Absorption: In Vitro Tests – Cell Based

  • Katharina Mertsch
Reference work entry


In the pharmaceutical industry, we observed a change in paradigm during the 1990s: project teams focused their search for potent compounds not exclusively on potency and specificity—they added pharmaceutical, biopharmaceutical, pharmacokinetic, metabolic, and toxicological characteristics for the most interesting compounds as well. The motivation to characterize compounds for a set of pharmacokinetic and toxicological parameters was driven not only by economic reasons. The number of hits from combinatorial and other chemical libraries raised the necessity to increase quality of nominated drug candidates to reduce the attrition rate in preclinical and clinical stages of project development. Nearly all pharmaceutical companies introduced an expanded assessment for drugability and developability of compounds at the stage of lead selection and lead optimization (Borchardt et al. 1998).


Efflux Transporter Breast Cancer Resistance Protein Permeability Test Organic Cation Transporter Organic Anion Transporter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

  1. Abe T, Unno M, Onogawa T, Tokui T, Kondo TN, Nakagomi R, Adachi H, Fujiwara K, Okabe M, Suzuki A (2001) LST2, a human liver specific organic anion transporter, determines metotrexate sensitivity in gastrointestinal cancers. Gastroenterology 120:1689–1699PubMedCrossRefGoogle Scholar
  2. Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM (1999) Biochemical, cellular and pharmacological aspects of the multidrug transporter. Ann Rev Pharm Toxicol 39:361–398PubMedCrossRefGoogle Scholar
  3. Anderle P, Rakhmanova V, Woodford K, Zerangue N, Sadee W (2003) Messenger RNA expression of transporter and ion channel genes in undifferentiated and differentiated CACO-2 cells compared to human intestines. Pharm Res 20:3–15PubMedCrossRefGoogle Scholar
  4. Anderson JM, van Itallie CM, Peterson MD, Stevenson BR, Carew EA, Mooseker MS (1989) ZO1 mRNA and protein expression during tight junction assembly in CACO-2 cells. JBC 109:1047–1056Google Scholar
  5. Artursson P (1991) Cell cultures as a model for drug absorption across the intestinal mucosa. Crit Rev Ther Drug Carrier Syst 8:305–330PubMedGoogle Scholar
  6. Artursson P, Borchardt RT (1997) Intestinal drug absorption and metabolism in cell cultures: CACO-2 and beyond. Pharm Res 14:1655–1658PubMedCrossRefGoogle Scholar
  7. Artursson P, Karlsson J (1991) Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial CACO-2 cells. Biochem Biophys Res Comm 175:880–885PubMedCrossRefGoogle Scholar
  8. Artursson P, Palm K, Luthman K (1996) CACO-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev 22:67–84CrossRefGoogle Scholar
  9. Artursson P, Palm K, Luthman C (2001) Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev 46(1–3):27–43PubMedCrossRefGoogle Scholar
  10. Artursson P, Ungell AL, Lofroth JE (1993) Selective paracellular permeability in two models of intestinal absorption: cultured monolayers of human intestinal epithelial cells and rat intestinal segments. Pharm Res 10:1123–1129PubMedCrossRefGoogle Scholar
  11. Audus KL, Bartel RL, Hidalgo IJ, Borchardt RT (1990) The use of cultured epithelial and endothelial cells for drug transport and metabolism studies. Pharm Res 7:435–451PubMedCrossRefGoogle Scholar
  12. Bai JPF (1995) The involvement of cytosolic chymotrypsin-like, trypsin-like, and cucumsin-like activities in degradation of insulin-like growth factor I by epithelial tissue. J Pharm Pharmacol 47:674–677PubMedCrossRefGoogle Scholar
  13. Bailey CA, Bryla P, Malick AW (1996) The use of the intestinal epithelial cell culture model CACO-2 in pharmaceutical development. Adv Drug Dev Rev 22:85–103CrossRefGoogle Scholar
  14. Baker SS, Baker RD (1992) Antioxidant enzymes in the differentiated CACO-2 cell line. In Vitro Cell Dev Biol 28A:643–647PubMedCrossRefGoogle Scholar
  15. Balamurugan K, Said HM (2003) Ontogenic regulation of folate transport across rat jejunal brush-border membrane. Am J Physiol Gastrointest Liver Physiol 285(5):G1068–G1073PubMedGoogle Scholar
  16. Baranczyk-Kuzma A, Garren JA, Hidalgo IJ, Borchardt RT (1991) Substrate specificity and some properties of phenol sulfotransferase from human intestinal CACO-2 cells. Life Sci 49:1197–1206PubMedCrossRefGoogle Scholar
  17. Basson MD, Modlin IM, Flynn SD, Jena BP, Madri JA (1992) Independent modulation of enterocyte migration and proliferation by growth factors, matrix proteins, and pharmacological agents in an in vitro model of mucosal healing. Surgery 112:299–307PubMedGoogle Scholar
  18. Behrens I, Stenberg P, Artursson P, Kissel T (2001) Transport of lipophilic drug molecules in a new mucus-secreting cell culture model based on HT-29-MTX cells. Pharm Res 18:1138–1145PubMedCrossRefGoogle Scholar
  19. Benet LZ (2009) Predicting drug disposition via application of a drug disposition classification system. Basic Clin Pharmacol Toxicol 106:162–167PubMedCrossRefGoogle Scholar
  20. Benet LZ, Broccatelli F, Oprea TI (2011) BDDCS applied to over 900 drugs. AAPS J 13:519–547PubMedCrossRefGoogle Scholar
  21. Blais A, Bissonette P, Berteloot A (1987) Common characteristics for Na+-dependent sugar transport in CACO-2 cells and human fetal colon. J Membr Biol 99:113–125PubMedCrossRefGoogle Scholar
  22. Borchardt RT, Freidinger RM, Sawyer TK, Smith PL (1998) Integration of pharmaceutical discovery and development. Plenum, New YorkGoogle Scholar
  23. Borst P, Evers R, Kool M, Wijnholds J (1999) The multidrug resistance protein family. Biochim Biophys Acta 1461:347–357PubMedCrossRefGoogle Scholar
  24. Borst P, Evers R, Kool M, Wijnholds J (2000) A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst 92:1295–1302PubMedCrossRefGoogle Scholar
  25. Bossuyt X, Muller M, Meier PJ (1996) Multispecific amphipathic substrate transport by an organic anion transporter of human liver. J Hepatol 25(5):733–738PubMedCrossRefGoogle Scholar
  26. Boulenc X, Bourrie M, Fabre I, Roque C, Joyeux H, Berger Y, Fabre G (1992) Regulation of cytochrome P450 1A1 gene expression in a human intestinal cell line, CACO-2. J Pharmacol Exp Ther 263:1471–1478PubMedGoogle Scholar
  27. Brandsch M, Knuetter I, Leibach FH (2004) The intestinal H+/peptide symporter PEPT1: structure-affinity relationships. Pharm Sci 21:53–60Google Scholar
  28. Bretschneider B, Brandsch M, Neubert R (1999) Intestinal transport of beta-lactam antibiotics: analysis of the affinity at the H+/peptide symporter (PEPT1), the uptake into Caco-2 cell monolayers and the transepithelial flux. Pharm Res 16(1):55–61PubMedCrossRefGoogle Scholar
  29. Burckhardt G, Burckhardt BC (2011) In vitro and in vivo evidence of the importance of organic anion transporters (OATs) in drug therapy. Handb Exp Pharmacol 201:29–41PubMedCrossRefGoogle Scholar
  30. Burckhardt G, Wolff NA (2000) Structure of renal organic anion and cation transporters. Am J Physiol Renal Physiol 278(6):F853–F866PubMedGoogle Scholar
  31. Calvagno AM, Ludwig JA, Fostel JM, Gottesman MM, Ambudkar SV (2006) Comparison of drug transporter levels in normal colon, colon cancer, and CACO-2 cells: impact on drug disposition and discovery. Mol Pharmacol 3:87–93CrossRefGoogle Scholar
  32. Carriere V, Lessufleur T, Barbat A, Rousset M, Dussaulx E, Costet P, deWazier I, Beaune P, Zweibaum A (1994) Expression of cytochrome P450 3A in HT-29-MTX cells and CACO-2 clone TC7. FEBS Lett 355:247–250PubMedCrossRefGoogle Scholar
  33. Center for Drug Evaluation and Research (2006) Guidance for Industry. In vitro drug metabolism/drug interaction studies-study design, data analysis and recommendations for dosing and labeling 7. Department of Health and Human Services, US Food and Drug AdministrationGoogle Scholar
  34. Chantret I, Barbat A, Dussaulx E, Brattain MG, Zweibaum A (1988) Epithelial polarity, villin expression, and enterocytic differentiation of cultured human colon carcinoma cells: a survey of 20 cell lines. Cancer Res 48:1936–1942PubMedGoogle Scholar
  35. Chen W, Tang F, Horie K, Borchardt RT (2002) CACO-2 cell monolayers as a model for studies of drug transport across human intestinal epithelium. In: Lehr KM (ed) Cell culture models of biological barriers. Taylor and Francis, New York, pp 143–163Google Scholar
  36. Cordon-Cardo C, O’Brien JP, Boccia J, Casals D, Bertino JR, Melamed MR (1990) Expression of the multidrug resistance product (P-glycoprotein) in human normal and tumor tissues. J Histochem Cytochem 38:1277–1287PubMedCrossRefGoogle Scholar
  37. Craddock AL, Love MW, Daniel RW, Kirby LC, Walters HC, Wong MH, Dawson PA (1998) Expression and transport properties of the human ileal and renal sodium-dependent bile acid transporter. Am J Physiol 274(1 Pt 1):G157–G169PubMedGoogle Scholar
  38. Cvetkovic M, Leake B, Fromm MF, Wilkinson GR, Kim RB (1999) OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos 27(8):866–871PubMedGoogle Scholar
  39. D’Souza VM, Buckley D, Buckley AR, Pauletti GM (2003) Extracellular glucose concentration alters functional activity of the intestinal oligopeptide transporter PEPT1 in CACO-2 cells. J Pharm Sci 92:594–603PubMedCrossRefGoogle Scholar
  40. Daniel H, Kottra G (2004) The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology. Pflugers Arch 447(5):610–618PubMedCrossRefGoogle Scholar
  41. Dantzig AH, Bergin L (1990) Uptake of the cephalosporin, cephalexin, by a dipeptide transport carrier in the human intestinal cell line, CACO-2. Biochim Biophys Acta 1027:211–217PubMedCrossRefGoogle Scholar
  42. Daugherty AL, Mrsny RJ (1999a) Regulation of the intestinal paracellular barrier. Pharm Sci Technol Today 2(7):281–287PubMedCrossRefGoogle Scholar
  43. Daugherty AL, Mrsny RJ (1999b) Transcellular uptake mechanisms of the intestinal epithelial barrier. Pharm Sci Technol Today 2(4):144–151CrossRefGoogle Scholar
  44. Delie F, Rubas W (1997) A human colonic cell line sharing similarities with enterocytes as a model to examine oral absorption: advantages and limitations of the Caco-2 model. Crit Rev Ther Drug Carrier Syst 14(3):221–286PubMedCrossRefGoogle Scholar
  45. Dix CJ, Hassan IF, Obray HY, Shah R, Wilson G (1990) The transport of vitamin B12 through polarized monolayers of CACO-2. Gastroenterology 98:1272–1279PubMedGoogle Scholar
  46. Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, Ross DD (1998) A multidrug resistance transporter from human MCF7 breast cancer cells. Proc Natl Acad Sci USA 95:15665–15670PubMedCrossRefGoogle Scholar
  47. Dresser GK, Bailey DG, Leake BF, Schwartz UI, Dawson PA, Freeman DJ, Kim RB (2002) Fruit juices inhibit organic anion transporting polypeptide-mediated drug uptake to decrease the oral availability of fexofenadine. Clin Pharmacol Ther 71:11–20PubMedCrossRefGoogle Scholar
  48. Duizer E, Stenhuis WS, Penninks AH, Groten JP (1995) Transport of compounds across monolayers of intestinal cell lines: comparison of IEC-18 and CACO-2. Ital J Gastroenterol 27:154Google Scholar
  49. Eneroth A, Astrom E, Hoogstraate J, Schrenk D, Conrad S, Kauffmann HM, Gjellan K (2001) Evaluation of a vincristine resistant Caco-2 cell line for use in a calcein AM extrusion screening assay for P-glycoprotein interaction. Eur J Pharm Sci 12(3):205–214PubMedCrossRefGoogle Scholar
  50. Eudy JD, Spiegelstein O, Barber RC, Wlodarczyk BJ, Talbot J, Finnell RH (2000) Identification and characterization of the human and mouse SLC19A3 gene: a novel member of reduced folate family of micronutrient transporter genes. Mol Genet Metabol 71:581–590CrossRefGoogle Scholar
  51. Evers R, Kool M, van Deemter L, Janssen H, Clafat J, Oomen LC, Paulusma CC, Oude Elferink P, Baas F, Schinkel AH, Borst P (1998) Drug export activity of the human canalicular multispecific organic anion transporter in polarized kidney MDCK cells expressing cMOAT (MRP2) cDNA. J Clin Invest 101:1310–1319PubMedGoogle Scholar
  52. Evers R, Zaman GJ, van Deemter L, Jansen H, Calafat J, Oomen LC, Oude Elferink RP, Borst P, Schinkel AH (1996) Basolateral localization and export activity of the human multidrug-resistance associated protein in polarized pig kidney cells. Clin Invest 97:1211–1218CrossRefGoogle Scholar
  53. Ferte J (2000) Analysis of the tangled relationships between P-glycoprotein-mediated multidrug resistance and the lipid phase of the cell membrane. Eur J Biochem 267:277–294PubMedCrossRefGoogle Scholar
  54. Fisher RB, Parsons DS (1949) Glucose absorption from surviving rat small intestine. J Physiol 110:281–293PubMedGoogle Scholar
  55. Friedman GI, Amidon DL (1989) Passive and carrier-mediated intestinal absorption components of two angiotensin converting enzyme (ACE) inhibitor prodrugs in rats: enalapril and fosinopril. Pharm Res 6(12):1043–1047PubMedCrossRefGoogle Scholar
  56. Fromm MF, Kauffmann HM, Fritz P, Burk O, Kroemer HK, Warzok RW, Eichelbaum M, Siegmund W, Schrenk D (2000) The effect of rifampicin treatment on intestinal expression of human MRP transporters. Am J Pathol 157:1575–1580PubMedCrossRefGoogle Scholar
  57. Gan LSL, Thakker DR (1997) Application of the CACO-2 model in the design and development of orally active drugs: elucidation of biochemical and physiological barriers posed by the intestinal epithelium. Adv Drug Deliv Rev 23:77–98CrossRefGoogle Scholar
  58. Ganapathy V, Ganapathy ME, Leibach FH (2001) Intestinal transport of peptides and amino acids. In: Barett KE, Donowitz M (eds) Current topics in membranes. Gastrointestinal transport molecular physiology. Academic, New York, pp 379–412Google Scholar
  59. Giacomini KM, Huang SM, Tweedie DJ et al (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9:215–236PubMedCrossRefGoogle Scholar
  60. Griggiths CEM, Dabelstein E, Voorhees JJ (1996) Topical retinoic acid changes the epidermal cell surface glycosylation pattern towards that of a mucosal epithelium. Br J Derm 134:431–436CrossRefGoogle Scholar
  61. Grisham MB, MacDermott RP, Deitch EA (1990) Oxidant defense mechanisms in human colon. Inflammation 14:669–680PubMedCrossRefGoogle Scholar
  62. Halestrap AP, Meredith D (2004) The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch 447(5):619–628PubMedCrossRefGoogle Scholar
  63. Halestrap AP, Price NT (1999) The proton-linked monocarboxylate (MCT) family: structure, function and regulation. Biochem J 343:281–299PubMedCrossRefGoogle Scholar
  64. Hashimoto K, Shimizu M (1993) Epitheial properties of human intestinal CACO-2 cells cultured in a serum-free medium. Cytotechnology 13:175–184Google Scholar
  65. Hayeshi R, Hilgendorf C, Artursson P, Augustijns P, Brodin B, Dehertogh P, Fisher K, Fossati L, Hovenkamp E, Korjamo T, Masungi C, Maubon N, Mols R, Muellertz A, Mönkkönen J, O’Driscoll C, Oppers-Tiemmissen HM, Ragnarsson E, Rooseboom M, Ungell AL (2008) Comparison of drug transporter gene expression and functionality in CACO-2 cells from 10 laboratories. Eur J Pharm Sci 35:383–396PubMedCrossRefGoogle Scholar
  66. Herrera-Ruiz D, Wang Q, Gudmundsson OS, Cook TJ, Smith RL, Faria TN, Knipp GT (2001) Spatial expression of peptide transporters in the human and rat gastrointestinal tracts, CACO-2 cell culture model, and multiple human tissue. AAPS Pharm Scie 3, E9CrossRefGoogle Scholar
  67. Hidalgo IJ, Borchardt RT (1990a) Transport of bile acid in a human intestinal cell line, CACO-2. Biochim Biophys Acta 1035:97–103PubMedCrossRefGoogle Scholar
  68. Hidalgo IJ, Borchardt RT (1990b) Transport of large neutral amino acid (phenylalanine) in a human intestinal cell line CACO-2. Biochim Biophys Acta 1028:25–30PubMedCrossRefGoogle Scholar
  69. Hidalgo IJ, Raub TJ, Borchardt RT (1989) Characterization of the human colon carcinoma cell line (CACO-2) as a model system for intestinal epithelia permeability. Gastroenterology 96:736–749PubMedGoogle Scholar
  70. Hidalgo IJ, Hillgren KM, Grass GM, Borchardt RT (1991) Characterization of the unstirred water layer in CACO-2 cell monolayers using a novel diffusion apparatus. Pharm Res 8:222–227PubMedCrossRefGoogle Scholar
  71. Hilgers AR, Conradi RA, Burton PS (1990) CACO-2 monolayers as a model for drug transport across intestinal mucosa. Pharm Res 7:902–910PubMedCrossRefGoogle Scholar
  72. Hillgren KM, Kato A, Borchardt RT (1995) In vitro systems for studying intestinal drug absorption. Med Res Rev 15:83–109PubMedCrossRefGoogle Scholar
  73. Horie K, Tang F, Borchardt RT (2003) Isolation and characterization of Caco-2 subclones expressing high levels of multidrug resistance protein efflux transporter. Pharm Res 20(2):161–168PubMedCrossRefGoogle Scholar
  74. Hunter J, Jepson MA, Tsuruo T, Simmons NL, Hirst BH (1993) Functional expression of P-glycoprotein in apical membranes of human intestinal CACO-2 cells. Kinetics of vinblastine secretion and interaction with modulators. J Biol Chem 268:14991–14997PubMedGoogle Scholar
  75. Hyafil F, Vergely C, Du Vignaud P, Grand-Perret T (1993) In vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Res 53:4595–4602PubMedGoogle Scholar
  76. Ingels F, Beck B, Oth M, Augustijns P (2004) Effect of simulated intestinal fluid on drug permeability estimation across CACO-2 monolayers. Int J Pharm 274:221–232PubMedCrossRefGoogle Scholar
  77. Itoh T, Tanno M, Li YH, Yamada H (1998) Transport of phenethicillin into rat intestinal brush border membrane vesicles: role of the monocarboxylic acid transporter system. Int J Pharm 172:102–112CrossRefGoogle Scholar
  78. Jezyk N, Rubas W, Grass GM (1992) Permeability characteristics of various intestinal regions of rabbit, dog and monkey. Pharm Res 9:1580–1586PubMedCrossRefGoogle Scholar
  79. Jonker JW, Smit JW, Brinkhuis RF, Maliepaard M, Beijnen JH, Schellens JH, Schinkel AH (2000) Role of breast cancer resistant protein in the bioavailability and fetal penetration of topotecan. J Natl Cancer Inst 92:1651–1656PubMedCrossRefGoogle Scholar
  80. Jumarie C, Malo C (1991) CACO-2 cells cultured in serum-free medium as a model for the study of enterocytic differentiation in vitro. J Cell Physiol 149:24–33PubMedCrossRefGoogle Scholar
  81. Karlsson J, Artursson P (1992) A new diffusion chamber system for the determination of drug permeability coefficients across the human intestinal epithelium that are independent of the unstirred water layer. Biochim Biophys Acta 1111(2):204–210PubMedCrossRefGoogle Scholar
  82. Karlsson J, Ungell AL, Artursson P (1994) Effect of an oral rehydration solution on paracellular drug transport in intestinal epithelial cells and tissues: assessment of charge and tissue selectivity. Pharm Res 11:S-248Google Scholar
  83. Kobayashi D, Nozawa T, Imai K, Nezu JI, Tsuji A, Tamai I (2003) Involvement of human organic anion transporting polypeptide OATP-B (SLC21A9) in pH dependent transport across intestinal apical membrane. J Pharmacol Exp Ther 306:703–708PubMedCrossRefGoogle Scholar
  84. Koepsell H, Endou H (2004) The SLC22 drug transporter family. Pflugers Arch 447(5):666–676PubMedCrossRefGoogle Scholar
  85. Koepsell H, Lips K, Volk CH (2007) Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 24:1127–1251CrossRefGoogle Scholar
  86. Koepsell H, Schmitt BM, Gorboulev V (2003) Organic cation transporters. Rev Physiol Biochem Pharmacol 150:36–90PubMedCrossRefGoogle Scholar
  87. Kool M, de Haas M, Scheffer GL, Scheper RJ, van Eijk MJ, Juijn JA, Baas F, Borst P (1997) Analysis of expression of cMOAT (MRP2), MRP3, MRP4 and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines. Cancer Res 57:3537–3547PubMedGoogle Scholar
  88. König J, Nies AT, Cui Y, Leier I, Keppler D (1999) Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2 mediated drug resistance. Biochim Biophys Acta 1461:377–394PubMedCrossRefGoogle Scholar
  89. Kramer W, Wess G, Neckermann G, Schubert G, Fink J, Girbig F, Gutjar U, Kowaleski S, Baringhaus KH, Boger G (1994) Intestinal absorption of peptides by coupling to bile acids. J Biol Chem 269:10621–10627PubMedGoogle Scholar
  90. Kuhfeld MT, Mahraoui L, Rodolosse A, Barbat A, Dussaulx E, Zweibaum A, Rousset M, Brot-Laroche E (1994) Presence and differential expression of SGLT1, Glut1, Glut2, Glut3 and Glut5 hexose transporter mRNAs in CACO-2 cell clones in relation to cell growth and glucose consumption. Biochem J 298:629–633Google Scholar
  91. Larhed AW, Artursson P, Bjork E (1998) The influence of intestinal mucus components on the diffusion of drugs. Pharm Res 15:66–71PubMedCrossRefGoogle Scholar
  92. Lee C (2011) Assessment of P-gp inhibitory potency (IC50) and variability in various in vitro experimental systems. AAPS workshop on drug transporters in ADME: from Bench to BedsideGoogle Scholar
  93. Lee VHL, Yamamoto A, Kompella UB (1991) Mucosal penetration enhancers for facilitation of peptide and protein drug absorption. Crit Rev Ther Drug Carrier Syst 8:91–192PubMedGoogle Scholar
  94. Lennernäs H, Palm K, Fagerholm U, Artursson P (1996) Comparison between active and passive drug transport in human intestinal epithelial (CACO-2) cell in vitro and human jejunum in vivo. Int J Pharm 127:103–107CrossRefGoogle Scholar
  95. Lentz KA, Polli JW, Wring SA, Humphreys JE, Polli JE (2000) Influence of passive permeability on apparent P-glycoprotein kinetics. Pharm Res 17:1456–1460PubMedCrossRefGoogle Scholar
  96. Li YH, Tanno M, Itoh T, Yamada H (1999) Role of the monocarboxylic acid transport system in the intestinal absorption of an orally active beta-lactam prodrug: carindacillin as a model. Int J Pharm 191(2):151–159PubMedCrossRefGoogle Scholar
  97. Litman T, Brangi M, Hudson E, Fetsch P, Abati A, Ross DD, Miyake K, Resau JH, Bates SE (2000) The multidrug resistance phenotype associated with overexpression of the new ABC half-transporter MXR (ABCG2). J Cell Sci 113:2011–2021PubMedGoogle Scholar
  98. Litman T, Druley TE, Stein WD, Bates SE (2001) From MDR to MXR: new understanding of multidrug resistance systems, their properties and clinical significance. Cell Mol Life Sci 58(7):931–959PubMedCrossRefGoogle Scholar
  99. Ma TY, Hollander D, Bhalla D, Nguyen H, Krugliak P (1992) IEC-18, a nontransfected small intestinal cell line for studying epithelial permeability. J Lab Clin Med 120:329–341PubMedGoogle Scholar
  100. Mahraoui L, Rodolosse A, Barbat A, Dussaulx E, Zweibaum A, Rousset M, Brot-Laroche E (1994) Presence and differential expression of SGLT1, GLUT1, GLUT2, GLUT3 and GLUT5 hexose transporter mRNAs in CACO-2 cell clones in relation to growth and glucose consumption. Biochem J 298:629–633PubMedGoogle Scholar
  101. Maliepaard M, Scheffer GL, Faneyte IF, van Gastelen MA, Pijnenborg AC, Schinkel AH, van de Vijver MJ, Scheper RJ, Schellens JH (2001a) Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res 61:3458–3464PubMedGoogle Scholar
  102. Maliepaard M, van Gastelen MA, Tohgo A, Hausheer FH, van Waardenburg RC, de Jong LA, Pluim D, Beijnen JH, Schellens JH (2001b) Circumvention of breast cancer resistance protein (BCRP)-mediated resistance to camtothecins in vitro using non-substrate drugs or the BCRP inhibitor GF120918. Clin Cancer Res 7:935–941PubMedGoogle Scholar
  103. Matter K, Brauchbar M, Bucher K, Hauri HP (1990) Sorting of endogenous plasma membrane proteins occurs from two sites in cultured human intestinal epithelial cells, CACO-2. Cell 60:429–437PubMedCrossRefGoogle Scholar
  104. Mestecky J, Mc Gee JR (1987) Immunoglobulin A (IgA): molecular and cellular interactions involved in IgA biosynthesis and immune response. Adv Immunol 40:153–245PubMedCrossRefGoogle Scholar
  105. Meunier V, Bourrie M, Berger Y, Fabre G (1995) The human intestinal epithelial cell line CACO-2; pharmacological and pharmacokinetic applications. Cell Biol Toxicol 11:187–194PubMedCrossRefGoogle Scholar
  106. Milovic V, Olsson S, Hochman J, Paul ECA, Artursson P (1996) Conditionally immortalized rat fetal intestinal cell line 2/4/A1 for studying epithelial differentiation, apoptosis and permeability. Gastroenterology 110:A822Google Scholar
  107. Nellans HN (1991) Paracellular intestinal transport: modulation of absorption. Adv Drug Deliv Rev 7:339–364CrossRefGoogle Scholar
  108. Neutra MR (1998) Current concepts in mucosal immunity. Role of M cells in transepithelial transport of antigens and pathogens to the mucosal immune system. Am J Physiol 274:G785–G791PubMedGoogle Scholar
  109. Nguyen TT, Dyer DL, Dunning DD, Rubin SA, Grant KE, Said HM (1997) Human intestinal folate transport: cloning expression and distribution of complementary DNA. Gastroenterology 112:783–791PubMedCrossRefGoogle Scholar
  110. Nicklin P, Irwin B, Hassan I, Williamson I, Mackay M (1992) Permeable support type influences the transport of compounds across CACO-2 cells. Int J Pharm 93:197–209Google Scholar
  111. Nielsen CU, Brodin B, Jorgensen F, Frokjaer S, Steffansen B (2002) Human peptide transporters: therapeutic applications. Exp Opin 12:1329–1350CrossRefGoogle Scholar
  112. Nies AT, Cantz T, Brom M, Leier I, Keppler D (1998) Expression of the apical conjugate export pump Mrp2, in the polarized hepatoma cell line, WIF-B. Hepatology 28:1332–1340PubMedCrossRefGoogle Scholar
  113. Pachot J, Botham RP, Haegele K (2003) Experimental estimation of the role of P-glycoprotein in the pharmacokinetic behaviour of telithromycin, a novel ketolide, in comparison with roxithromycin and other macrolides using the CACO-2 cell model. J Pharm Pharmaceut Sci 6(1):1–12Google Scholar
  114. Palacin M, Kanai Y (2003) The ancillary proteins of HATs: SLC3 family of amino acid transporters. Pflugers Arch 447:490–494PubMedCrossRefGoogle Scholar
  115. Pappenheimer JR, Reiss KZ (1987) Contribution of solvent drag through intercellular junctions to absorption of nutrients by the small intestine of the rat. J Membr Biol 100:123–136PubMedCrossRefGoogle Scholar
  116. Peters WHM, Reolofs HMJ (1989) Time-dependent activity and expression of glutathione-S-transferases in the human adenocarcinoma cell line CACO-2. Biochem J 264:613–616PubMedGoogle Scholar
  117. Peters WHM, Reolofs HMJ (1992) Biochemical characterization of resistance to mitoxantrone and adriamycin in CACO-2 human colon adenocarcinoma cells: a possible role for glutathione-S-transferase. Cancer Res 52:1886–1890PubMedGoogle Scholar
  118. Pinto M, Robine-Leon S, Appay MD, Kedinger M, Triadou N, Dussaulx E, Lacroix B, Simon-Assmann P, Haffen K, Fogh J, Zweibaum A (1983) Enterocyte-like differentiation and polarization of the human colon carcinoma cell line CACO-2 in culture. Biol Cell 47:323–330Google Scholar
  119. Poguntke M, Hazai E, Fromm MF, Zolk O (2010) Drug transport by breast cancer resistance protein. Expert Opin Drug Metab Toxicol 6:1363–1384PubMedCrossRefGoogle Scholar
  120. Polli JW, Wring SA, Humphreys JE, Huang L, Morgan JB, Webster LO, Serabjit-Singh CS (2001) Rational use of in vitro P-glycoprotein assays in drug discovery. J Pharmacol Exp Ther 299(2):620–628PubMedGoogle Scholar
  121. Pontier C, Pachot J, Botham R, Lenfant B, Arnaud P (2001) HT29-MTX and Caco-2/TC7 monolayers as predictive models for human intestinal absorption: role of the mucus layer. J Pharm Sci 90(10):1608–1619PubMedCrossRefGoogle Scholar
  122. Ritzel MW, Yao SY, Huang MY, Elliott JF, Cass CE, Young JD (1997) Molecular cloning and functional expression of cDNAs encoding a human Na+-nucleoside cotransporter (hCNT1). Am J Physiol 272(2 Pt 1):C707–C714PubMedGoogle Scholar
  123. Ritzel MW, Ng AM, Yao SY, Graham K, Loewen SK, Smith KM, Hyde RJ, Karpinski E, Cass CE, Baldwin SA, Young JD (2001) Recent molecular advances in studies of the concentrative Na+-dependent nucleoside transporter (CNT) family: identification and characterization of novel human and mouse proteins (hCNT3 and mCNT3) broadly selective for purine and pyrimidine nucleosides (system cib). Mol Membr Biol 18(1):65–72PubMedCrossRefGoogle Scholar
  124. Ritzhaupt A, Wood IS, Ellis A, Hosie KB, Shirazi-Beechey SP (1998) Identification and characterization of a monocarboxylate transporter (MCT1) in pig and human colon: its potential to transport L-lactate as well as butyrate. J Physiol 513(Pt 3):719–732PubMedCrossRefGoogle Scholar
  125. Romsicki Y, Sharom FJ (1999) The membrane lipid environment modulates drug interactions with P-glycoprotein multidrug transporter. Biochemistry 38:6887–6896PubMedCrossRefGoogle Scholar
  126. Rosenberg DW, Leff T (1993) Regulation of cytochrome P450 in cultured human colonic cells. Arch Biochem Biophys 300:186–192PubMedCrossRefGoogle Scholar
  127. Rubas W, Jezyk N, Grass GM (1993) Comparison of the permeability characteristics of a human colonic epithelial cell line (CACO-2) to colon, rabbit, monkey and dog intestine and human drug absorption. Pharm Res 10:113–118PubMedCrossRefGoogle Scholar
  128. Rubas W, Cromwell ME, Shahrokh Z, Villagran J, Nguyen TN, Wellton M, Nguyen TH, Mrsny RJ (1996) Flux measurements across CACO-2 monolayers may predict transport in human large intestinal cells. J Pharm Sci 85:165–169PubMedCrossRefGoogle Scholar
  129. Saha P, Kou JH (2000) Effect of solubilizing excipients on permeation of poorly water-soluble compounds across CACO-2 cell monolayers. Eur J Pharm Biopharm 50:403–411PubMedCrossRefGoogle Scholar
  130. Said HM, Nguyen TT, Dyer DL, Cowas KH, Rubin SA (1996) Intestinal folate transport: identification of cDNA involved in the folate transport and the functional expression and distribution of its mRNA. Biochem Biophys Acta 1281:164–172PubMedCrossRefGoogle Scholar
  131. Saito H, Inui K (1993) Dipeptide transporters in apical and basolateral membraners of the human intestinal cell line CACO-2. Am J Physiol 265:G289–G294PubMedGoogle Scholar
  132. Schinkel A, Jonker JW (2003) Mammalian drug efflux transporters of the APT binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 55:3–29PubMedCrossRefGoogle Scholar
  133. Schwab D, Fischer H, Tabatabaei A, Poli S, Huwyler J (2003) Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery. J Med Chem 46(9):1716–1725PubMedCrossRefGoogle Scholar
  134. Seelig A, Gatlik-Landwojtowicz E (2005) Inhibitors of multidrug efflux transporters: their membrane and protein interactions. Mini Rev Med Chem 5:135–151PubMedCrossRefGoogle Scholar
  135. Sekine T, Kusuhara H, Utsunimiya-Tate N, Tsuda M, Sugiyama Y, Kanai Y, Endou H (1998) Molecular cloning and characterization of high affinity carnitine transporter from rat intestine. Biochem Biophys Res Commun 251:586–591PubMedCrossRefGoogle Scholar
  136. Shugarts S, Benet L (2009) The role of transporters in the pharmacokinetics of orally administered drugs. Pharm Res 26:2039–2054PubMedCrossRefGoogle Scholar
  137. Smith AJ, Mayer U, Schinkel AH, Borst P (1998) Availability of PSC833, a substrate and inhibitor of P-glycoproteins, in various concentrations of serum. J Natl Cancer Inst 90:1161–1166PubMedCrossRefGoogle Scholar
  138. Soldner A, Benet L, Mutschler E, Christians U (2000) Active transport of the angiotensin II antagonist losartan and its main metabolite EXP 3174 across MDCK-MDR1 and CACO-2 cell monolayers. Br J Pharmacol 129:1235–1243PubMedCrossRefGoogle Scholar
  139. Stahl A (2003) A current review of fatty acid transport proteins (SLC27). Pflugers Arch 447(5):722–727PubMedCrossRefGoogle Scholar
  140. Steffansen B, Nielsen CU, Brodin B, Eriksson AH, Andersen R, Frokjaer S (2004) Intestinal solute carriers: an overview of trends and strategies for improving oral drug absorption. Eur J Pharm Sci 21(1):3–16PubMedCrossRefGoogle Scholar
  141. Steffansen B, Thomsen AE, Frokjaer S (2003) Prodrugs. In: van den Waterbeemd H, Lennernäs H, Artursson P (eds) Drug bioavailability. Estimation of solubility, permeability, absorption and bioavailability. Wiley-VCH, New York, pp 532–546Google Scholar
  142. Stevenson CL, Augustijns PF, Hendren RW (1995) Permeability screen for synthetic peptide combinatorial libraries using CACO-2 cell monolayers and LC-MS/MS. Pharm Res 12:S-94CrossRefGoogle Scholar
  143. Strocchi A, Levitt MD (1991) A reappraisal of the magnitude and implications of the intestinal unstirred layer. Gastroenterology 101:843–847PubMedGoogle Scholar
  144. Stuart WI, Trayhurn P (2003) Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br J Nutr 89:3–9Google Scholar
  145. Sun D, Lennernas H, Welage LS, Barnett JL, Landowski CP, Foster D, Fleisher D, Lee KD, Amidon GL (2002) Comparison of human duodenum and CACO-2 gene expression profiles for 12,000 gene sequence tags and correlation with permeability of 26 drugs. Pharm Res 19:1400–1416PubMedCrossRefGoogle Scholar
  146. Svchlikova V, Wang S, Jakubikova J, Williamson G, Mithen R, Bao Y (2004) Interactions between sulfophane and apigenin in the induction of UGT1A1 and GSTA1 in CACO-2 cells. Carcinogenesis 25:1629–1637CrossRefGoogle Scholar
  147. Swaan PW, Stenhouwer MC, Tucker J (1995) Molecular mechanism for the relative binding affinity to the intestinal peptide carrier. Comparison of three ACE-inhibitors: enalapril, enalaprilat, and lisinopril. Biochim Biophys Acta 1236:31–38PubMedCrossRefGoogle Scholar
  148. Taipalensuu J, Tornblom H, Lindberg G, Einarsson C, Sjoquist F, Melhus H, Garberg P, Sjostrom B, Lundgren B, Artursson P (2001) Correlation of gene expression of ten drug efflux proteins of the ATP- binding cassette transporter family in normal human jejunum and in human intestinal CACO-2 cell monolayers. J Pharmacol Exp Ther 299:164–170PubMedGoogle Scholar
  149. Takara K, Tsujimoto M, Ohnishi N, Yokoyama T (2003) Effects of continuous exposure to digoxin on MDR1 function and expression in CACO-2 cells. J Pharm Pharmacol 55:675–681PubMedCrossRefGoogle Scholar
  150. Tamai I, Takanaga H, Maeda H, Sai Y, Ogihara T, Higashida H, Tsuji A (1995) Participation of a proton-cotransporter, MCT1, in the intestinal transport of monocarboxylic acids. Biochem Biophys Res Commun 214(2):482–489PubMedCrossRefGoogle Scholar
  151. Tamai I, Nezu J, Uchino H, Sai Y, Oku A, Shimane M, Tsuji A (2000) Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family. Biochem Biophys Res Commun 2273:251–260CrossRefGoogle Scholar
  152. Tamura K, Bhatnagar PK, Takata JS, Chao-Pin Lee, Smith PL, Borchardt RT (1996) Metabolic uptake and transepithelial transport of the diastereomers of Val-Val in the human intestinal cell line CACO-2. Pharm Res 13:1213–1218Google Scholar
  153. Tanaka K, Hirai M, Tanigawara Y, Ueda K, Takano M, Hori R, Inui K (1997) Relationship between expression level of P-glycoprotein and daunorubicin transport in LLC-PK1 cells transfected with human MDR1 gene. Biochem Pharmacol 53:741–746PubMedCrossRefGoogle Scholar
  154. Tanaka C, Kawai R, Rowland M (2000) Dose-dependent pharmacokinetics of cyclosporin A in rats: events and tissues. Drug Metab Dispos 28:582–589PubMedGoogle Scholar
  155. Tanaka Y, Taki Y, Sakane T, Nadai T, Sezaki H, Yamashita S (1995) Characterization of drug transport through tight-junctional pathway in Caco-2 monolayer: comparison with isolated rat jejunum and colon. Pharm Res 12(4):523–528PubMedCrossRefGoogle Scholar
  156. Tang F, Horie K, Borchardt RT (2002a) Are MDCK cells transfected with the human MDR1 gene a good model of the human intestinal mucosa? Pharm Res 19:765–772PubMedCrossRefGoogle Scholar
  157. Tang F, Horie K, Borchardt RT (2002b) Are MDCK cells transfected with human MRP2 gene a good model of the intestinal mucosa? Pharm Res 19:773–779PubMedCrossRefGoogle Scholar
  158. Thwaites DT, Hirst BH, Simmons NL (1994) Substrate specificity of the di/tripeptide transporter in human intestinal epithelia (CACO-2): identification of substrates that undergo H(+)-coupled absorption. Br J Pharmacol 113:1050–1056PubMedCrossRefGoogle Scholar
  159. Traber MG, Kayden HJ, Rindler RT (1987) Polarized secretion of newly synthesized lipoproteins by the CACO-2 human intestinal cell line. J Lipid Res 28:1350–1368PubMedGoogle Scholar
  160. Tsuji A, Tamai I (1996) Carrier-mediated intestinal transport of drugs. Pharm Res 13(7):963–977PubMedCrossRefGoogle Scholar
  161. Tsuji A, Tamai I, Nakanishi M, Terasaki T, Hamano S (1993) Intestinal brush-border transport of the oral cephalosporin antibiotic, cefdinir, mediated by dipeptide and monocarboxylic acid transport systems in rabbits. J Pharm Pharmacol 45(11):996–998PubMedCrossRefGoogle Scholar
  162. Tucker SP, Melsen LR, Compans RW (1992) Migration of polarized epithelial cells through permeable membrane substrates of defined pore size. Eur J Cell Biol 58:280–290PubMedGoogle Scholar
  163. Uldry M, Thorens B (2004) The SLC2 family of facilitated hexose and polyol transporters. Pflugers Arch 447(5):480–489PubMedCrossRefGoogle Scholar
  164. Utsunomiya JR, Ballinger M, Piquette-Miller M, Rauth AM, Tang W, Su ZF, Ichise M (2000) Comparison of the accumulation and efflux kinetics of technetium-99 m sestamibi and technetium-99 m tetrofosmin in an MRP-expressing tumor cell line. Eur J Nucl Med 27:1786–1792PubMedCrossRefGoogle Scholar
  165. Vachon PH, Beaulieu JF (1992) Transient mosaic patterns of morphological and functional differentiation in the CACO-2 cell line. Gastroenterology 103:414–423PubMedGoogle Scholar
  166. Verrey F (2003) System L: heteromeric exchangers of large, neutral amino acids involved in directional transport. Pflugers Arch 445(5):529–533PubMedGoogle Scholar
  167. Verrey F, Closs EI, Wagner CA, Palacin M, Endou H, Kanai Y (2003) CATs and HATs: the SLC7 family of amino acid transporters. Pflugers Arch 447:532–542PubMedCrossRefGoogle Scholar
  168. Walker WA, Sanderson JR (1992) Epithelial barrier function to antigens. An overview. Ann Rev NY Acad Sci 664:10–17CrossRefGoogle Scholar
  169. Walle UK, Galijatovic A, Walle T (1999) Transport of the flavonoid chrysin and its conjugated metabolites by the human intestinal cell line CACO-2. Biochem Pharmacol 58:431–438PubMedCrossRefGoogle Scholar
  170. Walter E, Kissel T (1995) Heterogeneity in the human intestinal cell line CACO-2 leads to differences in trans- epithelial transport. Eur J Pharm Sci 3:215–230CrossRefGoogle Scholar
  171. Walter E, Kissel T, Reers M, Dickneite G, Hoffmann D, Stüber W (1995) Transepithelial transport properties of peptidomimetic thrombin inhibitors in monolayers of intestinal cell line (CACO-2) and their correlation to in vivo data. Pharm Res 12:360–365PubMedCrossRefGoogle Scholar
  172. Wang Y (2000) Human vitamin C (L-ascorbic acid) transporters SVCT1. Biochem Biophys Res Commun 267:488–494PubMedCrossRefGoogle Scholar
  173. Wang W, Xue S, Ingles SA, Chen Q, Diep AT, Frankl HD, Stolz A, Haile RW (2001) An association between genetic polymorphisms in the ileal sodium dependent bile acid transporter gene and the risk of colorectal adenomas. Cancer Epidemiol Biomarkers Prev 10:931–936PubMedGoogle Scholar
  174. Ward JL, Tse CM (1999) Nucleoside transport in human colonic epithelial cell lines: evidence for two Na+-independent transport systems in T84 and CACO-2 cells. Biochim Biophys Acta 1419:15–22PubMedCrossRefGoogle Scholar
  175. Wikman-Larhed A, Artursson P (1995) Co-cultures of human intestinal goblet (HT29-H) and absorptive (CACO-2) cells for studies of drug and peptide absorption. Eur J Pharm Sci 3:171–183CrossRefGoogle Scholar
  176. Wilson G, Hassan IF, Shah R, Dix CJ, Mackay M, Artursson P (1990) Transport and permeability properties of human CACO-2 cells: an in vitro model of intestinal epithelial cell barrier. J Contr Rel 11:25–40CrossRefGoogle Scholar
  177. Wong MH, Rao PN, Pettenati MJ, Dawson PA (1996) Localization of the ileal sodium-bile acid transporter gene (SLC10A2) to human chromosome 13q33. Genomics 33:536–540CrossRefGoogle Scholar
  178. Wright EM, Martin MG, Turk E (2003) Intestinal absorption in health and disease-sugars. Best Pract Res Clin Gastroenterol 17(6):943–956, Epub (2003) Erratum in: Pflugers Arch. 2004 Feb;447(5):813–5PubMedCrossRefGoogle Scholar
  179. Wright EM, Turk E (2004) The sodium/glucose cotransport family SLC5. Pflugers Arch 447(5):510–518PubMedCrossRefGoogle Scholar
  180. Xu H, Bai L, Collins J, Ghishan FK (1999) Molecular cloning, functional characterization, tissue distribution and chromosomal location of a human small intestinal sodium-phosphate (Na-P) transporter SLC34A2. Genomics 62:281–284.PubMedCrossRefGoogle Scholar
  181. Zweibaum A, Traidou N, Kedinger M, Augeron C, Robine-Leon S, Pinto M, Rousset M, Haffen K (1983) Sucrase-isomaltase: a marker of foetal and malignant epithelial cells of the human colon. Int J Cancer 32:407–412PubMedCrossRefGoogle Scholar
  182. Zweibaum A, Pinto M, Chevalier G, Dussaulx E, Triadou N, Lacroix B, Haffen K, Brun JL, Rousset M (1985) Enterocytic differentiation of a subpopulation of the human colon tumor cell line HT-29 selected for growth in sugar-free medium and its inhibition by glucose. J Cell Physiol 122:21–29PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Sanofi Deutschland GmbHFrankfurt am MainGermany

Personalised recommendations