Methods in Cardiovascular Safety Pharmacology

  • Pascal Champeroux
  • Brian D. Guth
  • Michael Markert
  • Georg Rast


The inclusion of pharmacological studies (also known as general, secondary, or ancillary pharmacology) in the safety evaluation of new drugs is a well-established practice (Zbinden 1966; Alder and Zbinden 1973). These studies contribute to the safety profile of potential new drugs and provide pharmacological data that can be used for optimization of further compounds and the ultimate selection of compounds suitable for clinical development. The emergence of safety pharmacology as a specialty area distinct from toxicology was facilitated by the appearance of the ICH S7A guideline in which the rationale for safety pharmacology studies was laid out, and study types were defined (The European Agency for the Evaluation of Medicinal Products. Human Medicine Evaluation Unit 2000). However, one topic in particular was instrumental in focusing attention on safety pharmacology studies, namely the concern about drugs causing severe ventricular arrhythmias, including torsades de pointes and, in some cases, sudden death. One must not forget, however, that the purpose of conducting cardiovascular safety pharmacology studies is not just to define a specific proarrhythmic risk but to examine potential effects on the peripheral vasculature, the heart, or any other effect that may secondarily lead to an activation or depression of cardiovascular performance (Sarazan et al. 2011).


Action Potential Duration Purkinje Fiber hERG Channel Ventricular Repolarization Test Article 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

  1. Alder S, Zbinden G (1973) Use of pharmacological screening tests in subacute neurotoxicity studies of isoniazid, pyridoxine HCl and hexachlorophene. Agents Actions 3:233–243PubMedCrossRefGoogle Scholar
  2. Antzelevitch C, Sun Z-Q, Zhan Z-Q, Yan G-X (1996) Cellular and ionic mechanisms underlying erythromycin-induced long QT intervals and Torsade de Pointes. J Am Coll Cardiol 28:1836–1848PubMedCrossRefGoogle Scholar
  3. Antzelevitch C, Shimizu W, Yan G-X et al (1999) The M cell: its contribution to the ECG and to normal and abnormal electrical function of the heart. J Cardiovasc Electrophysiol 10:1124–1152PubMedCrossRefGoogle Scholar
  4. Authier S, J-f T, Gauvin D, Fruscia RD, Troncy E (2007) A cardiovascular monitoring system in conscious cynomolgus monkey for regulator safety pharmacology part 1: non-pharmacological validation. J Pharmacol Toxicol Methods 56(2):122–130PubMedCrossRefGoogle Scholar
  5. Bachmann A, Mueller S, Kopp K, Brueggemann A, Suessbrich H, Gelach U, Busch AE (2002) Inhibition of cardiac potassium currents by pentobarbital. Naunyn-Schmiedeberg’s Arch Pharmacol 365:29–37CrossRefGoogle Scholar
  6. Champeroux P, Martel E, Vannier C, Blanc V, Leguennec JY, Fowler J, Richard S (2000) The preclinical assessment of the risk for QT interval prolongation. Therapie 55:101–109PubMedGoogle Scholar
  7. Champeroux P, Viaud K, El Amrani AI, Fowler JS, Martel E, Le Guennec JY, Richard S (2005) Prediction of the risk of Torsade de Pointes using the model of isolated canine Purkinje fibres. Br J Pharmacol 144:376–385PubMedCrossRefGoogle Scholar
  8. Champeroux P, Ouillé A, Martel E, Fowler JS, Maurin A, Jude S, Lala P, Le Guennec JY, Richard S (2010) Interferences of the autonomic nervous system with drug induced QT prolongation: a point to consider in non-clinical safety studies. J Pharmacol Toxicol Methods 61:251–263PubMedCrossRefGoogle Scholar
  9. Champeroux P, Ouillé A, Martel E, Fowler JS, Maurin A, Richard S, Le Guennec JY (2011) A step towards characterisation of electrophysiological profile of torsadogenic drugs. J Pharmacol Toxicol Methods 63(3):269–278PubMedCrossRefGoogle Scholar
  10. Deveney AM, Kjellström A, Forsberg T, Jackson DM (1998) A pharmacological validation of radiotelemetry in conscious, freely moving rats. J Pharmacol Toxicol Methods 40:71–79PubMedCrossRefGoogle Scholar
  11. Dumaine R, Cordeiro JM (2007) Comparison of K + currents in cardiac Purkinje cells isolated from rabbit and dog. J Mol Cell Cardiol 42(2):378–389PubMedCrossRefGoogle Scholar
  12. Eckardt L, Haverkamp W, Mertens H et al (1998) Drug-related torsades de pointes in the isolated rabbit heart: comparison of clofilium, d, l-sotalol, and erythromycin. J Cardiovasc Pharmacol 32:425–434PubMedCrossRefGoogle Scholar
  13. Finlayson K, Turnbull L, January CT, Sharkey J, Kelly JS (2001a) 3 H-Dofetilide binding to HERG transfected membranes: a potential high throughput preclinical screen. Eur J Pharmacol 430(1):147–148PubMedCrossRefGoogle Scholar
  14. Finlayson K, Pennington AJ, Kelly JS (2001b) 3 H-Dofetilide binding in SHSY5Y and HEK 293 cells expressing a HERG-like K + channel? Eur J Pharmacol 412(3):202–212CrossRefGoogle Scholar
  15. Fossa AA, Gorczyca W, Wisialowski T, Yasgar A, Wang E, Crimin K, Volberg W, Zhou J (2007) Electrical alternans and hemodynamics in the anesthetized guinea pig can discriminate the cardiac safety of antidepressants. J Pharmacol Toxicol Methods 55(1):78–85PubMedCrossRefGoogle Scholar
  16. Franz MR (1991) Method and theory of monophasic action potential recording. Prog Cardiovasc Dis 6:347–368CrossRefGoogle Scholar
  17. Gintant GA, Limberis JT, McDermott JS et al (2001) The canine Purkinje fiber: an in vitro model system for acquired long QT syndrome and drug-induced arrhythmogenesis. J Cardiovasc Pharmacol 37:607–618PubMedCrossRefGoogle Scholar
  18. Gralinski M (2000) The assessment of potential for QT interval prolongation with new pharmaceuticals. Impact on drug development. J Pharmacol Toxicol Methods 43:91–99PubMedCrossRefGoogle Scholar
  19. Gralinski MR (2003) The dog’s role in the preclinical assessment of QT interval prolongation. Toxicol Pathol 31(Suppl):11–16PubMedGoogle Scholar
  20. Guth BD, Germeyer S, Kolb W, Markert M (2004) Developing a strategy for the nonclinical assessment of proarrhythmic risk of pharmaceutical due to prolonged ventricular repolarization. J Pharmacol Toxicol Methods 49:159–169PubMedCrossRefGoogle Scholar
  21. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflüger’s Arch 391:85–100CrossRefGoogle Scholar
  22. Hamlin RL, Kijtawornrat A, Keene BW, Hamlin DM (2003) QT and RR intervals in conscious and anesthetized guinea pigs with highly varying RR intervals and given QTc-lengthening test articles. Toxicol Sci 76(2):437–442PubMedCrossRefGoogle Scholar
  23. Hanson LA, Bass AS, Gintant G, Mittelstadt S, Rampe D, Thomas K (2006) ILSI-HESI cardiovascular safety subcommittee initiative: evaluation of three non-clinical models of QT prolongation. J Pharmacol Toxicol Methods 54(2):116–129PubMedCrossRefGoogle Scholar
  24. Haverkamp W, Breithardt G, Camm AJ et al (2000) The potential for QT prolongation and pro-arrhythmia by non-anti-arrhythmic drugs: clinical and regulatory implications report on a policy conference of the European society of cardiology. Cardiovasc Res 47:219–233PubMedCrossRefGoogle Scholar
  25. Hey JA, del Prado M, Kreutner W, Egan RW (1996) Cardiotoxic and drug interaction profile of the second generation antihistamines ebastine and terfenadine in an experimental model of torsade de pointes. (Arzneim Forsch) Drug Res 46:159–163Google Scholar
  26. Holzgrefe HH, Cavero I, Gleason CR, Warner WA, Buchanan LV, Gill MW, Burkett DE, Durham SK (2007) Novel probabilistic method for precisely correcting the QT interval for heart rate in telemetered dogs and cynomolgus monkeys. J Pharmacol Toxicol Methods 55:159–175PubMedCrossRefGoogle Scholar
  27. Hondeghem LM (1994) Computer aided development of antiarrhythmic agents with class IIIa properties. J Cardiovasc Electrophysiol 5:711–721PubMedCrossRefGoogle Scholar
  28. Hondeghem LM, Carlsson L, Duker G (2001) Instability and triangulation of the action potential predict serious proarrhythmia, but action potential duration prolongation is antiarrhythmic. Circulation 103:2004–2013PubMedCrossRefGoogle Scholar
  29. Japanese Ministry of Health and Welfare (1995) Japanese guidelines for nonclinical studies of drugs manual. Pharmaceutical Affairs Bureau, Japanese Ministry of Health and Welfare, Yakugi Nippo, JapanGoogle Scholar
  30. Johna R, Mertens H, Haverkamp W et al (1998) Clofilium in the isolated perfused rabbit heart: a new model to study proarrhythmia by class III antiarrhythmic drugs. Basic Res Cardiol 93:127–135PubMedCrossRefGoogle Scholar
  31. Kattman SJ, Koonce CH, Swanson BJ, Anson BD (2011) Stem cells and their derivatives: a renaissance in cardiovascular translational research. J Cardiovasc Transl Res 4(1):66–72PubMedCrossRefGoogle Scholar
  32. Kii Y, Hayashi S, Tabo M, Shimosato T, Fukuda H, Itoh T, Amano H, Saito M, Morimoto H, Yamada K, Kanda A, Ishitsuka T, Yamazaki T, Kiuchi Y, Taniguchi S, Mori T, Shimizu S, Tsurubuchi Y, Yasuda S-I, Kitani S-I, Shimada C, Kabayashi K, Komeno M, Kasai C, Hombo T, Yamamoto K (2005) J Pharmacol Sci 99(5):449–457PubMedCrossRefGoogle Scholar
  33. Kinter LB, Valentin J-P (2002) Safety pharmacology and risk assessment. Fundam Clin Pharmacol 16:175–182PubMedCrossRefGoogle Scholar
  34. Lacroix P, Provost D (2000) Safety pharmacology: the cardiovascular system. Therapie 55:63–69PubMedGoogle Scholar
  35. Leisgen C, Kuester M, Methfessel C (2007) The roboocyte: automated electrophysiology based on Xenopus oocytes. Methods Mol Biol 403:87–109PubMedCrossRefGoogle Scholar
  36. Markert M, Klumpp A, Trautmann T, Guth BD (2004) A novel propellant-free inhalation drug delivery system for cardiovascular safety pharmacology evaluations in dogs. J Pharmacol Toxicol Methods 50:109–119PubMedCrossRefGoogle Scholar
  37. Markert M, Shen R, Trautmann T, Guth B (2011) Heart rate correction models to detect QT interval prolongation in novel pharmaceutical development. J PharmacolToxicol Methods 64:25–41CrossRefGoogle Scholar
  38. Mellor PM, Pettinger SJ (1986) Application of radio telemetry to cardiovascular monitoring in unrestrained animals. J Pharmacol Methods 16:181–184PubMedCrossRefGoogle Scholar
  39. Meyners M, Markert M (2004) Correcting the QT interval for changes in HR in pre-clinical drug development. J Pharmacol Toxicol Methods 43:445–450Google Scholar
  40. Nattel S (1999) The molecular and ionic specificity of antiarrhythmic drug actions. J Cardiovasc Electrophysiol 19:272–282CrossRefGoogle Scholar
  41. Netzer R, Ebneth A, Bischoff U, Pongs O (2001) Screening lead compounds for QT interval prolongation. Drug Discov Today 6(2):78–84PubMedCrossRefGoogle Scholar
  42. Netzer R, Bischoff U, Ebneth A (2003) HTS techniques to investigate the potential effects of compounds on cardiac ion channels at early-stages of drug discovery. Curr Opin Drug Discov Devel 6(4):462–469PubMedGoogle Scholar
  43. Pourrias B, Porsolt RD, Lacroix P (1999) QT interval prolongation by noncardiovascular drugs. A proposed assessment strategy. Drug Dev Res 47:55–62CrossRefGoogle Scholar
  44. Rocchiccioli C, Saad MA, Elghozi JL (1989) Attenuation of the baroreceptor reflex by propofol anesthesia in the rat. J Cardiovasc Pharmacol 14(4):631–635PubMedCrossRefGoogle Scholar
  45. Sarazan RD, Mittelstadt S, Guth B, Koerner J, Zhang J, Pettit S (2011) Cardiovascular function in non-clinical drug safety assessment: current issues & opportunities. Int J Toxicol 30(3):272–286PubMedCrossRefGoogle Scholar
  46. Schierok H, Markert M, Pairet M, Guth B (2000) Continuous assessment of multiple vital physiological functions in conscious freely moving rats using telemetry and a plethysmography system. J Pharmacol Toxicol Methods 43:211–217PubMedCrossRefGoogle Scholar
  47. Snyders DJ, Chaudhary A (1996) High affinity open channels blockade by dofetilide of HERG expressed in a human cell line. Mol Pharmacol 49:949–955PubMedGoogle Scholar
  48. Stubhan M, Markert M, Mayer K, Trautmann T, Klumpp A, Henke J, Guth B (2008) Evaluation of cardiovascular and ECG parameters in the normal, freely moving Göttingen Minipig. J Pharmacol Toxicol Methods 57(3):202–211PubMedCrossRefGoogle Scholar
  49. Tashibu H, Mizazaki H, Aoki K, Akie Y, Yamamoto K (2005) QT PRODACT: In vivo QT assay in anesthetized dog for detecting the potential for QT interval prolongation by human pharmaceuticals. J Pharmacol Sci 99(5):473–486PubMedCrossRefGoogle Scholar
  50. Teschemacher AG, Seward EP, Hancox JC, Witchel HJ (1999) Inhibition of the current of heterologously expressed HERG potassium channels by imipramine and amitriptyline. Br J Pharmacol 128:479–485PubMedCrossRefGoogle Scholar
  51. The European Agency for the Evaluation of Medicinal Products. Human Medicine Evaluation Unit (2000) ICH topic S7, safety pharmacology studies for human pharmaceuticals. Note for guidance on safety pharmacology studies in human pharmaceuticalsGoogle Scholar
  52. The European Agency for the Evaluation of Medicinal Products. Human Medicines Evaluation Unit. Committee for Proprietary Medicinal Products (1997) Points to consider: the assessment of the potential for QT prolongation by non-cardiovascular medicinal productsGoogle Scholar
  53. Usui T, Sugiyama A, Ishida Y, Satoh Y, Sasaki Y, Hashimoto K (1998) Simultaneous assessment of the hemodynamic, cardiomechanical and electrophysiological effects of terfenadine on the in vivo canine model. Heart Vessels 13:49–57PubMedCrossRefGoogle Scholar
  54. Valentin JP, Hoffmann P, DeClerck F et al (2004) Review of the predictive value of the Langendorff heart model (Screenit system) in assessing the proarrhythmic potential of drugs. J Pharmacol Toxicol Methods 49:171–181PubMedCrossRefGoogle Scholar
  55. Van der Linde HJ, Van Deuren B, Teisman A, Towart R, Gallagher DJ (2008) The effect of changes in core body temperature on the QT interval in beagle dogs: a previously ignored phenomenon, with a method for correction. Br J Pharmacol 154:1474–1481PubMedCrossRefGoogle Scholar
  56. Wang J, Della Penna K, Wang H, Karczewski J, Connolly TM, Koblan KS, Bennett PB, Salata JJ (2003) Functional and pharmacological properties of canine ERG potassium channels. Am J Physiol Heart Circ Physiol 284(1):H256–H267PubMedGoogle Scholar
  57. Weissenburger J, Davy JM, Chézalviel F (1993) Experimental models of torsades de pointes. Fundam Clin Pharmacol 7:29–38PubMedCrossRefGoogle Scholar
  58. Weissenburger J, Nesterenko VV, Antzelevitch C (2000) Transmural heterogeneity of ventricular repolarization under baseline and long QT conditions in the canine heart in vivo: torsades de pointes develops with halothane but not pentobarbital anesthesia. J Cardiovasc Electrophysiol 11(3):290–304PubMedCrossRefGoogle Scholar
  59. Witchell HJ, Milnes JT, Mitcheson JS, Hancox JC (2002) Troubleshooting problems with in vitro screening of drugs for QT interval prolongation using HERG K+ channels expressed in mammalian cell lines and Xenopus oocytes. J Pharmacol Toxicol Methods 48:65–80CrossRefGoogle Scholar
  60. Yao X, Anderson DL, Ross SA, Lang DG, Desai BZ, Cooper DC, Wheelan P, McIntyre MS, Bergquist ML, MacKenzie KI, Becherer JD, Hashim MA (2008) Predicting QT prolongation in humans during early drug development using hERG inhibition and an anaesthetized guinea-pig model. Br J Pharmacol 154:1446–1456PubMedCrossRefGoogle Scholar
  61. Yuill KH, Borg JJ, Ridley JM et al (2004) Potent inhibition of human cardiac potassium (HERG) channels by the anti-estrogen agent clomiphene- without QT interval prolongation. Biochem Biophys Res Commun 318:556–561PubMedCrossRefGoogle Scholar
  62. Zbinden G (1966) The significance of pharmacological screening tests in the preclinical safety evaluation of new drugs. J New Drugs 6:1–7PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pascal Champeroux
    • 1
  • Brian D. Guth
    • 2
  • Michael Markert
    • 2
  • Georg Rast
    • 2
  1. 1.CERB, Chemin de MontifaultBaugyFrance
  2. 2.Boehringer Ingelheim Pharma GmbH & Co KGBiberach an der RissGermany

Personalised recommendations