterness DM, Szumlanski CL (1999) Methylation pharmacogenetics: catechol O-methyltransferase, thiopurine methyltransferase, and histamine N-methyltransferase. Annu Rev Pharmacol Toxicol 39:19–52PubMedCrossRefGoogle Scholar
  241. White RE (2001) High-throughput screening in drug metabolism and pharmacokinetic support of drug discovery. Annu Rev Pharmacol Toxicol 40:133–157CrossRefGoogle Scholar
  242. Wienkers LC, Stevens JC (2003) Cytochrome P450 reaction phenotyping. In: Lee JS, Obach RS, Fisher MB (eds) Drug metabolizing enzymes, cytochrome P450 and other enzymes in drug discovery and development. Marcel Dekker, New York, pp 255–310Google Scholar
  243. Williams FM (1987) Serum enzymes of drug metabolism. Pharmacol Ther 34:99–109PubMedCrossRefGoogle Scholar
  244. Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE (2004) Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCI/AUC) ratios. Drug Metab Dispos 32:1201–1208PubMedCrossRefGoogle Scholar
  245. Wittman MD, Altstadt TJ, Fairchild C, Hansel S, Johnston K, Kadow JF, Long BH, Rose WC, Vyas DM, Wu MJ, Zoeckler ME (2001) Synthesis of metabolically blocked paclitaxel analogues. Bioorg Med Chem Lett 11:809–810PubMedCrossRefGoogle Scholar
  246. Wittman MD, Kadow JK, Vyas DM (2000) Stereospecific synthesis of the major human metabolite of paclitaxel. Tetrahedron Lett 41:4729CrossRefGoogle Scholar
  247. Wójcikowskia J, Pichard-Garcia L, Maurel P, Daniel WA (2004) The metabolism of the piperazine-type phenothiazine neuroleptic perazine by the human cytochrome P-450 isoenzymes. Eur Neuropsychopharmacol 14:199–208CrossRefGoogle Scholar
  248. Wormhoudt LW, Commandeur JN, Vermeulen NP (1999) Genetic polymorphisms of human N-acetyltransferase, cytochrome P450, glutathione-S-transferase, and epoxide hydrolase enzymes: relevance to xenobiotic metabolism and toxicity. Crit Rev Toxicol 29:59–124PubMedCrossRefGoogle Scholar
  249. Wrighton SA, Stevens JC (1992) The human hepatic cytochromes P450 involved in drug metabolism. Crit Rev Toxicol 22:1–21PubMedCrossRefGoogle Scholar
  250. Wynalda MA, Hutzler JM, Koets MD, Podoll T, Wienkers LC (2003) In vitro metabolism of clindamycin in human liver and intestinal microsomes. Drug Metab Dispos 31:878–887PubMedCrossRefGoogle Scholar
  251. Xu ZH (2001) Human 3′-phosphoadenosine 5′-phosphosulfate synthetase: radiochemical enzymatic assay, biochemical properties, and hepatic variation. Drug Metab Dispos 29:172–178PubMedGoogle Scholar
  252. Yagen B, Bergmann F, Barel S, Sintov A (1991) Metabolism of T-2 toxin by rat brain homogenate. Biochem Pharmacol 42:949–951PubMedCrossRefGoogle Scholar
  253. Yamazaki H, Inoue K, Turvy CG, Guengerich FP, Shimada T (1997) Effects of freezing, thawing, and storage of human liver samples on the microsomal contents and activities of cytochrome P450 enzymes. Drug Metab Dispos 25:168–174PubMedGoogle Scholar
  254. Yost GS (1999) Sites of metabolism: lung. In: Wolf TF (ed) Handbook of drug metabolism. Marcel Dekker, New York, pp 263–278Google Scholar
  255. Yu H, Adedoyin A (2003) ADME-Tox in drug discovery: integration of experimental and computational technologies. Drug Discov Today 8:852–861PubMedCrossRefGoogle Scholar
  256. Zhang H, Davis CD, Sinz MW, Rodrigues AD (2007) Cytochrome P450 reaction-phenotyping: an industrial perspective. Expert Opin Drug Metab Toxicol 3:667–687PubMedCrossRefGoogle Scholar
  257. Zhang J, Dean RA, Brzezinski MR, Bosron WF (1996) Gender-specific differences in activity and protein levels of cocaine carboxylesterase in rat tissue. Life Sci 59:1175–1184PubMedCrossRefGoogle Scholar
  258. Zhang JY, Wang Y, Prakash C (2006) Xenobiotic-metabolizing enzymes in the human lung. Curr Drug Metab 7:939–948PubMedCrossRefGoogle Scholar
  259. Zhang Z, Zhu M, Tang W (2009) Metabolite identification and profiling in drug design: current practice and future directions. Curr Pharm Des 15:2220–2235PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Sanofi Deutschland GmbHFrankfurt am MainGermany

Personalised recommendations