In-Silico ADME Modeling

Reference work entry

Abstract

The pressure on research efficiency and cost in the pharmaceutical industry has resulted in a paradigm shift to bring active molecules earlier to the market (Wess 2002; Lawrence 2002). Increasing expenses by attrition in late stage development are partially attributed to an inadequate understanding of pharmacokinetic and toxicological behavior of drugs (Prentis et al. 1988; Kennedy 1997; Drews 2000). The conversion of biologically active molecules into effective and safe pharmaceuticals adds substantial value to the drug discovery process. Consequently, the improvement of a compound profile toward a clinical candidate is one of the essential skills in integrated drug discovery teams. Those candidate requirements include multiple parameters including potency and efficacy, selectivity against related proteins or “antitargets,” favorable physicochemical and pharmacokinetic properties leading to the required bioavailability after oral administration, and an acceptable half-life of elimination of the final candidate. A simultaneous optimization of multiple parameters in carefully planned iterations is therefore required to arrive at molecules with suitable properties and profiles.

Keywords

Quantitative Structure Activity Relationship Quantitative Structure Activity Relationship Model Polar Surface Area Comparative Molecular Field Analysis ADME Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The authors would like to thank K.H. Baringhaus, A. Dudda, C. Giegerich, G. Hessler, U. Kürzel, K. Mertsch, M. Müller, F. Schmidt, R. Vaz (all Sanofi-Aventis), A. Kohlmann (Ariad), G. Schneider (ETH Zürich), and G. Cruciani (University of Perugia) for many interesting discussions on experimental data and in silico ADME models.

References and Further Reading

  1. ACD/logD Suite, ACD/Labs, 33 Richmond St. West, Suite 605, Toronta, ON MSH 2L3, CanadaGoogle Scholar
  2. Afzelius L, Masimirembwa CM, Karlén A, Andersson TB, Zamora I (2002a) Discriminant and quantitative PLS analysis of competitive CYP2C9 inhibitors versus non-inhibitors using alignment independent GRIND descriptors. J Comput Aided Mol Des 16:443–458PubMedCrossRefGoogle Scholar
  3. Afzelius L, Masimirembwa CM, Karlén A, Andersson TB, Afzelius I (2002b) Discriminant and quantitative PLS analysis of competitive CYP2C9 inhibitors versus non-inhibitors using alignment independent GRIND descriptors. J Comput Aided Mol Des 16:443–458PubMedCrossRefGoogle Scholar
  4. Afzelius L, Zamora I, Masimirembwa CM, Karlén A, Andersson TB, Mecucci S, Baroni M, Cruciani G (2004a) Conformer-and alignment-independent model for predicting structurally diverse competitive CYP2C9 inhibitors. J Med Chem 47:907–914PubMedCrossRefGoogle Scholar
  5. Afzelius L, Afzelius I, Masimirembwa CM, Karlén A, Andersson TB, Mecucci S, Baroni M, Cruciani G (2004b) Conformer- and alignment-independent model for predicting structurally diverse competitive CYP2C9 inhibitors. J Med Chem 47:907–914PubMedCrossRefGoogle Scholar
  6. Agatonovich-Kustrin S, Beresford R, Yusof APM (2001) ANN modeling of the penetration across a polydimethylsiloxane membrane from theoretically derived molecular descriptors. J Pharm Biomed Anal 25:227–237CrossRefGoogle Scholar
  7. Alifrangis LH, Christensen IT, Berglund A, Sandberg M, Hovgaard L, Frokjaer S (2000) Structure-property model for membrane partitioning of oligopeptides. J Med Chem 43:103–113PubMedCrossRefGoogle Scholar
  8. Artursson P, Bergström CAS (2003) Intestinal absorption: the role of polar surface area. In: van de Waterbeemd H, Lennernäs H, Artursson P (eds) Drug bioavailability. Wiley-VCH, Weinheim, pp 341–357Google Scholar
  9. Artursson P, Karlsson J (1991) Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun 175:880–885PubMedCrossRefGoogle Scholar
  10. Bach RD (2010) The rate-limiting step in P450 hydroxylation a direct comparison of the “Somersault” versus the “Consensus” mechanism involving enzyme complex of Fe. J Phys Chem A 114:9319–9332PubMedCrossRefGoogle Scholar
  11. Balducci R, McGarity CM, Rusinko A III, Skell J, Smith K, Pearlman RS (1699) (University of Texas at Austin), CONCORD v4.02. Distributed by Tripos, Inc. 1699S. Hanley Rd., Suite 303, St. Louis, MO 63144-2913Google Scholar
  12. Baroni M, Costantino G, Cruciani G, Riganelli D, Valigi R, Clementi S (1993) Generating optimal linear PLS estimations (GOLPE): an advanced chemometric tool for handling 3D-QSAR problems. Quant Struct Act Relat 12:9–20CrossRefGoogle Scholar
  13. Bergström CAS, Strafford M, Lazorova L, Avdeef A, Luthman K, Artursson P (2003) Absorption classification of oral drugs based on molecular surface properties. J Med Chem 46:558–570PubMedCrossRefGoogle Scholar
  14. Bhattacharya AA, Curry S, Franks NP (2000) Binding of the general anesthetics propofol and halothane to human serum albumin: high resolution crystal structures. J Biol Chem 275:38731–38738PubMedCrossRefGoogle Scholar
  15. Bleicher KH, Böhm HJ, Müller K, Alanine AI (2003) Hit and lead generation: beyond high throughput screening. Nature Rev Drug Disc 2:369–378CrossRefGoogle Scholar
  16. Bonn B, Leandersson C, Fontaine F, Zamora I (2010) Enhanced metabolite identification with MSE and a semi-automatic software for structure elucidation. Rapid Comm Mass Spectrom 24:3127–3138CrossRefGoogle Scholar
  17. Boyer D, Bauman JN, Walker DP, Kapinos B, Karki K, Kalgutkar AS (2009) Utility of MetaSite in improving metabolic stability of the neutral indomethacin amide derivative and selective cyclooxygenase-2 inhibitor 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)-N-phenethyl-acetamide. Drug Metab Dispos 37:999–1008PubMedCrossRefGoogle Scholar
  18. Broccatelli F, Carosati E, Neri A, Frosini M, Goracci L, Oprea TI, Cruciani G (2011) A novel approach for predicting P-Glycoprotein (ABCB1) inhibition using molecular interaction fields. J Med Chem 54:1740–1751PubMedCrossRefGoogle Scholar
  19. Brown CM, Reisfeld B, Mayeno AN (2008) Cytochromes P450: a structure-based summary of biotransformation using representative substrates. Drug Metabol Rev 40:1–100CrossRefGoogle Scholar
  20. Butina D, Gola JMR (2003) Modeling aqueous solubility. J Chem Inf Comput Sci 43:837–841PubMedCrossRefGoogle Scholar
  21. Byvatov E, Schneider G (2003) SVM applications in bioinformatics. Appl Bioinformatics 2:67–77PubMedGoogle Scholar
  22. Byvatov E, Baringhaus KH, Schneider G, Matter H (2007) A virtual screening filter for identification of cytochrome P450 2C9 (CYP2C9) inhibitors. QSAR Comb Sci 26:618–628CrossRefGoogle Scholar
  23. Caron G, Ermondi G, Testa B (2007) Predicting the oxidative metabolism of statins: an application of the MetaSite® algorithm. Pharm Res 24:480–500PubMedCrossRefGoogle Scholar
  24. Cianchetta G, Mannhold R, Cruciani G, Baroni M, Cecchetti V (2004) Chemometric studies on the bactericidal activity of quinolones via an extended VolSurf approach. J Med Chem 47:3193–3201PubMedCrossRefGoogle Scholar
  25. Cianchetta G, Singleton RW, Zhang M, Wildgoose M, Giesing D, Fravolini A, Cruciani G, Vaz RJ (2005) A pharmacophore hypothesis for P-glycoprotein substrate recognition using GRIND-Based 3D-QSAR. J Med Chem 48:2927–2935PubMedCrossRefGoogle Scholar
  26. Clark DE (1999a) Rapid calculation of polar molecular surface area and its application to the prediction to transport phenomena. 1. Prediction of intestinal absorption. J Pharm Sci 88:807–814PubMedCrossRefGoogle Scholar
  27. Clark DE (1999b) Rapid calculation of polar molecular surface area and its application to the prediction to transport phenomena. 2. Prediction of blood-brain barrier penetration. J Pharm Sci 88:815–821PubMedCrossRefGoogle Scholar
  28. Clark DE (2001) Prediction of intestinal absorption and blood-brain barrier penetration by computational methods. Comb Chem High Throughput Screen 4:477–496PubMedCrossRefGoogle Scholar
  29. Clark DE, Pickett SD (2000) Computational methods for the prediction of ‘drug-likeness’. Drug Disc Today 5:49–58CrossRefGoogle Scholar
  30. Clark M, Cramer RD, Jones DM, Patterson DE, Simeroth PE (1990) Comparative Molecular Field Analysis (CoMFA). 2. Towards its use with 3D-structural databases. Tetrahedron Comput Methodol 3:47–59CrossRefGoogle Scholar
  31. Colmenarejo G (2003) In silico prediction of drug-binding strengths to human serum albumin. Med Res Rev 23:275–301PubMedCrossRefGoogle Scholar
  32. Colmenarejo G, Alvarez-Pedraglio A, Lavandera JL (2001) Cheminformatic models to predict binding affinities to human serum albumin. J Med Chem 44:4370–4378PubMedCrossRefGoogle Scholar
  33. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297Google Scholar
  34. Cramer RD (2003) Topomer CoMFA: A Design Methodology for Rapid Lead Optimization. J Med Chem 46:374–388PubMedCrossRefGoogle Scholar
  35. Cramer RD, Patterson DE, Bunce JE (1988a) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967PubMedCrossRefGoogle Scholar
  36. Cramer RD, Bunce JD, Patterson DE (1988b) Crossvalidation, bootstrapping and partial least squares compared with multiple regression in conventional QSAR studies. Quant Struct Act Relat 7:18–25CrossRefGoogle Scholar
  37. Cramer RD, Cruz P, Stahl G, Curtiss WC, Campbell B, Masek BB, Soltanshahi F (2008) Virtual screening for R-Groups, including predicted pIC50 contributions, within large structural databases, using topomer CoMFA. J Chem Inf Model 48:2180–2195PubMedCrossRefGoogle Scholar
  38. Crivori P, Cruciani G, Carrupt P-A, Testa B (2000) Predicting blood-brain barrier permeation from three-dimensional molecular structure. J Med Chem 43:2204–2216PubMedCrossRefGoogle Scholar
  39. Crivori P, Zamora I, Speed B, Orrenius C, Poggesi I (2004) Model based on GRID-derived descriptors for estimating CYP3A4 enzyme stability of potential drug candidates. J Comput Aided Mol Des 18:155–166PubMedCrossRefGoogle Scholar
  40. Crivori P, Reinach B, Pezzetta D, Poggesi I (2006) Computational models for identifying potential P-glycoprotein substrates and inhibitors. Mol Pharm 3:33–44PubMedCrossRefGoogle Scholar
  41. Cruciani G, Crivori P, Carrupt P-A, Testa B (2000a) Molecular fields in quantitative structure-permeation relationships: the VolSurf approach. Theochem 503:17–30CrossRefGoogle Scholar
  42. Cruciani G, Pastor M, Clementi S (2000b) Handling information from 3D GRID maps for QSAR studies. In: Gundertofte K, Jorgensen FS (eds) Molecular modelling and prediction of bioactivity, proceedings of the 12th European symposium on quantitative structure-activity relationships (QSAR’98). Plenum, New York, pp 73–81CrossRefGoogle Scholar
  43. Cruciani G, Pastor M, Guba W (2000c) VolSurf: a new tool for the pharmacokinetic optimization of lead compounds. Eur J Pharm Sci 11:S29–S39PubMedCrossRefGoogle Scholar
  44. Cruciani G, Pastor M, Mannhold R (2002) Suitability of molecular descriptors for database mining. A comparative analysis. J Med Chem 45:2685–2694PubMedCrossRefGoogle Scholar
  45. Cruciani G, Miniconi M, Carosati E, Zamora I, Mannhold R (2003) VOLSURF: a tool for drug-ADME-property prediction. In: van de Waterbeemd H, Lennernäs H, Artursson P (eds) Drug bioavailability. Wiley-VCH, Weinheim, pp 406–419CrossRefGoogle Scholar
  46. Cruciani G, Carosati E, De Boeck B, Ethirajulu K, Mackie C, Howe T, Vianello R (2005) MetaSite: understanding metabolism in human cytochromes from the perspective of the chemist. J Med Chem 48:6970–6979PubMedCrossRefGoogle Scholar
  47. Cubist, available from RuleQuest Research Pty Ltd, 30 Athena Avenue, St Ives NSW 2075, AustraliaGoogle Scholar
  48. Daylight Chemical Information System Inc. SMILES homepage. http://www.daylight.com/dayhtml/smiles/index.html
  49. De Groot MJ (2006) Designing better drugs: predicting cytochrome P450 metabolism. Drug Disc Today 11:601–606CrossRefGoogle Scholar
  50. Dearden JC (2007) In silico prediction of ADMET properties: how far have we come? Expert Opin Drug Metab Toxicol 3:635–639PubMedCrossRefGoogle Scholar
  51. Demel MA, Schwaha R, Krämer O, Ettmayer P, Haaksma EEJ, Ecker GF (2008) In silico prediction of substrate properties for ABC multidrug transporters. Expert Opin Drug Metab Toxicol 4:1167–1180PubMedCrossRefGoogle Scholar
  52. Denisov IG, Makris TM, Sligar SG, Schlichting I (2005) Structure and chemistry of cytochrome P 450. Chem Rev 105:2253–2277PubMedCrossRefGoogle Scholar
  53. Deretey E, Feher M, Schmidt JM (2002) Rapid prediction of human intestinal absorption. Quant Struct Act Relat 21:493–506CrossRefGoogle Scholar
  54. Dodd LR, Theodorou DN (1991) Analytical Treatment of the volume and surface area of molecules formed by an arbitrary collection of unequal spheres intersected by planes. Mol Phys 72:1313–1345CrossRefGoogle Scholar
  55. Drews J (2000) Drug discovery: a historical perspective. Science 287:1960–1964PubMedCrossRefGoogle Scholar
  56. Duffy EM, Jorgensen WL (2000) Prediction of properties from simulations: free energies of solvation in hexadecane, octanol, and water. J Am Chem Soc 122:2878–2888CrossRefGoogle Scholar
  57. Dunn WJ, Hopfinger AJ (1998) 3D QSAR of flexible molecules using tensor representation. In: Kubinyi H, Folkers G, Martin YC (eds) 3D QSAR in drug design, vol 3, Recent advances. Kluwer, Dordrecht, pp 167–182CrossRefGoogle Scholar
  58. Dunn WJ, Wold S, Edlund U, Hellberg S, Gasteiger J (1984) Multivariate structure-activity relationship between data from a battery of biological tests and an ensemble of structure descriptors: the PLS method. Quant Struct Act Relat 3:131–137CrossRefGoogle Scholar
  59. Egan WJ, Merz KM Jr, Baldwin JJ (2000a) Prediction of drug absorption using multivariate statistics. J Med Chem 43:3867–3877PubMedCrossRefGoogle Scholar
  60. Egan WJ, Mertz KM, Baldwin J (2000b) Prediction of drug absorption using multivariate statistics. J Med Chem 43:3867–3877PubMedCrossRefGoogle Scholar
  61. Ekins S, Bravi G, Binkley S, Gillespie JS, Ring BJ, Wikel JH, Wrighton SA (2000) Three and four dimensional-quantitative structure-activity relationship (3D/4D-QSAR) analyses of CYP2C9 inhibitors. Drug Metab Dispos 28:994–1002PubMedGoogle Scholar
  62. Ekins S, De Groot MJ, Jones JP (2001) Pharmacophore and three-dimensional quantitative structure activity relationship methods for modeling cytochrome P450 active sites. Drug Metab Dispos 29:936–944PubMedGoogle Scholar
  63. Ekins S, Boulanger B, Swaan PW, Hupcey MA (2002) Towards a new age of virtual ADME/TOX and multidimensional drug discovery. J Comput Aided Mol Des 6:381–401CrossRefGoogle Scholar
  64. Ekroos M, Sjogren T (2006) Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc Natl Acad Sci USA 103:13682–13687PubMedCrossRefGoogle Scholar
  65. Ertl P, Rohde B, Selzer P (2000) Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 43:3714–3717PubMedCrossRefGoogle Scholar
  66. Fu XC, Liang WQ, Yu QS (2001) Correlation of drug absorption with molecular charge distribution. Pharmazie 56:267–268PubMedGoogle Scholar
  67. Gebauer S, Knütter I, Hartrodt B, Brandsch M, Neubert K, Thondorf I (2003) Three-dimensional quantitative structure-activity relationship analyses of peptide substrates of the mammalian H+/Peptide cotransporter PEPT1. J Med Chem 46:5725–5734PubMedCrossRefGoogle Scholar
  68. Ghose A, Crippen G (1986) Atomic physicochemical parameters for three-dimensional structure-directed quantitative structure-activity relationships. 1. Partition coefficients as a measure of hydrophobicity. J Comput Chem 7:565–577CrossRefGoogle Scholar
  69. Gleeson MP (2007) Plasma protein binding affinity and its relationship to molecular structure: an in-silico analysis. J Med Chem 50:101–112PubMedCrossRefGoogle Scholar
  70. Gleeson MP, Hersey A, Hannongbua S (2011a) In-Silico ADME models: a general assessment of their utility in drug discovery applications. Curr Top Med Chem 11:358–381PubMedCrossRefGoogle Scholar
  71. Gleeson MP, Hersey A, Montanari D, Overington J (2011b) Probing the links between in vitro potency, ADMET and physicochemical parameters. Nature Rev Drug Disc 10:197–208CrossRefGoogle Scholar
  72. Goodford PJ (1985) Computational procedure for determining energetically favourable binding sites on biologically important macromolecules. J Med Chem 28:849–857PubMedCrossRefGoogle Scholar
  73. Gorski JC, Hall SD, Jones DR, Vandenbranden M, Wrighton SA (1994) Regioselective biotransformation of midazolam by members of the human cytochrome P450 3A (CYP3A) subfamily. Biochem Pharm 47:1643–1653PubMedCrossRefGoogle Scholar
  74. Greene J, Kahn S, Savoj H, Sprague P, Teig S (1994) Chemical function queries for 3D database search. J Chem Inf Comput Sci 34:1297–1308CrossRefGoogle Scholar
  75. Guba W, Cruciani G (2000) Molecular field derived descriptors for the multivariate modeling of pharmacokinetic data. In: Gundertofte K, Jorgensen FS (eds) Molecular modelling and prediction of bioactivity, proceedings of the 12th European Symposium on Quantitative Structure-Activity Relationships (QSAR’98). Plenum, New York, pp 89–95CrossRefGoogle Scholar
  76. Guengerich FP (1991) Reactions and significance of cytochrome P-450 enzymes. J Biol Chem 266:10019–10022PubMedGoogle Scholar
  77. Guengerich FP, Krauser JA, Johnson WW (2004) Rate-limiting steps in oxidations catalyzed by cytochrome P450 1A2. Biochemistry 43:10775–10788PubMedCrossRefGoogle Scholar
  78. Gurrath M, Müller G, Höltje HD (1998) Pseudoreceptor modelling in drug design: applications of Yak and PrGen. In: Kubinyi H, Folkers G, Martin YC (eds) 3D QSAR in drug design, vol 3, Recent advances. Kluwer, Dordrecht, pp 135–157CrossRefGoogle Scholar
  79. Hahn M, Rogers D (1998) Receptor surface models. In: Kubinyi H, Folkers G, Martin YC (eds) 3D QSAR in drug design, vol 3, Recent advances. Kluwer, Dordrecht, pp 117–133CrossRefGoogle Scholar
  80. Hajduk PJ, Mendoza R, Petros AM, Huth JR, Bures M, Fesik SW, Martin YC (2003) Ligand binding to domain-3 of human serum albumin: a chemometrical analysis. J Comput Aided Mol Des 17:93–102PubMedCrossRefGoogle Scholar
  81. Haji-Momenian S, Rieger JM, Macdonald TL, Brown ML (2003) Comparative molecular field analysis and QSAR on substrate binding to cytochrome P450 2D6. Bioorg Med Chem 11:5545–5554PubMedCrossRefGoogle Scholar
  82. Hansch C, Fujita T (1964) σ – π analysis: a method for the correlation of biological activity and chemical structure. J Am Chem Soc 86:1616–1626CrossRefGoogle Scholar
  83. Hermann RB (1972) Theory of hydrophobic bonding. II. Correlation of hydrocarbon solubility in water with solvent cavity surface area. J Phys Chem 76:2754–2759CrossRefGoogle Scholar
  84. Hou T, Wang J (2008) Structure – ADME relationship: still a long way to go? Expert Opin Drug Metab Toxicol 4:759–770PubMedCrossRefGoogle Scholar
  85. Hou T, Wang J, Li Y (2007) ADME evaluation in drug discovery. 8. The prediction of human intestinal absorption by a support vector machine. J Chem Inf Model 47:2408–2415PubMedCrossRefGoogle Scholar
  86. Hudson BD, Hyde RM, Rahr E, Wood J, Osman J (1996) Parameter based methods for compound selection from chemical databases. Quant Struct Act Relat 15:285–289CrossRefGoogle Scholar
  87. Irvine JD, Lockhart LT, Cheong J, Tolan JW, Selick HE, Grove JR (1999) MDCK (Madin-Darby canine kidney) cells: a tool for membrane permeability screening. J Pharm Sci 88:28–33PubMedCrossRefGoogle Scholar
  88. Jain AN, Koile K, Chapman D (1994) Compass: Predicting biological activities from molecular surface properties. Performance comparisons on a steroid benchmark. J Med Chem 37:2315–2327PubMedCrossRefGoogle Scholar
  89. Jones BC, Hawksworth G, Horne VA, Newlands A, Tute M, Smith DA (1993) Putative active site model for CYP2C9 (tolbutamide hydroxylase). Br J Clin Pharmacol 34:143–144Google Scholar
  90. Jones G, Willett P, Glen RC (1995) A genetic algorithm for flexible molecular overlay and pharmacophore elucidation. J Comput Aided Mol Des 9:532–549PubMedCrossRefGoogle Scholar
  91. Jones BC, Hawksworth G, Horne VA, Newlands A, Morsman J, Tute MS, Smith DA (1996a) Putative active site template model for cytochrome P450 2C9 (tolbutamide hydroxylase). Drug Metab Dispos 24:260–266PubMedGoogle Scholar
  92. Jones JP, He MX, Trager WF, Rettie AE (1996b) Three-dimensional quantitative structure-activity relationship for inhibitors of cytochrome P450 2C9. Drug Metab Dispos 24:1–6PubMedGoogle Scholar
  93. Kariv I, Rourick RA, Kassel DB, Chung TDY (2002) Improvement of “hit-to-lead” optimization by integration of in vitro HTS experimental models for early determination of pharmacokinetic properties. Comb Chem High Throughput Screen 5:459–472PubMedCrossRefGoogle Scholar
  94. Kearsley SK, Smith GM (1990) An alternative method for the alignment of molecular structures: maximizing electrostatic and steric overlap. Tetrahedron Comput Method 3:615–633CrossRefGoogle Scholar
  95. Kelder J, Grootenhuis PD, Bayada DM, Delbressine LP, Ploemen JP (1999) Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm Res 16:1514–1519PubMedCrossRefGoogle Scholar
  96. Kellogg GE, Semus SF (2003) 3D QSAR in modern drug design. In: Hilgenfeld R, Hillisch A (eds) Modern methods of drug discovery. Birkhäuser, Basel, pp 223–241CrossRefGoogle Scholar
  97. Kellogg GE, Semus SF, Abraham DJ (1991) HINT – a new method of empirical hydrophobic field calculation for CoMFA. J Comput Aided Mol Des 5:545–552PubMedCrossRefGoogle Scholar
  98. Kennedy T (1997) Managing the drug discovery/development interface. Drug Disc Today 2:436–444CrossRefGoogle Scholar
  99. Khan KK, He YQ, Domanski TL, Halpert JR (2002) Midazolam oxidation by cytochrome P450 3A4 and active-site mutants: an evaluation of multiple binding sites and of the metabolic pathway that leads to enzyme inactivation. Mol Pharm 61:495–506CrossRefGoogle Scholar
  100. Klebe G, Abraham U (1993) On the prediction of binding properties of drug molecules by comparative field analysis. J Med Chem 36:70–80PubMedCrossRefGoogle Scholar
  101. Klebe G, Abraham U, Mietzner T (1994a) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130–4146PubMedCrossRefGoogle Scholar
  102. Klebe G, Mietzner T, Weber F (1994b) Different approaches toward an automatic structural alignment of drug molecules: application to sterol mimics, thrombin and thermolysin inhibitors. J Comput Aided Mol Des 8:751–778PubMedCrossRefGoogle Scholar
  103. Klopman G, Stefan LR, Saiakhov D (2002) ADME evaluation: 2. A computer model for the prediction of intestinal absorption in humans. Eur J Pharm Sci 17:253–263PubMedCrossRefGoogle Scholar
  104. Klose TS, Ibeanu GC, Ghanayem BI, Pedersen LG, Li L, Hall SD, Goldstein JA (1998) Identification of residues 286 and 289 as critical for conferring substrate specificity of human CYP2C9 for diclofenac and ibuprofen. Arch Biochem Biophys 357:240–248PubMedCrossRefGoogle Scholar
  105. Krarup LH, Christensen IT, Hovgaard L, Frokjaer S (1998) Predicting drug absorption from molecular surface properties based on molecular dynamics simulations. Pharm Res 15:972–978PubMedCrossRefGoogle Scholar
  106. Kratochwil NA, Huber W, Müller F, Kansy M, Gerber PR (2002) Predicting plasma protein binding of drugs: a new approach. Biochem Pharmacol 64:1355–1374PubMedCrossRefGoogle Scholar
  107. Kratochwil NA, Huber W, Müller F, Kansy M, Gerber PR (2004) Predicting plasma protein binding of drugs – revisited. Curr Opin Drug Disc Dev 7:507–512Google Scholar
  108. Kubinyi H (1998) Comparative molecular field analysis (CoMFA). In: Von Ragué Schleyer P, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF III (eds) Encyclopedia of computational chemistry, vol 1. Wiley, New York, pp 448–460Google Scholar
  109. Larsen SB, Jorgensen FS, Olsen L (2008) QSAR Models for the Human H+/Peptide Symporter, hPEPT1: affinity prediction using alignment-independent descriptors. J Chem Inf Model 48:233–241PubMedCrossRefGoogle Scholar
  110. Lawrence RN (2002) Sir Richard Sykes contemplates the future of the pharma industry. Drug Disc Today 7:645–648CrossRefGoogle Scholar
  111. Lemmen C, Lengauer T, Klebe G (1998) FlexS: a method for flexible ligand superposition. J Med Chem 41:4502–4520PubMedCrossRefGoogle Scholar
  112. Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharm Tox Methods 44:235–249CrossRefGoogle Scholar
  113. Lipkowitz KB, Baker B, Larter R (1989) Dynamic molecular surface areas. J Am Soc Chem 111:7750–7753CrossRefGoogle Scholar
  114. Litman T, Druley TE, Stein WD, Bates SE (2001) From MDR to MXR: new understanding of multidrug resistance systems, their properties and clinical significance. Cell Mol Life Sci 58:931–959PubMedCrossRefGoogle Scholar
  115. Lu JJ, Crimin K, Goodwin JT, Crivori P, Orrenius C, Xing L, Tandler PJ, Vidmar TJ, Amore BM, Wilson AGE, Stouten PFW, Burton PS (2004) Influence of molecular flexibility and polar surface area metrics on oral bioavailability in the rat. J Med Chem 47:6104–6107PubMedCrossRefGoogle Scholar
  116. Luco JM (1999) Prediction of the brain-blood distribution of a large set of drugs from structurally derived descriptors using partial least squares (PLS) modeling. J Chem Inf Comput Sci 39:396–404PubMedCrossRefGoogle Scholar
  117. MACCS keys: own implementation in Sybyl/SLN. Available from Tripos Inc., (1699 S. Hanley Road, St. Louis, MO 63144, USA) following the documentation in ISIS/Base 2.1.3., Molecular Design Ltd, 14600 Catalina Street, San Leandro, CA 94577, USAGoogle Scholar
  118. Mancy A, Broto P, Dijols S, Dansette PM, Mansuy D (1995) The substrate binding site of human liver cytochrome P450 2C9: an approach using designed tienilic acid derivatives and molecular modelling. Biochemistry 34:10365–10375PubMedCrossRefGoogle Scholar
  119. Mannhold R, Cruciani G, Weber H, Lemoine H, Derix A, Weichel C, Clementi M (1999) 6-Substituted benzopyrans as potassium channel activators: synthesis, vasodilator properties, and multivariate analysis. J Med Chem 42:981–991PubMedCrossRefGoogle Scholar
  120. Martin YC, Bures MG, Dahaner EA, DeLazzer J, Lico I, Pavlik PA (1993) A fast new approach to pharmacophore mapping and its application to dopaminergic and benzodiazepine agonists. J Comput Aided Mol Des 7:83–102PubMedCrossRefGoogle Scholar
  121. Matter H, Schudok M (2004) Recent advances in the design of matrix metalloproteinase inhibitors. Curr Opin Drug Disc Dev 7:513–535Google Scholar
  122. Matter H, Schwab W, Barbier D, Billen G, Haase B, Neises B, Schudok M, Thorwart W, Brachvogel V, Lönze P, Weithmann KU (1999) Quantitative structure-activity relationship of human neutrophil collagenase (MMP-8) inhibitors using comparative molecular field and X-ray structure analysis. J Med Chem 42:1908–1920PubMedCrossRefGoogle Scholar
  123. Matter H, Baringhaus KH, Naumann T, Klabunde T, Pirard B (2001) Computational approaches towards the rational design of drug-like compound libraries. Comb Chem High Throughput Screen 4:453–475PubMedCrossRefGoogle Scholar
  124. Matter H, Schudok M, Schwab W, Thorwart W, Barbier D, Billen G, Haase B, Neises B, Weithmann KU, Wollmann T (2002) Tetrahydroisoquinoline-3-carboxylate based matrix-metalloproteinase inhibitors: design, synthesis and structure-activity relationship. Bioorg Med Chem 10:3529–3544PubMedCrossRefGoogle Scholar
  125. Meyer H (1899) Zur Theorie der Alkoholnarkose; erste Mittheilung: Welche Eigenschaft der Anaesthetica bedingt ihre narkotische Wirkung ? Arch Exp Pathol Pharmacol 42:109–118CrossRefGoogle Scholar
  126. MOE, available from Chemical Computing Group (CCG), 1010 Sherbrooke St. W, Suite 910, Montreal, CanadaGoogle Scholar
  127. Norinder U, Österberg T (2001) Theoretical calculation and prediction of drug transport processes using simple parameters and partial least squares projections to latent structures (PLS) statistics. The use of electrotopological state indices. J Pharm Sci 90:1076–1085PubMedCrossRefGoogle Scholar
  128. Obach RS, Lombardo F, Waters NJ (2008) Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds. Drug Metab Dispos 36:1385–1405PubMedCrossRefGoogle Scholar
  129. Oprea T (2002) Virtual screening in lead discovery: a viewpoint. Molecules 7:51–62CrossRefGoogle Scholar
  130. Oprea TI (2004) 3D QSAR modeling in drug design. In: Bultinck P, De Winter H, Langenaeker W, Tollenaere JP (eds) Computational medicinal chemistry for drug discovery. Marcel Dekker, New York, pp 571–616Google Scholar
  131. Oprea TI, Gottfries J (1999) Toward minimalistic modelling of oral drug absorption. J Mol Graphics Model 17:261–274CrossRefGoogle Scholar
  132. Palm K, Luthman K, Ungell AL, Strandlund G, Artursson P (1996) Correlation of drug absorption with molecular surface properties. J Pharm Sci 85:32–39PubMedCrossRefGoogle Scholar
  133. Palm K, Stenberg P, Luthman K, Artursson P (1997) Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharm Res 14:568–571PubMedCrossRefGoogle Scholar
  134. Pardridge WM (1996) Brain drug delivery and blood-brain barrier transport. Drug Deliv 3:99–115CrossRefGoogle Scholar
  135. Pastor M, Cruciani G, McLay I, Pickett S, Clementi S (2000) Grid-independent descriptors (GRIND): a novel class of alignment-independent three-dimensional molecular descriptors. J Med Chem 43:3233–3243PubMedCrossRefGoogle Scholar
  136. Pearlman RS (1980) Molecular surface areas and volumes and their use in structure-activity relationships. In: Yalkowsky SH, Sinkula AA, Valvani SC (eds) Physical chemical properties of drugs, vol 10, Medicinal research series. Marcel Dekker, New York, pp 321–347Google Scholar
  137. Pearlman RS (1987) Rapid generation of high quality approximate 3D molecular structures. Chem Des Auto News 2:1–7Google Scholar
  138. Petitpas I, Bhattacharya AA, Twine S, East M, Curry S (2001) Crystal structure analysis of warfarin binding to human serum albumin. Anatomy of drug site I. J Biol Chem 276:22804–22809PubMedCrossRefGoogle Scholar
  139. Pickett SD, McLay IM, Clark DE (2000) Enhancing the hit-to-lead properties of lead optimization libraries. J Chem Inf Comput Sci 40:263–272PubMedCrossRefGoogle Scholar
  140. Polanski J, Gieleciak R, Bak A (2002) The comparative molecular surface analysis (COMSA) – a nongrid 3D QSAR method by a coupled neural network and PLS system: predicting pKa values for benzoic and alkanoic acids. J Chem Inf Comput Sci 42:184–191PubMedCrossRefGoogle Scholar
  141. Prentis RA, Lis Y, Walker SR (1988) Pharmaceutical innovation by the seven UK-owned pharmaceutical companies (1964–1985). Br J Clin Pharmacol 25:387–396PubMedCrossRefGoogle Scholar
  142. QikProp (version 2.0) Available from Schrödinger, Inc. 1500S.W. First Avenue, Suite 1180, Portland, OR 97201, USAGoogle Scholar
  143. Quinlan JR (1992) Learning with continuous classes. In: Adams A, Sterling L (eds) Proc. AI’92, 5th Australian Joint Conference on Artificial Intelligence. World Scientific: Singapore, pp 343–348Google Scholar
  144. Raevsky OA, Fetisov VI, Trepalina EP, McFarland JW, Schaper KJ (2000) Quantitative estimation of drug absorption in humans for passively transported compounds on the basis of their physicochemical parameters. Quant Struct Act Relat 19:366–374CrossRefGoogle Scholar
  145. Rao S, Aoyama R, Schrag M, Trager WF, Rettie A, Jones JP (2000) A refined 3-dimensional QSAR of cytochrome P450 2C9: Computational predictions of drug interactions. J Med Chem 43:2789–2796PubMedCrossRefGoogle Scholar
  146. Remmel RP, Crews BC, Kozak KR, Algutkar AS, Marnett LJ (2004) Studies on the metabolism of the novel, selective cyclooxygenase-2 inhibitor indomethacin phenethylamide in rat, mouse, and human liver microsomes: Identification of active metabolites. Drug Metab Dispos 32:113–122PubMedCrossRefGoogle Scholar
  147. Rettie AE, Jones JP (2005) Clinical and toxicological relevance of CYP2C9: drug-drug interactions and pharmacogenetics. Annu Rev Pharmacol Toxicol 45:477–494PubMedCrossRefGoogle Scholar
  148. Rosenberg MF, Kamis AB, Callaghan R, Higgins CF, Ford RC (2003) Three-dimensional structures of the mammalian multidrug resistance P-glycoprotein demonstrate major conformational changes in the transmembrane domains upon nucleotide binding. J Biol Chem 278:8294–8299PubMedCrossRefGoogle Scholar
  149. Sadowski J, Rudolph C, Gasteiger J (1992) The generation of 3D models of host-guest complexes. Anal Chim Acta 265:233–241CrossRefGoogle Scholar
  150. Sadowski J, Gasteiger J, Klebe G (1994) Comparison of automatic three-dimensional model builders using 639 X-ray structures. J Chem Inf Comput Sci 34:1000–1008CrossRefGoogle Scholar
  151. Saiakhov R, Stefan LR, Klopman G (2000) Multiple-computer-automated structure elucidation model of the plasma protein binding affinity of diverse drugs. Perspect Drug Disc Des 19:133–155CrossRefGoogle Scholar
  152. Schlichting I, Berendsen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet RM, Ringe D, Petsko GA, Sligar SG (2000) The catalytic pathway of cytochrome p450cam at atomic resolution. Science 287:1615–1622PubMedCrossRefGoogle Scholar
  153. Schneider G, Neidhart W, Giller T, Schmid G (1999) “Scaffold-hopping” by topological pharmacophore search: a contribution to virtual screening. Angew Chem Int Ed Engl 38:2894–2896PubMedCrossRefGoogle Scholar
  154. Sevrioukova IF, Poulos TL (2010) Structure and mechanism of the complex between cytochrome P4503A4 and ritonavir. Proc Natl Acad Sci USA 107:18422–18427PubMedCrossRefGoogle Scholar
  155. Sheridan RP, Nachbar RB, Bush BL (1994) Extending the trend vector: the trend matrix and sample-based partial least squares. J Comput Aided Mol Des 8:323–340PubMedCrossRefGoogle Scholar
  156. Smith DA, Ackland MJ, Jones BC (1997) Properties of cytochrome P450 isoenzymes and their substrates. Part 1: active site characteristics. Drug Disc Today 2:406–414CrossRefGoogle Scholar
  157. Sprague PW (1995) Automated chemical hypothesis generation and database searching with CATALYST. Perspect Drug Disc Design 3:1–20CrossRefGoogle Scholar
  158. Stenberg P, Luthman K, Artursson P (1999a) Prediction of membrane permeability to peptides from calculated dynamic molecular surface properties. Pharm Res 16:205–212PubMedCrossRefGoogle Scholar
  159. Stenberg P, Luthman K, Ellens H, Lee CP, Smith PL, Lago A, Elliot JD, Artursson P (1999b) Prediction of the intestinal absorption of endothelin receptor antagonists using three theoretical methods of increasing complexity. Pharm Res 16:1520–1526PubMedCrossRefGoogle Scholar
  160. Stenberg P, Norinder U, Luthman K, Artursson P (2001) Experimental and computational screening models for the prediction of intestinal drug absorption. J Med Chem 44:1927–1937PubMedCrossRefGoogle Scholar
  161. Stouch TR, Kenyon JR, Johnson SR, Chen XQ, Doweyko A, Li Y (2003) In silico ADME/Tox: why models fail. J Comput Aided Mol Des 17:83–92PubMedCrossRefGoogle Scholar
  162. Sugano K, Yoshida S, Takaku M, Haramura M, Saitoh R, Nabuchi Y, Ushio H (2000) Quantitative structure-intestinal permeability relationship of benzamidine analogue thrombin inhibitor. Bioorg Med Chem Lett 10:1939–1942PubMedCrossRefGoogle Scholar
  163. Sugawara M, Takekuma Y, Yamada H, Kobayashi M, Iseki K, Miyazaki K (1998) A general approach for the prediction of the intestinal absorption of drugs: regression analysis using the physicochemical properties and drug-membrane electrostatic interactions. J Pharm Sci 87:960–966PubMedCrossRefGoogle Scholar
  164. SYBYL, Tripos, Inc. 1699 S. Hanley Rd., Suite 303, St. Louis, MO 63144-2913Google Scholar
  165. Tarcsay A, Keserü GM (2011) In silico site of metabolism prediction of cytochrome P450-mediated biotransformations. Exp Opin Drug Metab Toxicol 7:299–312CrossRefGoogle Scholar
  166. Trunzer M, Faller B, Zimmerlin A (2009) Metabolic soft spot identification and compound optimization in early discovery phases using MetaSite and LC/MC-MS validation. J Med Chem 52:329–335PubMedCrossRefGoogle Scholar
  167. Turner JV, Maddalena DJ, Agatonovic-Kustrin S (2004) Bioavailability prediction based on molecular structure for a diverse set of drugs. Pharm Res 21:68–82PubMedCrossRefGoogle Scholar
  168. van de Waterbeemd H, Gifford E (2003) ADMET in silico modelling: towards prediction paradise? Nature Rev Drug Disc 2:192–204CrossRefGoogle Scholar
  169. van de Waterbeemd H, Camenisch G, Folkers G, Raevsky OA (1996) Estimation of Caco-2 cell permeability using calculated molecular descriptors. Quant Struct Act Relat 15:480–490CrossRefGoogle Scholar
  170. Vaz RJ, Nayeem A, Santone K, Chandrasena G, Gavai AV (2005) A 3D-QSAR model for CYP2D6 inhibition in the aryloxypropanolamine series. Bioorg Med Chem Lett 15:3816–3820PubMedCrossRefGoogle Scholar
  171. Vaz RJ, Zamora I, Li Y, Reiling S, Shen J, Cruciani G (2010) The challenges of in silico contributions to drug metabolism in lead optimization. Exp Opin Drug Metab Toxicol 6:851–861CrossRefGoogle Scholar
  172. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623PubMedCrossRefGoogle Scholar
  173. Votano JR, Parham M, Hall LM, Hall LH, Kier LB, Oloff S, Tropsha A (2006) QSAR modeling of human serum protein binding with several modeling techniques utilizing structure – information representation. J Med Chem 49:7169–7181PubMedCrossRefGoogle Scholar
  174. Waller CL, Oprea TI, Giolitti A, Marshall GR (1993) 3-dimensional QSAR of human immunodeficiency-virus-(I) protease inhibitors. 1. A CoMFA study employing experimentally-derived alignment rules. J Med Chem 36:4152–4160PubMedCrossRefGoogle Scholar
  175. Wendt B, Cramer RD (2008) Quantitative series enrichment analysis (QSEA): a novel procedure for 3D-QSAR analysis. J Comput Aided Mol Des 22:541–551PubMedCrossRefGoogle Scholar
  176. Wendt B, Uhrig U, Bös F (2011a) Capturing structure-activity relationships from chemogenomic spaces. J Chem Inf Model 51:843–851PubMedCrossRefGoogle Scholar
  177. Wendt B, Mulbaier M, Wawro S, Schultes C, Alonso J, Janssen B, Lewis J (2011b) Toluidinesulfonamide hypoxia-induced factor 1 inhibitors: alleviating drug-drug interactions through use of PubChem data and comparative molecular field analysis guided synthesis. J Med Chem 54:3982–3986PubMedCrossRefGoogle Scholar
  178. Wess G (2002) How to escape the bottleneck of medicinal chemistry. Drug Disc Today 7:533–535CrossRefGoogle Scholar
  179. Wess G, Urmann M, Sickenberger B (2001) Medicinal chemistry: challenges and opportunities. Angew Chem Int Ed 40:3341–3350CrossRefGoogle Scholar
  180. Wessel MD, Jurs PC, Tolan JW, Muskal SM (1998) Prediction of human intestinal absorption of drugs from molecular structure. J Chem Inf Comput Sci 38:726–735PubMedCrossRefGoogle Scholar
  181. Wester MR, Yano JK, Schoch GA, Yang C, Griffin KJ, Stout CD, Johnson EF (2004) The structure of human cytochrome P450 2C9 complexed with flurbiprofen at 2.0-Å resolution. J Biol Chem 279:35630–35637PubMedCrossRefGoogle Scholar
  182. Williams PA, Cosme J, Sridhar V, Johnson EF, McRee DE (2000) Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol Cell 5:121–131PubMedCrossRefGoogle Scholar
  183. Williams PA, Cosme J, Ward A, Angove HC, Vinkovic DM, Jhoti H (2003) Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 424:464–468PubMedCrossRefGoogle Scholar
  184. Williams PA, Cosme J, Vinkovic DM, Ward A, Angove HC, Day PJ, Vonrhein C, Tickle I, Jhoti H (2004) Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science 305:683–686PubMedCrossRefGoogle Scholar
  185. Wold S (1978) Cross-validatory estimation of the number of component in factor and principal component models. Technometrics 4:397–405CrossRefGoogle Scholar
  186. Wold S, Albano C, Dunn WJ, Edlund U, Esbenson K, Geladi P, Hellberg S, Lindberg W, Sjöström M (1984) Multivariate data analysis in chemistry. In: Kowalski B (ed) Chemometrics: mathematics and statistics in chemistry. Reidel, Dordrecht, pp 17–95Google Scholar
  187. World Drug Index Database WDI97, Derwent Publications Ltd., distributed by Daylight Chemical Information Systems, IncGoogle Scholar
  188. Yano JK, Wester MR, Schoch GA, Griffin KJ, Stout CD, Johnson EF (2004) The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05 Å. J Biol Chem 279:38091–38094PubMedCrossRefGoogle Scholar
  189. Yasuo K, Yamaotsu N, Gouda H, Tsujishita H, Hirono S (2009) Structure-Based CoMFA As a Predictive Model - CYP2C9 Inhibitors As a Test Case. J Chem Inf Model 49:853–864Google Scholar
  190. Yates CR, Chang C, Kearbey JD, Yasuda K, Schuetz EG, Miller DD, Dalton JT, Swaan PW (2003) Structural determinants of P-glycoprotein mediated transport of glucocorticoids. Pharm Res 20:1794–1803PubMedCrossRefGoogle Scholar
  191. Yazdanian M, Glynn SL, Wright JL, Hawi A (1998) Correlating partitioning and caco-2 cell permeability of structural diverse small molecular weight compounds. Pharm Res 15:1490–1494PubMedCrossRefGoogle Scholar
  192. Yoshida F, Topliss JG (2000) QSAR model for drug human oral bioavailability. J Med Chem 43:2575–2585PubMedCrossRefGoogle Scholar
  193. Zamora I, Oprea T, Cruciani G, Pastor M, Ungell A-L (2003a) Surface descriptors for protein-ligand affinity prediction. J Med Chem 46:25–33PubMedCrossRefGoogle Scholar
  194. Zamora I, Afzelius L, Cruciani G (2003b) Predicting drug metabolism: a site of metabolism prediction tool applied to the cytochrome P450 2C9. J Med Chem 46:2313–2324PubMedCrossRefGoogle Scholar
  195. Zhao YH, Le J, Abraham MH, Hersey A, Eddershaw PJ, Luscombe CN, Butina D, Beck G, Sherborne B, Cooper I, Platts JA (2001) Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham descriptors. J Pharm Sci 90:749–784PubMedCrossRefGoogle Scholar
  196. Zhou D, Afzelius L, Grimm SW, Andersson TB, Zauhar RJ, Zamora I (2006) Comparison of methods for the prediction of the metabolic sites for CYP3A4-mediated metabolic reactions. Drug Metab Dispos 34:976–983PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.R&D, Lead Generation and Candidate RealizationSanofi Deutschland GmbHFrankfurt am MainGermany
  2. 2.R&D, Disposition, Safety and Animal ResearchSanofi Deutschland GmbHFrankfurt am MainGermany

Personalised recommendations