Absorption: In Vitro Tests – Non Cell Based

Reference work entry

Abstract

The ability to permeate a biological membrane is a prerequisite for oral administered drugs. The primary absorption pathway for the majority of drugs after oral dosage still seems to be the passive transcellular diffusion pathway. A number of methods used in pharmaceutical research to early on estimate the passive absorption potential of a compound by means of a variety of cell free techniques like reversed phase HPLC, artificial membranes or liposomes and PAMPA are described.

Keywords

Artificial Membrane Unstirred Water Layer Parallel Artificial Membrane Permeation Assay Membrane Affinity Immobilize Artificial Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

  1. Abdiche YN, Myszka DG (2004) Probing the mechanism of drug/lipid membrane interactions using biacore. Anal Biochem 328:233–243PubMedCrossRefGoogle Scholar
  2. Alvarez-Figueroa MJ, Pessoa-Mahana CD, Palavecino-Gonzalez ME, Mella-Raipan J, Espinosa-Bustos C, Lagos-Munoz ME (2011) Evaluation of the membrane permeability (PAMPA and Skin) of benzimidazoles with potential cannabinoid activity and their relation with the biopharmaceutical classification system (BCS). AAPS Pharm Sci Tech 12(2):573–578CrossRefGoogle Scholar
  3. Artursson P, Karlsson J (1991) Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Comm 175:880–885PubMedCrossRefGoogle Scholar
  4. Avdeef A (2005) The rise of PAMPA. Exp Opin Drug Metab Toxicol 1(2):325–342CrossRefGoogle Scholar
  5. Avdeef A, Box KJ, Comer EA, Hibbert C, Tam KY (1998) pH metric logP 10. Determination of liposomal membrane-water partition coefficients of ionizable drugs. Pharm Res 15:209–215PubMedCrossRefGoogle Scholar
  6. Avdeef A, Strafford M, Block E, Balogh MP, Chambliss W, Khan I, Avdeef A, Strafford M, Block E, Balogh MP, Chambliss W, Khan I (2001) Drug absorption in vitro model: filter immobilized artificial membranes 2. Studies of permeability properties of lactones in piper methysticum forst. Eur J Pharm Sci 14:271–280PubMedCrossRefGoogle Scholar
  7. Avdeef A, Nielsen PE, Tsinman O (2004) PAMPA-a drug absorption model 11. Matching the in vivo unstirred water layer thickness by individual-well stirring in microtitre plates. Eur J Pharm Sci 22:365–374PubMedGoogle Scholar
  8. Avdeef A, Bendels S, Li D, Faller B, Kansy M, Sugano K, Yamauchi Y (2007) PAMPA-critical factors for better predictions of absorption. J Pharm Sci 96(11):2893–2909PubMedCrossRefGoogle Scholar
  9. Avdeef A, Kansy M, Bendels S, Tsinman K (2008) Absorption-excipient-pH classification gradient maps: spaingly soluble drugs and the pH partition hypothesis. Eur J Pharm Sci 33(81):29–41PubMedCrossRefGoogle Scholar
  10. Baczek T, Markuszewski M, Kaliszan R, van Straten MA, Claessens HA (2000) Linear and quadratic relationships between retention and organic modifier content in eluent in reversed phase high-performance liquid chromatography: a systematic comparative statistical study. J High Resol Chromatogr 23:667CrossRefGoogle Scholar
  11. Baird CL, Courtenay ES, Myszka DG (2002) Surface plasmon resonance characterization of drug/liposome interactions. Anal Biochem 310:93–99PubMedCrossRefGoogle Scholar
  12. Balon K, Riebesehl BU, Müller BW (1999a) Drug liposome partitioning as a tool for the prediction of human passive intestinal absorption. Pharm Res 16:882–888PubMedCrossRefGoogle Scholar
  13. Balon K, Riebesehl BU, Müller BW (1999b) Determination of liposome partitioning of ionizable drugs by titration. J Pharm Sci 88:802–806PubMedCrossRefGoogle Scholar
  14. Beigi F, Gottschalk I, Lagerquist Hägglund C, Haneskog L, Brekkan E, Zhang Y, Österberg T, Lundahl P (1998) Immobilized liposome and biomembrane partitioning chromatography of drugs for prediction of drug transport. Int J Pharm 164:129–137CrossRefGoogle Scholar
  15. Benhaim D, Grushka E (2008) Effect of n-octanol in the mobile phase on lipophilicity determination by reversed phase high-performance liquid chromatography on a modified silica column. J Chromatogr A 1209:111–119PubMedCrossRefGoogle Scholar
  16. Bermejo M, Avdeef A, Ruiz A, Nalda R, Ruell JA, Tsinman O, Gonzalez I, Fernandez C, Sanchez G, Garrigues TM, Merino V (2004) PAMPA-a drug absorption model 7. Comparing rat in situ, Caco-2, and PAMPA permeability of flouroquinolones. Eur J Pharm Sci 21:429–441PubMedCrossRefGoogle Scholar
  17. Berthod A, Carda-Broch S (2004) Determination of liquid-liquid partition coefficients by separation methods. J Chrom A 1037:3–14CrossRefGoogle Scholar
  18. Bertucci C, Piccola A, Pistolozzi M (2007) Optical biosensors as a tool for early determination of absorption ans distribution parameters of lead candidates and drugs. Comb Chem High Throughput Screen 10:433–440PubMedCrossRefGoogle Scholar
  19. Krämer S, Testa B (eds) (2009) Proceedings of the 4th LogP Symposium focused on PhysChem and ADMET Profiling in Drug research. Chemistry & Biodiversity 9 (11): 1759–2451Google Scholar
  20. Box K, Comer J, Huque F (2006) Correlations between PAMPA permeability and log P. In: Testa B, Krämer SD, Wunderli-Allensbach H, Folkers G (eds) Pharmacokinetic profiling in drug research. Wiley-VCH, Weinheim, pp 203–220Google Scholar
  21. Camenisch G, Folkers G, Van de Waterbeemd H (1997) Comparison of passive drug transport through Caco-2 cells and artificial membranes. Int J Pharm 147:61–70CrossRefGoogle Scholar
  22. Camurri G, Zaramella A (2001) High throughput liquid chromatography/mass spectrometry method for the determination of the chromatographic hydrophobicity index. Anal Chem 73:3716–3722PubMedCrossRefGoogle Scholar
  23. Chan EC, Tan WL, Ho PC, Fang LJ (2005) Modeling Caco-2 permeability of drugs using immobilized artificial membrane chromatography and physicochemical descriptors. J Chromatogr A 1072:159–168PubMedCrossRefGoogle Scholar
  24. Chen X, Murawski A, Patel K, Crespi CL, Balimane PV (2008) A novel design of artificial membrane for improving the PAMPA model. Pharm Res 24(7):1511–1520CrossRefGoogle Scholar
  25. Cserhati T, Szögy M (2010) Liposomes in chromatography. Biomed Chromatogr 24:1265–1277PubMedCrossRefGoogle Scholar
  26. Danelian E, Karlén A, Karlsson R, Winiwarter S, Hansson A, Löfas S, Lennernäs H, Hämälainen MD (2000) SPR biosensor studies of the direct interaction between 27 drugs and a liposome surface: correlation with fraction absorbed in humans. J Med Chem 43:2083–2086PubMedCrossRefGoogle Scholar
  27. Donovan SF, Pescatore MC (2002) Method for measuring the logarithm of the octanol-water partition coefficient by using short octadecyl-poly(vinyl alcohol) high performance liquid chromatography columns. J Chrom A 952:47–61CrossRefGoogle Scholar
  28. Du CM, Valko K, Bevan C, Reynolds D, Abraham MH (1998) Rapid gradient RP-HPLC method for lipophilicity determination: solvation equation based comparison with isocratic methods. Anal Chem 70:4228–4234CrossRefGoogle Scholar
  29. Engvall C, Lundahl P (2004) Drug partitioning on immobilized porcine intestinal brush border membranes. J Chrom A 1031:107–112CrossRefGoogle Scholar
  30. Faller B (2008) Arificial membrane assays to assess permeability. Curr Drug Metab 9:886–892PubMedCrossRefGoogle Scholar
  31. Faller B, Grimm HP, Loeuillet-Ritzler F, Arnold S, Briand X (2005) High throughput lipophilicity measurement with immobilized artificial membranes. J Med Chem 48:2571–2576PubMedCrossRefGoogle Scholar
  32. Flaten GE, Dhanikula AB, Luthman K, Brandl M (2006) Drug permeability across a phospholipid vesicle based barrier: a novel approach for studying passive diffusion. Eur J Pharm Sci 27:80–90PubMedCrossRefGoogle Scholar
  33. Fuguet E, Rafols C, Bosch E, Roses M (2007) Determination of the chromatographic hydrophobicity index for ionisable solutes. J Chromatogr A 1173:110–119PubMedCrossRefGoogle Scholar
  34. Galinis-Luciani D, Nguyen M, Yazdanian M (2007) Is PAMPA a useful tool for discovery. J Pharm Sci 96:2886–2892PubMedCrossRefGoogle Scholar
  35. Giaganis C, Tsantili-Kakoulidou A (2008) Alternative measures of lipophilicity: from octanol-water partitioning to IAM retention. J Pharm Sci 97:2984–3004CrossRefGoogle Scholar
  36. Godard T, Grushka E (2011) The use of phospholipid modified column for the determination of lipophilic properties in high performance liquid chromatography. J Chromatogr A 1218:1211–1218PubMedCrossRefGoogle Scholar
  37. Hansch C, Fujita TJ (1964) π-σ−π analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 86:1616CrossRefGoogle Scholar
  38. Henchoz Y, Bard B, Guillarme D, Carrupt P-A, Veuthy J-L, Martel S (2009) Analytical tools for the physicochemical profiling of drug candidates to predict absorption/distribution. Anal Bioanal Chem 394:707–729PubMedCrossRefGoogle Scholar
  39. Henchoz Y, Guillarme D, Martel S, Rudaz S, Veuthey J-L, Carrupt P-A (2009b) Fast logP determination by ultra-high-pressure liquid chromatography coupled with UV and mass spectrometry detection. Anal Bioanal Chem 394:1919–1930PubMedCrossRefGoogle Scholar
  40. Kaliszan R (2007) QSRR: quantitative structure-(chromatographic) retention relationships. Chem Rev 107:3212–3246PubMedCrossRefGoogle Scholar
  41. Kansy M, Senner F, Gubernator K (1998) Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J Med Chem 41:1007–1010PubMedCrossRefGoogle Scholar
  42. Kanzer J, Tho I, Flaten GE, Mägerlein M, Hölig P, Frocker G, Brandl M (2010) In-vitro permeability screening of melt extrude formulations containing poorly water-soluble drug compounds using the phospholipid vesicle-based barrier. J Pharm Pharmacol 62:1591–1598PubMedCrossRefGoogle Scholar
  43. Kararli TT (1995) Comparison of gastrointestinal anatomy physiology and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos 16:351–380PubMedCrossRefGoogle Scholar
  44. Kerns EH (2001a) High throughput physicochemical profiling for drug discovery. J Pharm Sci 90:1838–1858PubMedCrossRefGoogle Scholar
  45. Kerns EH (2001b) High throughput physicochemical profiling for drug discovery. J Pharm Sci 90:1053–1083CrossRefGoogle Scholar
  46. Kerns EH, Di L (2003) Pharmaceutical profiling in drug discovery. DDT 8:316–323PubMedCrossRefGoogle Scholar
  47. Kerns EH, Di L, Petusky S, Kleintop T, Huryn D, McConnel O, Carter G (2003) Pharmaceutical profiling method for lipophilicity and integrity using liquid chromatography-mass spectrometry. J Chrom B 791:381–388CrossRefGoogle Scholar
  48. Kerns EH, Li D, Petusky S, Farris M, Ley R, Jupp P (2004) Combined application of parallel artificial membrane permeability assay and Caco-2 permeability assays in drug discovery. J Pharm Sci 93:1440–1453PubMedCrossRefGoogle Scholar
  49. Kotecha J, Shah S, Rathod I, Subbaiah G (2008) Prediction of oral absorption in humans by experimental immobilized artificial membrane chromatography indices and physicochemical descriptors. Int J Pharm 360:96–106PubMedCrossRefGoogle Scholar
  50. Krämer SD (2001) Liposome/water partitioning, theory, techniques, and applications. In: Testa B, Van de Waterbeemd H, Folkers G, Guy RH (eds) Pharmacokinetic optimization in drug research: biological, physicochemical, and computational strategies. Wiley-VCH, Zurich, pp 401–428CrossRefGoogle Scholar
  51. Krämer SD (2006) Lipid bilayers in ADME: permeation barriers and distribution compartments. In: Testa B, Krämer SD, Wunderli-Allensbach H, Folkers G (eds) Pharmacokinetic profiling in drug research. Weinheim, Wiley-VCH, pp 203–220CrossRefGoogle Scholar
  52. Krämer SD, Jakits-Deiser C, Wunderli-Allensbach H (1997) Free fatty acid cause pH-dependant changes in drug-lipid membrane interactions around physiological pH. Pharm Res 14:827–831PubMedCrossRefGoogle Scholar
  53. Krämer SD, Braun A, Jakits-Deiser C, Wunderli-Allensbach H (1998) Towards the predictability of drug lipid membrane interactions: the pH-dependent affinity of propranolol to phosphatidylinositol containing liposomes. Pharm Res 15:739–744PubMedCrossRefGoogle Scholar
  54. Lazaro E, Rafols C, Abraham M, Roses M (2006) Chromatographic estimation of drug disposition properties by means of immobilized artificial membranes (IAM) and C18 columns. J Med Chem 49(16):4861–4870PubMedCrossRefGoogle Scholar
  55. Li D, Kerns EH, Fan K, McConnell J, Carter GT (2003) High throughput artificial membrane permeability assay for blood-brain barrier. Eur J Med Chem 38:223–232CrossRefGoogle Scholar
  56. Lim KB, Ozbal C, Kassel DB (2010) Development of a high throughput online solid-phase extraction/tandem mass spectrometry method for cytochrome P450 inhibition screening. J Biomol Screen 15:447–452PubMedCrossRefGoogle Scholar
  57. Liu X-Y, Nakamura C, Yang Q, Kamo N, Miyake J (2002) Immobilized liposome chromatography to study drug-membrane interactions and correlation with drug absorption in humans. J Chrom A 961:113–118CrossRefGoogle Scholar
  58. Liu H, Sabus C, Carter GT, Du C, Avdeef A, Tischler M (2003) In vitro permeability of poorly aqueous soluble compounds using different solubilizers in the PAMPA assay with liquid chromatography/mass spectrometry detection. Pharm Res 20:1820–1826PubMedCrossRefGoogle Scholar
  59. Liu X, Hefesha H, Scriba G, Fahr A (2008) Retention behaviour of neutral and positively and negatively charged solutes on an immobilized artificial membrane (IAM) stationary phase. Helv Chim Acta 91(8):1505–1512CrossRefGoogle Scholar
  60. Liu X, Testa B, Fahr A (2011) Lipophilicity and its relationship with passive drug permeation. Pharm Res 28:962–977PubMedCrossRefGoogle Scholar
  61. Loidl-Stahlhofen A, Hartmann T, Schöttner M, Röhring C, Brodowsky H, Schmitt J, Keldenich J (2001a) Multilamellar liposomes and solid-supported lipid membranes (TRANSIL): screeening of lipid-water partitioning toward a high-throughput scale. Pharm Res 18:1782–1788PubMedCrossRefGoogle Scholar
  62. Loidl-Stahlhofen A, Eckert A, Hartmann T, Schöttner M (2001b) Solid supported lipid membranes as a tool for determination of membrane affinity: high throughput screening of a physicochemical parameter. J Pharm Sci 90:599–606PubMedCrossRefGoogle Scholar
  63. Lombardo F, Shalaeva MY, Ka T, Gao F, Abraham MH (2000) ElogPoct: a tool for lipophilicity determination in drug discovery. J Med Chem 43:2922–2928PubMedCrossRefGoogle Scholar
  64. Lombardo F, Shalaeva MY, Tupper KA, Gao F (2001) ElogDoc: a tool for lipophilicity determination in drug discovery. 2. Basic and neutral compounds. J Med Chem 44:2490–2497PubMedCrossRefGoogle Scholar
  65. Longhi R, Corbiolo S, Fontana S, Vinco F, Braggio S, Helmdach L, Schiller J, Boriss H (2011) Brain tissue binding of drugs: evaluation and validation of solid supported porcine brain membrane vesicles (TRANSIL) ads a novel high throughput method. Drug Metab Dispos 39:312–321PubMedCrossRefGoogle Scholar
  66. Luippold A, Arnhold T, Jörg W, Krüger B, Süssmuth RD (2011) J Biomol Screen 16(3):370–377PubMedCrossRefGoogle Scholar
  67. Marenchino M, Alpstäg-Wöhrle CB, Wunderli-Allensbach KSD (2004) α-Tocopherol influences the lipid membrane affinity of desipramine in a pH-dependant manner. Eur J Pharm Sci 21:313–321PubMedCrossRefGoogle Scholar
  68. Mensch J, Noppe M, Adriaensen J, Melis A, Mackie C, Augustijns P, Brewster ME (2007) Novel generic UPLC/MS/MS method for the high throughput analysis applied to permeability assessment in early drug discovery. J Chrom B 847:182–187CrossRefGoogle Scholar
  69. Mensch J, Melis A, Mackie C, Verreck G, Brewster ME (2010) Evaluation of various PAMPA models to identify the most discriminating methods for the prediction of BBB permeability. Eur J Pharm Biopharm 74:495–502PubMedCrossRefGoogle Scholar
  70. Nasal A, Siluk D, Kaliszan R (2003) Chromatographic retention parameters in medicinal chemistry and molecular pharmacology. Curr Med Chem 10:381–426PubMedCrossRefGoogle Scholar
  71. OECD (1989) Guideline for testing of chemicals, 117. (http://www.oecd.org)
  72. Ornskov E, Gottfries J, Erickson M, Folestad S (2005) Experimental modelling of drug membrane permeability by capillary electrophoresis using liposomes, micelles and microemulsions. J Pharm Sci 57(4):435–442Google Scholar
  73. Österberg T, Svensson M, Lundahl P (2001) Chromatographic retention of drug molecules on immobilised liposomes prepared from egg phospholipids and from chemically pure phospholipids. Eur J Pharm Sci 12:427–439PubMedCrossRefGoogle Scholar
  74. Ottaviani G, Martel S, Carrupt P-A (2006) Parallel artificial membrane permeability assay: a new membrane for the fast prediction of passive human skin permeability. J Med Chem 49(13):3948–3954PubMedCrossRefGoogle Scholar
  75. Pallicer JM, Sales J, Roses M, Rafols C, Bosch E (2011) Lipophilicity assessment of basic drugs (logPO/W determination) by a chromatographic method. J Chromatogr A 1218:6356–6368PubMedCrossRefGoogle Scholar
  76. Pidgeon C, Venkataram UV (1998) Immobilised artificial membrane chromatography: supports composed of membrane lipids. Anal Biochem 176:6–47Google Scholar
  77. Plemper van Balen G, Marca Martinet C, Caron G, Bouchardt G, Reist M, Carrupt P-A, Fruttero R, Gasco A, Testa B (2004) Liposome/water lipophilicity: methods, information content, and pharmaceutical applications. Med Res Rev 24:299–324CrossRefGoogle Scholar
  78. Ruell JA, Tsinman KL, Avdeef A (2003) PAMPA-a drug absorption in vitro model 5. Unstirred water layer in iso-pH mapping assays and pKaflux-optimized design (pOD-PAMPA). Eur J Pharm Sci 20:393–402PubMedCrossRefGoogle Scholar
  79. Shou WZ, Zhang J (2010) Recent development in high-throughput bioanalytical support for in vitro ADMET profiling. Expert Opin Drug Metab Toxicol 6(3):321–336PubMedCrossRefGoogle Scholar
  80. Stewart BH, Chan OH (1998) Use of immobilized artificial membrane chromatography for drug transport applications. J Pharm Sci 87:1471–1478PubMedCrossRefGoogle Scholar
  81. Sugano K, Hamada H, Machida M, Ushio H (2001) High throughput prediction of oral absorption: improvements of the composition of the lipid solution used in parallel artificial membrane permeation assay. J Biomol Screen 6:189–196PubMedCrossRefGoogle Scholar
  82. Sugano K, Takata N, Machida M, Saitoh K, Terada K (2002) Prediction of passive intestinal absorption using bio-mimetic artificial membrane permeation assay and the paracellular pathway model. Int J Pharm 241(2):241–251PubMedCrossRefGoogle Scholar
  83. Sugano K, Kansy M, Artursson P, Avdeef A, Bendels S, Di L, Ecker GF, Faller B, Fischer H, Gerebtzoff G, Lennernaes H, Senner F (2010) Coexistence of passive and carried mediated processes in drug transport. Nature Rev Drug Disc 9:597–614CrossRefGoogle Scholar
  84. Sun J, Wu X, Lu R, Liu J, Wang Y, He Z (2008) Profiling of drug membrane permeability and acidity via biopartitioning chromatography. Curr Drug Metab 9:152–166PubMedCrossRefGoogle Scholar
  85. Taillardat-Bertschinger A, Carrupt P-A, Barbato F, Testa B (2003) Immobilized artificial membrane HPLC in drug research. J Med Chem 46:655–665PubMedCrossRefGoogle Scholar
  86. Tammela P, Laitinen L, Galkin A, Wennberg T, Heczko VH, Slotte JP, Vuorela P (2004) Permeability characteristics and membrane affinity of flavonoids and alkyl gallates in Caco-2 cells and in phospholipid vesicles. Arch Biochem Biophys 425:193–199PubMedCrossRefGoogle Scholar
  87. Teksin ZS, Seo PR, Polli JE (2010) Comparison of drug permeabilities and BCS classification: three lipid-component PAMPA system method versus Caco-2 monolayers. AAPS J 12(2):238–241PubMedCrossRefGoogle Scholar
  88. Testa B, Krämer SD, Wunderli-Allensbach H, Folkers G (eds) (2006) Pharmacokinetic profiling in drug research. Wiley-VCH, WeinheimGoogle Scholar
  89. Thompson M, Lennox RB, McClelland RA (1982) Structure and electrochemical properties of microfiltration filter-lipid membrane systems. Anal Chem 54:76–81CrossRefGoogle Scholar
  90. Tsinman O, Tsinman K, Sun N, Avdeef A (2011) Physicochemical selectivity of the BBB microenvironment governing passive diffusion – matching with a porcine brain lipid extract artificial membrane permeability model. Pharm Res 28:337–363PubMedCrossRefGoogle Scholar
  91. Valkó K (2004) Application of high performance liquid chromatography based measurements of lipophilicity to model biological distribution. J Chrom A 1037:299–310CrossRefGoogle Scholar
  92. Valko K, Slegel P (1993) New chromatographic hydrophobicity index (ϕ0) based on the slope and the intercept of the logk′ versus organic phase concentration plot. J Chromatogr 631:49–61CrossRefGoogle Scholar
  93. Valko K, Du CM, Bevan CD, Reynolds DP (1997) Chromatographic hydrophobicity index by fast gradient RP-HPLC: a high throughput alternative to logP/logD. Anal Chem 69:2022–2029PubMedCrossRefGoogle Scholar
  94. Valko K, Du CM, Bevan CD, Reynolds D, Abraham MH (2000) Rapid-gradient HPLC method for measuring drug interactions with immobilized artificial membrane: comparison with other lipophilicity measures. J Pharm Sci 89:1085–1096PubMedCrossRefGoogle Scholar
  95. Van de Waterbeemd H (2005) Which in vitro screens guide the prediction of oral absorption and volume of distribution? Basic Clin Pharmacol Toxicol 96:162–166PubMedCrossRefGoogle Scholar
  96. van de Waterbeemd H, Lennernäs H, Arturrson P (eds) (2003) Drug bioavailability: estimation of solubility, permeability, absorption and bioavailability. Wiley-VCH, WeinheimGoogle Scholar
  97. Wang H, Holmen AG (2009) High throughput screening of physicochemical properties and in vitro ADME profiling in drug discovery. Comb Chem High Throughput Screen 12(3):315–329CrossRefGoogle Scholar
  98. Wang J, Skolnik S (2010) Mitigating permeability-mediated risks in drug discovery. Exp Opin Drug Metab Toxicol 6(2):171–187CrossRefGoogle Scholar
  99. Wohnsland F, Faller B (2001) High-throughput permeability pH profile and high-throughput alkane/water log P with artificial membranes. J Med Chem 44:923–930PubMedCrossRefGoogle Scholar
  100. Yan Z, Caldwell GW (eds) (2004) Optimization in drug discovery: in vitro methods. Humana press, TotowaGoogle Scholar
  101. Yang CY, Song JC, Hanlan L, Pidgeon C (1996) Immobilized artificial membranes- screens for drug membrane interaction. Adv Drug Deliv Rev 23:229–256CrossRefGoogle Scholar
  102. Youdim KA, Avdeef A, Abbott NJ (2003) In vitro trans-monolayer permeability calculations: often forgotten assumptions. DDT 8:997–1003PubMedCrossRefGoogle Scholar
  103. Zhu C, Jiang L, Chen T-M, Hwang K-K (2002) A comparative study of artificial membrane permeability assay for high throughput profiling of drug absorption potential. Eur J Med Chem 37:399–407PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Sanofi Deutschland GmbHFrankfurt am MainGermany

Personalised recommendations