Advertisement

Absorption: In Vivo Tests (Radiolabeled)

  • Volker Krone

Abstract

The use of radiolabeled molecules allows a drug and its labeled metabolites to be followed throughout the body and excreta over time. The radioactivity concentration can be tracked in blood and plasma as well as in tissues. Whether the drug with its specific radioactivity administered to the body is completely captured can be proven by calculating the so-called mass balance.

Keywords

Radioactivity Concentration Enterohepatic Circulation Placental Transfer Stomach Tube Collection Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

  1. Bermejo M, Gonzalez-Alvarez I (2008) Preclinical development handbook. In: Gad SC (ed) How and where are drugs absorbed? Chapter 8. Wiley, Hoboken, pp 249–280Google Scholar
  2. Beumer JH, Eiseman JL, Merrill JE (2008) Preclinical development handbook. In: Gad SC (ed) Mass balance studies, chapter 33. Wiley, Hoboken, pp 103–1131Google Scholar
  3. Bornschein RL, Fox DA, Michaelson LA (1977) Estimation of daily exposure in neonatal rats receiving lead via dam’s milk. Toxicol Appl Pharmacol 40:577–587PubMedCrossRefGoogle Scholar
  4. Bruin GJM, Faller T, Wiegand H, Schweitzer A, Nick H, Schneider J, Boernsen K, Waldmeier F (2008) Pharmacokinetics, distribution, metabolism, and excretion deferasirox and its iron complex in rats. Drug Metab Dispos 36(12):2523–2538PubMedCrossRefGoogle Scholar
  5. Cartwright AC, Matthews BR (eds) (1994) International pharmaceutical product registration, aspects of quality, safety and efficacy. Taylor & Francis, London, 581ffGoogle Scholar
  6. Chen L-J, Lebetkin EH, Nwakpuda EI, Burka LT (2007) Metabolism and disposition of n-butyl glycidyl ether in F344 rats and B6C3F1 mice. Drug Metab Dispos 35(12):2218–2224PubMedCrossRefGoogle Scholar
  7. Chiou WL (1989) The phenomenon and rationale of marked dependence of drug concentration on blood sampling site, implications in pharmacokinetics. Pharmacodynamics, toxicology and therapeutics (Part I and II). Clin Pharmacokinet 17:175–199, 275–290PubMedCrossRefGoogle Scholar
  8. Davis CB, Crysler CS, Boppana VK et al (1994) Disposition of growth hormone-releasing peptide (SK&F 110679) in rat and dog following intravenous or subcutaneous administration. Drug Metab Dispos 22:90–98PubMedGoogle Scholar
  9. Dix KJ, Coleman DP, Fossett JE et al (2001) Disposition of propargyl alcohol in rat and mouse after intravenous, oral, dermal and inhalation exposure. Xenobiotica 31:357–375PubMedCrossRefGoogle Scholar
  10. Dyer A (1980) Liquid scintillation counting practice. Heyden & Son, London/PhiladelphiaGoogle Scholar
  11. Endo M, Yamada Y, Kohno M et al (1992) Metabolic fate of the new angiotensin-converting enzyme inhibitor Imidapril in animals. Arzneim Forsch/Drug Res 42:483–489Google Scholar
  12. Gledhill A, Wake A, Hext P, Leibold E, Shiotskuka R (2005) Absorption, distribution, metabolism and excretion of an inhalation dose of [14C] 4,40-methylenediphenyl diisocyanate in the male rat. Xenobiotica 35(3):273–292PubMedCrossRefGoogle Scholar
  13. González JE, León M, Hernández I, Garrido G, Casacó A (2011) Effect of the maternofetal and milk transfer of the anti-epidermal growth factor receptor monoclonal antibody 7A7 in mice. Placenta 32:470–474PubMedCrossRefGoogle Scholar
  14. Granero L, Polache A (2008) Preclinical development handbook. In: Gad SC (ed) Absorption of drugs after oral administration, chapter 9. Wiley, Hoboken, pp 281–321Google Scholar
  15. Herman JL, Chay SH (1998) Quantitative whole-body autoradiography in pregnant rabbits to determine fetal exposure of potential teratogenic compounds. J Pharmacol Toxicol Methods 39:29–33PubMedCrossRefGoogle Scholar
  16. Hoehle SI, Knudsen GA, Sanders JM, Sipes IG (2009) Absorption, distribution, metabolism, and excretion of 2,2-Bis(bromomethyl)-1,3-propanediol in male Fischer-344 rats. Drug Metab Dispos 37(2):408–416PubMedCrossRefGoogle Scholar
  17. Hoffmann HD, Leibold E, Ehnes C, Fabian E, Landsiedel R, Gamer A, Poole A (2010) Dermal uptake and excretion of 14 C-toluene diisocyante (TDI) and 14 C-methylene diphenyl diisocyanate (MDI) in male rats. Clinical signs and histopathology following dermal exposure of male rats to TDI. Toxicol Lett 199:364–371PubMedCrossRefGoogle Scholar
  18. Huskey S-EW, Dean BJ, Doss GA, Wang Z, Hop CECA, Anari R, Finke PE, Robichaud AJ, Zhang M, Wang B, Strauss JR, Cunningham PK, Feeney WP, Franklin RB, Baillie TA, Chiu S-HL (2004) The metabolic disposition of aprepitant, a substance p receptor antagonist, in rats and dogs. Drug Metab Dispos 32(2):246–258PubMedCrossRefGoogle Scholar
  19. Johnson P, Rising PA (1978) Techniques for assessment of biliary excretion and enterohepatic circulation in the Rat. Xenobiotica 8:27–36PubMedCrossRefGoogle Scholar
  20. Koyama K, Takahashi M, Nakai N, Takakusa H, Murai T, Hoshi M, Yamamura N, Kobayashi N, Okazaki O (2010) Pharmacokinetics and disposition of CS-8958, a long-acting prodrug of the novel neuraminidase inhibitor laninamivir in rats. Xenobiotica 40(3):207–216PubMedCrossRefGoogle Scholar
  21. Krishna R, Yao M, Srinivas NR et al (2002) Disposition of radiolabeled BMS-204352 in rats and dogs. Biopharm Drug Dispos 23:41–46PubMedCrossRefGoogle Scholar
  22. Krull I, Swartz M (1998) Determining limits of detection and quantitation. Liq Chromatogr Gas Chromatogr 16:922–924Google Scholar
  23. Mano Y, Sonoda T, Nakamura E, Usui T, Kamimura H (2004) Absorption, distribution, metabolism and excretion of YM466, a novel factor Xa inhibitor, in rats. Biopharm Drug Dispos 25:253–260PubMedCrossRefGoogle Scholar
  24. Mathews JM, Black SR, Burka LT (1998) Disposition of butanal oxime in rat following oral, intravenous and dermal administration. Xenobiotica 28:767–777PubMedCrossRefGoogle Scholar
  25. Mepham TB (1983) Biochemistry of Milk. In: “Milk Yield” in Chapter 1, Physiological aspects of lactation. Elsevier, Amsterdam/New York, pp. 3–28Google Scholar
  26. Miraglia L, Pagliarusco S, Bordini E, Martinucci S, Pellegatti M (2010) Metabolic disposition of casopitant, a potent neurokinin-1 receptor antagonist, in mice, rats, and dogs. Drug Metab Dispos 38(10):1876–1891PubMedCrossRefGoogle Scholar
  27. Mun JG, Grannan MD, Lachcik PJ, Reppert A, Yousef GG, Rogers RB, Janle EM, Weaver CM, Lila MA (2009) In vivo metabolic tracking of 14 C-radiolabelled isoflavones in kudzu (Pueraria lobata) and red clover (Trifolium pratense) extracts. Br J Nutr 102:1523–1530PubMedCrossRefGoogle Scholar
  28. Okuyama Y, Momota K, Morino A (1997) Pharmacokinetics of prulifloxacin. Arzneim Forsch/Drug Res 47:276–284Google Scholar
  29. Oskarsson A, Möller N (2004) A method for studies on milk excretion of chemicals in mice with 2,2,4,4,5-pentabromodiphenyl ether (BDE-99) as a model. Toxicol Lett 151:327–334PubMedCrossRefGoogle Scholar
  30. Pohland RC, Vavrek MT (1991) Ameltolide II: placental transfer of radiocarbon following the oral administration of a novel anticonvulsant in rats. Teratology 44:45–49PubMedCrossRefGoogle Scholar
  31. Saillenfait AM, Payan JP, Beydon D et al (1997) Assessment of the developmental toxicity, metabolism, and placental transfer of N, N-Dimethylformamide administered to pregnant rats. Fundam Appl Toxicol 39:33–43PubMedCrossRefGoogle Scholar
  32. Simonsen L, Petersen MB, Benfeldt E, Serup J (2002) Development of an in vivo animal model for skin penetration in hairless rats assessed by mass balance. Skin Pharmacol Appl Skin Physiol 15:414–424PubMedCrossRefGoogle Scholar
  33. Sumner SCJ, Fennell TR, Snyder RW, Taylorc GF, Lewinc AH (2010) Distribution of carbon-14 labeled C60 ([14 C] C60) in the pregnant and in the lactating dam and the effect of C60 exposure on the biochemical profile of urine. J Appl Toxicol 30(4):354–360PubMedGoogle Scholar
  34. Suwelack D, Weber H, Maruha D (1985) Pharmacokinetics of Nimodipine. Arzneim Forsch/Drug Res 35:1787–1794Google Scholar
  35. Tanayama S, Momose S, Kanai Y, Shirakawa Y (1974) Metabolism of 8-chloro-6-phenyl-4 H-s-triazolo[4,3-a][1,4]benzodiazepine (D-40TA), a new central depressant IV. Placental transfer and excretion in milk in rats. Xenobiotica 4:219–227PubMedCrossRefGoogle Scholar
  36. Thomas CR, Lowy C (1995) Bidrectional placental transfer (“leak”) of L-glucose in control and diabetic rats. Acta Diabetol 32:23–27PubMedCrossRefGoogle Scholar
  37. Tse FLS, Ballard F, Jaffe JM, Schwarz HJ (1983) Enterohepatic circulation of radioactivity following an oral dose of [14 C]temazepam in the rat. J Pharm Pharmacol 35(4):225–228PubMedCrossRefGoogle Scholar
  38. Umehara K-I, Seya K, Iwatsubo T, Noguchi K, Usui T, Kamimura H (2008) Tissue distribution of YM758, a novel If channel inhibitor, in pregnant and lactating rats. Xenobiotica 38(10):1274–1288PubMedCrossRefGoogle Scholar
  39. Wang L, He K, Maxwell B, Grossman SC, Tremaine LM, Humphreys WG, Zhang D (2011) Tissue distribution and elimination of [14 C]apixaban in rats. Drug Metab Dispos 39(2):256–264PubMedCrossRefGoogle Scholar
  40. Webber C, Stokes CA, Persiani S et al (2004) Absorption, distribution, metabolism and excretion of the cholecystokinin-1 antagonist dexloxiglumide in the dog. Eur J Drug Metab Pharmacokinet 29:15–23PubMedCrossRefGoogle Scholar
  41. Xu L, Woodworth J, Yang L, Klunk LJ, Prakash C, Dawson K, Stecher S (2009) Metabolism and excretion of BG12 in rats and humans following oral administration of a single oral dose of [14 C]BG12. Drug Metabol Rev 41(Suppl 3):133Google Scholar
  42. Zhang D, Wang L, Raghavan N, Zhang H, Li W, Cheng PT, Yao M, Zhang L, Zhu M, Bonacorsi S, Yeola S, Mitroka J, Hariharan N, Hosagrahara V, Chandrasena G, Shyu WC, Griffith Humphreys W (2007) Comparative metabolism of radiolabeled muraglitazar in animals and humans by quantitative and qualitative metabolite profiling. Drug Metab Dispos 35(1):150–167PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.DI & A DMPKSanofi Pharma Deutschland GmbHFrankfurtGermany

Personalised recommendations