Skip to main content
  • 3180 Accesses

Abstract

The ability to permeate a biological membrane is a prerequisite for oral administered drugs. The primary absorption pathway for the majority of drugs after oral dosage still seems to be the passive transcellular diffusion pathway. A number of methods used in pharmaceutical research to early on estimate the passive absorption potential of a compound by means of a variety of cell free techniques like reversed phase HPLC, artificial membranes or liposomes and PAMPA are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

  • Abdiche YN, Myszka DG (2004) Probing the mechanism of drug/lipid membrane interactions using biacore. Anal Biochem 328:233–243

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Figueroa MJ, Pessoa-Mahana CD, Palavecino-Gonzalez ME, Mella-Raipan J, Espinosa-Bustos C, Lagos-Munoz ME (2011) Evaluation of the membrane permeability (PAMPA and Skin) of benzimidazoles with potential cannabinoid activity and their relation with the biopharmaceutical classification system (BCS). AAPS Pharm Sci Tech 12(2):573–578

    Article  CAS  Google Scholar 

  • Artursson P, Karlsson J (1991) Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Comm 175:880–885

    Article  PubMed  CAS  Google Scholar 

  • Avdeef A (2005) The rise of PAMPA. Exp Opin Drug Metab Toxicol 1(2):325–342

    Article  CAS  Google Scholar 

  • Avdeef A, Box KJ, Comer EA, Hibbert C, Tam KY (1998) pH metric logP 10. Determination of liposomal membrane-water partition coefficients of ionizable drugs. Pharm Res 15:209–215

    Article  PubMed  CAS  Google Scholar 

  • Avdeef A, Strafford M, Block E, Balogh MP, Chambliss W, Khan I, Avdeef A, Strafford M, Block E, Balogh MP, Chambliss W, Khan I (2001) Drug absorption in vitro model: filter immobilized artificial membranes 2. Studies of permeability properties of lactones in piper methysticum forst. Eur J Pharm Sci 14:271–280

    Article  PubMed  CAS  Google Scholar 

  • Avdeef A, Nielsen PE, Tsinman O (2004) PAMPA-a drug absorption model 11. Matching the in vivo unstirred water layer thickness by individual-well stirring in microtitre plates. Eur J Pharm Sci 22:365–374

    PubMed  CAS  Google Scholar 

  • Avdeef A, Bendels S, Li D, Faller B, Kansy M, Sugano K, Yamauchi Y (2007) PAMPA-critical factors for better predictions of absorption. J Pharm Sci 96(11):2893–2909

    Article  PubMed  CAS  Google Scholar 

  • Avdeef A, Kansy M, Bendels S, Tsinman K (2008) Absorption-excipient-pH classification gradient maps: spaingly soluble drugs and the pH partition hypothesis. Eur J Pharm Sci 33(81):29–41

    Article  PubMed  CAS  Google Scholar 

  • Baczek T, Markuszewski M, Kaliszan R, van Straten MA, Claessens HA (2000) Linear and quadratic relationships between retention and organic modifier content in eluent in reversed phase high-performance liquid chromatography: a systematic comparative statistical study. J High Resol Chromatogr 23:667

    Article  CAS  Google Scholar 

  • Baird CL, Courtenay ES, Myszka DG (2002) Surface plasmon resonance characterization of drug/liposome interactions. Anal Biochem 310:93–99

    Article  PubMed  CAS  Google Scholar 

  • Balon K, Riebesehl BU, Müller BW (1999a) Drug liposome partitioning as a tool for the prediction of human passive intestinal absorption. Pharm Res 16:882–888

    Article  PubMed  CAS  Google Scholar 

  • Balon K, Riebesehl BU, Müller BW (1999b) Determination of liposome partitioning of ionizable drugs by titration. J Pharm Sci 88:802–806

    Article  PubMed  CAS  Google Scholar 

  • Beigi F, Gottschalk I, Lagerquist Hägglund C, Haneskog L, Brekkan E, Zhang Y, Österberg T, Lundahl P (1998) Immobilized liposome and biomembrane partitioning chromatography of drugs for prediction of drug transport. Int J Pharm 164:129–137

    Article  CAS  Google Scholar 

  • Benhaim D, Grushka E (2008) Effect of n-octanol in the mobile phase on lipophilicity determination by reversed phase high-performance liquid chromatography on a modified silica column. J Chromatogr A 1209:111–119

    Article  PubMed  CAS  Google Scholar 

  • Bermejo M, Avdeef A, Ruiz A, Nalda R, Ruell JA, Tsinman O, Gonzalez I, Fernandez C, Sanchez G, Garrigues TM, Merino V (2004) PAMPA-a drug absorption model 7. Comparing rat in situ, Caco-2, and PAMPA permeability of flouroquinolones. Eur J Pharm Sci 21:429–441

    Article  PubMed  CAS  Google Scholar 

  • Berthod A, Carda-Broch S (2004) Determination of liquid-liquid partition coefficients by separation methods. J Chrom A 1037:3–14

    Article  CAS  Google Scholar 

  • Bertucci C, Piccola A, Pistolozzi M (2007) Optical biosensors as a tool for early determination of absorption ans distribution parameters of lead candidates and drugs. Comb Chem High Throughput Screen 10:433–440

    Article  PubMed  CAS  Google Scholar 

  • Krämer S, Testa B (eds) (2009) Proceedings of the 4th LogP Symposium focused on PhysChem and ADMET Profiling in Drug research. Chemistry & Biodiversity 9 (11): 1759–2451

    Google Scholar 

  • Box K, Comer J, Huque F (2006) Correlations between PAMPA permeability and log P. In: Testa B, Krämer SD, Wunderli-Allensbach H, Folkers G (eds) Pharmacokinetic profiling in drug research. Wiley-VCH, Weinheim, pp 203–220

    Google Scholar 

  • Camenisch G, Folkers G, Van de Waterbeemd H (1997) Comparison of passive drug transport through Caco-2 cells and artificial membranes. Int J Pharm 147:61–70

    Article  CAS  Google Scholar 

  • Camurri G, Zaramella A (2001) High throughput liquid chromatography/mass spectrometry method for the determination of the chromatographic hydrophobicity index. Anal Chem 73:3716–3722

    Article  PubMed  CAS  Google Scholar 

  • Chan EC, Tan WL, Ho PC, Fang LJ (2005) Modeling Caco-2 permeability of drugs using immobilized artificial membrane chromatography and physicochemical descriptors. J Chromatogr A 1072:159–168

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Murawski A, Patel K, Crespi CL, Balimane PV (2008) A novel design of artificial membrane for improving the PAMPA model. Pharm Res 24(7):1511–1520

    Article  CAS  Google Scholar 

  • Cserhati T, Szögy M (2010) Liposomes in chromatography. Biomed Chromatogr 24:1265–1277

    Article  PubMed  CAS  Google Scholar 

  • Danelian E, Karlén A, Karlsson R, Winiwarter S, Hansson A, Löfas S, Lennernäs H, Hämälainen MD (2000) SPR biosensor studies of the direct interaction between 27 drugs and a liposome surface: correlation with fraction absorbed in humans. J Med Chem 43:2083–2086

    Article  PubMed  CAS  Google Scholar 

  • Donovan SF, Pescatore MC (2002) Method for measuring the logarithm of the octanol-water partition coefficient by using short octadecyl-poly(vinyl alcohol) high performance liquid chromatography columns. J Chrom A 952:47–61

    Article  CAS  Google Scholar 

  • Du CM, Valko K, Bevan C, Reynolds D, Abraham MH (1998) Rapid gradient RP-HPLC method for lipophilicity determination: solvation equation based comparison with isocratic methods. Anal Chem 70:4228–4234

    Article  CAS  Google Scholar 

  • Engvall C, Lundahl P (2004) Drug partitioning on immobilized porcine intestinal brush border membranes. J Chrom A 1031:107–112

    Article  CAS  Google Scholar 

  • Faller B (2008) Arificial membrane assays to assess permeability. Curr Drug Metab 9:886–892

    Article  PubMed  CAS  Google Scholar 

  • Faller B, Grimm HP, Loeuillet-Ritzler F, Arnold S, Briand X (2005) High throughput lipophilicity measurement with immobilized artificial membranes. J Med Chem 48:2571–2576

    Article  PubMed  CAS  Google Scholar 

  • Flaten GE, Dhanikula AB, Luthman K, Brandl M (2006) Drug permeability across a phospholipid vesicle based barrier: a novel approach for studying passive diffusion. Eur J Pharm Sci 27:80–90

    Article  PubMed  CAS  Google Scholar 

  • Fuguet E, Rafols C, Bosch E, Roses M (2007) Determination of the chromatographic hydrophobicity index for ionisable solutes. J Chromatogr A 1173:110–119

    Article  PubMed  CAS  Google Scholar 

  • Galinis-Luciani D, Nguyen M, Yazdanian M (2007) Is PAMPA a useful tool for discovery. J Pharm Sci 96:2886–2892

    Article  PubMed  CAS  Google Scholar 

  • Giaganis C, Tsantili-Kakoulidou A (2008) Alternative measures of lipophilicity: from octanol-water partitioning to IAM retention. J Pharm Sci 97:2984–3004

    Article  CAS  Google Scholar 

  • Godard T, Grushka E (2011) The use of phospholipid modified column for the determination of lipophilic properties in high performance liquid chromatography. J Chromatogr A 1218:1211–1218

    Article  PubMed  CAS  Google Scholar 

  • Hansch C, Fujita TJ (1964) π-σ−π analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 86:1616

    Article  CAS  Google Scholar 

  • Henchoz Y, Bard B, Guillarme D, Carrupt P-A, Veuthy J-L, Martel S (2009) Analytical tools for the physicochemical profiling of drug candidates to predict absorption/distribution. Anal Bioanal Chem 394:707–729

    Article  PubMed  CAS  Google Scholar 

  • Henchoz Y, Guillarme D, Martel S, Rudaz S, Veuthey J-L, Carrupt P-A (2009b) Fast logP determination by ultra-high-pressure liquid chromatography coupled with UV and mass spectrometry detection. Anal Bioanal Chem 394:1919–1930

    Article  PubMed  CAS  Google Scholar 

  • Kaliszan R (2007) QSRR: quantitative structure-(chromatographic) retention relationships. Chem Rev 107:3212–3246

    Article  PubMed  CAS  Google Scholar 

  • Kansy M, Senner F, Gubernator K (1998) Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J Med Chem 41:1007–1010

    Article  PubMed  CAS  Google Scholar 

  • Kanzer J, Tho I, Flaten GE, Mägerlein M, Hölig P, Frocker G, Brandl M (2010) In-vitro permeability screening of melt extrude formulations containing poorly water-soluble drug compounds using the phospholipid vesicle-based barrier. J Pharm Pharmacol 62:1591–1598

    Article  PubMed  CAS  Google Scholar 

  • Kararli TT (1995) Comparison of gastrointestinal anatomy physiology and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos 16:351–380

    Article  PubMed  CAS  Google Scholar 

  • Kerns EH (2001a) High throughput physicochemical profiling for drug discovery. J Pharm Sci 90:1838–1858

    Article  PubMed  CAS  Google Scholar 

  • Kerns EH (2001b) High throughput physicochemical profiling for drug discovery. J Pharm Sci 90:1053–1083

    Article  Google Scholar 

  • Kerns EH, Di L (2003) Pharmaceutical profiling in drug discovery. DDT 8:316–323

    Article  PubMed  CAS  Google Scholar 

  • Kerns EH, Di L, Petusky S, Kleintop T, Huryn D, McConnel O, Carter G (2003) Pharmaceutical profiling method for lipophilicity and integrity using liquid chromatography-mass spectrometry. J Chrom B 791:381–388

    Article  CAS  Google Scholar 

  • Kerns EH, Li D, Petusky S, Farris M, Ley R, Jupp P (2004) Combined application of parallel artificial membrane permeability assay and Caco-2 permeability assays in drug discovery. J Pharm Sci 93:1440–1453

    Article  PubMed  CAS  Google Scholar 

  • Kotecha J, Shah S, Rathod I, Subbaiah G (2008) Prediction of oral absorption in humans by experimental immobilized artificial membrane chromatography indices and physicochemical descriptors. Int J Pharm 360:96–106

    Article  PubMed  CAS  Google Scholar 

  • Krämer SD (2001) Liposome/water partitioning, theory, techniques, and applications. In: Testa B, Van de Waterbeemd H, Folkers G, Guy RH (eds) Pharmacokinetic optimization in drug research: biological, physicochemical, and computational strategies. Wiley-VCH, Zurich, pp 401–428

    Chapter  Google Scholar 

  • Krämer SD (2006) Lipid bilayers in ADME: permeation barriers and distribution compartments. In: Testa B, Krämer SD, Wunderli-Allensbach H, Folkers G (eds) Pharmacokinetic profiling in drug research. Weinheim, Wiley-VCH, pp 203–220

    Chapter  Google Scholar 

  • Krämer SD, Jakits-Deiser C, Wunderli-Allensbach H (1997) Free fatty acid cause pH-dependant changes in drug-lipid membrane interactions around physiological pH. Pharm Res 14:827–831

    Article  PubMed  Google Scholar 

  • Krämer SD, Braun A, Jakits-Deiser C, Wunderli-Allensbach H (1998) Towards the predictability of drug lipid membrane interactions: the pH-dependent affinity of propranolol to phosphatidylinositol containing liposomes. Pharm Res 15:739–744

    Article  PubMed  Google Scholar 

  • Lazaro E, Rafols C, Abraham M, Roses M (2006) Chromatographic estimation of drug disposition properties by means of immobilized artificial membranes (IAM) and C18 columns. J Med Chem 49(16):4861–4870

    Article  PubMed  CAS  Google Scholar 

  • Li D, Kerns EH, Fan K, McConnell J, Carter GT (2003) High throughput artificial membrane permeability assay for blood-brain barrier. Eur J Med Chem 38:223–232

    Article  CAS  Google Scholar 

  • Lim KB, Ozbal C, Kassel DB (2010) Development of a high throughput online solid-phase extraction/tandem mass spectrometry method for cytochrome P450 inhibition screening. J Biomol Screen 15:447–452

    Article  PubMed  CAS  Google Scholar 

  • Liu X-Y, Nakamura C, Yang Q, Kamo N, Miyake J (2002) Immobilized liposome chromatography to study drug-membrane interactions and correlation with drug absorption in humans. J Chrom A 961:113–118

    Article  CAS  Google Scholar 

  • Liu H, Sabus C, Carter GT, Du C, Avdeef A, Tischler M (2003) In vitro permeability of poorly aqueous soluble compounds using different solubilizers in the PAMPA assay with liquid chromatography/mass spectrometry detection. Pharm Res 20:1820–1826

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Hefesha H, Scriba G, Fahr A (2008) Retention behaviour of neutral and positively and negatively charged solutes on an immobilized artificial membrane (IAM) stationary phase. Helv Chim Acta 91(8):1505–1512

    Article  CAS  Google Scholar 

  • Liu X, Testa B, Fahr A (2011) Lipophilicity and its relationship with passive drug permeation. Pharm Res 28:962–977

    Article  PubMed  CAS  Google Scholar 

  • Loidl-Stahlhofen A, Hartmann T, Schöttner M, Röhring C, Brodowsky H, Schmitt J, Keldenich J (2001a) Multilamellar liposomes and solid-supported lipid membranes (TRANSIL): screeening of lipid-water partitioning toward a high-throughput scale. Pharm Res 18:1782–1788

    Article  PubMed  CAS  Google Scholar 

  • Loidl-Stahlhofen A, Eckert A, Hartmann T, Schöttner M (2001b) Solid supported lipid membranes as a tool for determination of membrane affinity: high throughput screening of a physicochemical parameter. J Pharm Sci 90:599–606

    Article  PubMed  CAS  Google Scholar 

  • Lombardo F, Shalaeva MY, Ka T, Gao F, Abraham MH (2000) ElogPoct: a tool for lipophilicity determination in drug discovery. J Med Chem 43:2922–2928

    Article  PubMed  CAS  Google Scholar 

  • Lombardo F, Shalaeva MY, Tupper KA, Gao F (2001) ElogDoc: a tool for lipophilicity determination in drug discovery. 2. Basic and neutral compounds. J Med Chem 44:2490–2497

    Article  PubMed  CAS  Google Scholar 

  • Longhi R, Corbiolo S, Fontana S, Vinco F, Braggio S, Helmdach L, Schiller J, Boriss H (2011) Brain tissue binding of drugs: evaluation and validation of solid supported porcine brain membrane vesicles (TRANSIL) ads a novel high throughput method. Drug Metab Dispos 39:312–321

    Article  PubMed  CAS  Google Scholar 

  • Luippold A, Arnhold T, Jörg W, Krüger B, Süssmuth RD (2011) J Biomol Screen 16(3):370–377

    Article  PubMed  CAS  Google Scholar 

  • Marenchino M, Alpstäg-Wöhrle CB, Wunderli-Allensbach KSD (2004) α-Tocopherol influences the lipid membrane affinity of desipramine in a pH-dependant manner. Eur J Pharm Sci 21:313–321

    Article  PubMed  CAS  Google Scholar 

  • Mensch J, Noppe M, Adriaensen J, Melis A, Mackie C, Augustijns P, Brewster ME (2007) Novel generic UPLC/MS/MS method for the high throughput analysis applied to permeability assessment in early drug discovery. J Chrom B 847:182–187

    Article  CAS  Google Scholar 

  • Mensch J, Melis A, Mackie C, Verreck G, Brewster ME (2010) Evaluation of various PAMPA models to identify the most discriminating methods for the prediction of BBB permeability. Eur J Pharm Biopharm 74:495–502

    Article  PubMed  CAS  Google Scholar 

  • Nasal A, Siluk D, Kaliszan R (2003) Chromatographic retention parameters in medicinal chemistry and molecular pharmacology. Curr Med Chem 10:381–426

    Article  PubMed  CAS  Google Scholar 

  • OECD (1989) Guideline for testing of chemicals, 117. (http://www.oecd.org)

  • Ornskov E, Gottfries J, Erickson M, Folestad S (2005) Experimental modelling of drug membrane permeability by capillary electrophoresis using liposomes, micelles and microemulsions. J Pharm Sci 57(4):435–442

    Google Scholar 

  • Österberg T, Svensson M, Lundahl P (2001) Chromatographic retention of drug molecules on immobilised liposomes prepared from egg phospholipids and from chemically pure phospholipids. Eur J Pharm Sci 12:427–439

    Article  PubMed  Google Scholar 

  • Ottaviani G, Martel S, Carrupt P-A (2006) Parallel artificial membrane permeability assay: a new membrane for the fast prediction of passive human skin permeability. J Med Chem 49(13):3948–3954

    Article  PubMed  CAS  Google Scholar 

  • Pallicer JM, Sales J, Roses M, Rafols C, Bosch E (2011) Lipophilicity assessment of basic drugs (logPO/W determination) by a chromatographic method. J Chromatogr A 1218:6356–6368

    Article  PubMed  CAS  Google Scholar 

  • Pidgeon C, Venkataram UV (1998) Immobilised artificial membrane chromatography: supports composed of membrane lipids. Anal Biochem 176:6–47

    Google Scholar 

  • Plemper van Balen G, Marca Martinet C, Caron G, Bouchardt G, Reist M, Carrupt P-A, Fruttero R, Gasco A, Testa B (2004) Liposome/water lipophilicity: methods, information content, and pharmaceutical applications. Med Res Rev 24:299–324

    Article  CAS  Google Scholar 

  • Ruell JA, Tsinman KL, Avdeef A (2003) PAMPA-a drug absorption in vitro model 5. Unstirred water layer in iso-pH mapping assays and pKaflux-optimized design (pOD-PAMPA). Eur J Pharm Sci 20:393–402

    Article  PubMed  CAS  Google Scholar 

  • Shou WZ, Zhang J (2010) Recent development in high-throughput bioanalytical support for in vitro ADMET profiling. Expert Opin Drug Metab Toxicol 6(3):321–336

    Article  PubMed  CAS  Google Scholar 

  • Stewart BH, Chan OH (1998) Use of immobilized artificial membrane chromatography for drug transport applications. J Pharm Sci 87:1471–1478

    Article  PubMed  CAS  Google Scholar 

  • Sugano K, Hamada H, Machida M, Ushio H (2001) High throughput prediction of oral absorption: improvements of the composition of the lipid solution used in parallel artificial membrane permeation assay. J Biomol Screen 6:189–196

    Article  PubMed  CAS  Google Scholar 

  • Sugano K, Takata N, Machida M, Saitoh K, Terada K (2002) Prediction of passive intestinal absorption using bio-mimetic artificial membrane permeation assay and the paracellular pathway model. Int J Pharm 241(2):241–251

    Article  PubMed  CAS  Google Scholar 

  • Sugano K, Kansy M, Artursson P, Avdeef A, Bendels S, Di L, Ecker GF, Faller B, Fischer H, Gerebtzoff G, Lennernaes H, Senner F (2010) Coexistence of passive and carried mediated processes in drug transport. Nature Rev Drug Disc 9:597–614

    Article  CAS  Google Scholar 

  • Sun J, Wu X, Lu R, Liu J, Wang Y, He Z (2008) Profiling of drug membrane permeability and acidity via biopartitioning chromatography. Curr Drug Metab 9:152–166

    Article  PubMed  CAS  Google Scholar 

  • Taillardat-Bertschinger A, Carrupt P-A, Barbato F, Testa B (2003) Immobilized artificial membrane HPLC in drug research. J Med Chem 46:655–665

    Article  PubMed  CAS  Google Scholar 

  • Tammela P, Laitinen L, Galkin A, Wennberg T, Heczko VH, Slotte JP, Vuorela P (2004) Permeability characteristics and membrane affinity of flavonoids and alkyl gallates in Caco-2 cells and in phospholipid vesicles. Arch Biochem Biophys 425:193–199

    Article  PubMed  CAS  Google Scholar 

  • Teksin ZS, Seo PR, Polli JE (2010) Comparison of drug permeabilities and BCS classification: three lipid-component PAMPA system method versus Caco-2 monolayers. AAPS J 12(2):238–241

    Article  PubMed  CAS  Google Scholar 

  • Testa B, Krämer SD, Wunderli-Allensbach H, Folkers G (eds) (2006) Pharmacokinetic profiling in drug research. Wiley-VCH, Weinheim

    Google Scholar 

  • Thompson M, Lennox RB, McClelland RA (1982) Structure and electrochemical properties of microfiltration filter-lipid membrane systems. Anal Chem 54:76–81

    Article  CAS  Google Scholar 

  • Tsinman O, Tsinman K, Sun N, Avdeef A (2011) Physicochemical selectivity of the BBB microenvironment governing passive diffusion – matching with a porcine brain lipid extract artificial membrane permeability model. Pharm Res 28:337–363

    Article  PubMed  CAS  Google Scholar 

  • Valkó K (2004) Application of high performance liquid chromatography based measurements of lipophilicity to model biological distribution. J Chrom A 1037:299–310

    Article  CAS  Google Scholar 

  • Valko K, Slegel P (1993) New chromatographic hydrophobicity index (ϕ0) based on the slope and the intercept of the logk′ versus organic phase concentration plot. J Chromatogr 631:49–61

    Article  CAS  Google Scholar 

  • Valko K, Du CM, Bevan CD, Reynolds DP (1997) Chromatographic hydrophobicity index by fast gradient RP-HPLC: a high throughput alternative to logP/logD. Anal Chem 69:2022–2029

    Article  PubMed  CAS  Google Scholar 

  • Valko K, Du CM, Bevan CD, Reynolds D, Abraham MH (2000) Rapid-gradient HPLC method for measuring drug interactions with immobilized artificial membrane: comparison with other lipophilicity measures. J Pharm Sci 89:1085–1096

    Article  PubMed  CAS  Google Scholar 

  • Van de Waterbeemd H (2005) Which in vitro screens guide the prediction of oral absorption and volume of distribution? Basic Clin Pharmacol Toxicol 96:162–166

    Article  PubMed  Google Scholar 

  • van de Waterbeemd H, Lennernäs H, Arturrson P (eds) (2003) Drug bioavailability: estimation of solubility, permeability, absorption and bioavailability. Wiley-VCH, Weinheim

    Google Scholar 

  • Wang H, Holmen AG (2009) High throughput screening of physicochemical properties and in vitro ADME profiling in drug discovery. Comb Chem High Throughput Screen 12(3):315–329

    Article  Google Scholar 

  • Wang J, Skolnik S (2010) Mitigating permeability-mediated risks in drug discovery. Exp Opin Drug Metab Toxicol 6(2):171–187

    Article  CAS  Google Scholar 

  • Wohnsland F, Faller B (2001) High-throughput permeability pH profile and high-throughput alkane/water log P with artificial membranes. J Med Chem 44:923–930

    Article  PubMed  CAS  Google Scholar 

  • Yan Z, Caldwell GW (eds) (2004) Optimization in drug discovery: in vitro methods. Humana press, Totowa

    Google Scholar 

  • Yang CY, Song JC, Hanlan L, Pidgeon C (1996) Immobilized artificial membranes- screens for drug membrane interaction. Adv Drug Deliv Rev 23:229–256

    Article  Google Scholar 

  • Youdim KA, Avdeef A, Abbott NJ (2003) In vitro trans-monolayer permeability calculations: often forgotten assumptions. DDT 8:997–1003

    Article  PubMed  CAS  Google Scholar 

  • Zhu C, Jiang L, Chen T-M, Hwang K-K (2002) A comparative study of artificial membrane permeability assay for high throughput profiling of drug absorption potential. Eur J Med Chem 37:399–407

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Kohlmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Kohlmann, M. (2013). Absorption: In Vitro Tests – Non Cell Based. In: Vogel, H.G., Maas, J., Hock, F.J., Mayer, D. (eds) Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25240-2_32

Download citation

Publish with us

Policies and ethics