Central Nervous System (CNS) Safety Pharmacology Studies

  • Vincent Castagné
  • Christelle Froger-Colléaux
  • Elise Esneault
  • Hernier Anne Marie
  • Martine Lemaire
  • Roger D. Porsolt
Reference work entry


This section describes basic protocols satisfying ICH S7A recommendations for core battery CNS studies. Included are protocols for measuring general behavioral signs induced by test substances (Irwin test), effects on spontaneous locomotion (activity meter test), effects on neuromuscular coordination (rotarod test), effects on the convulsive threshold (electroconvulsive shock (ECS) threshold and PTZ seizure tests), interaction with hypnotics (barbital interaction test), and effects on the pain threshold (hot plate test).


Test Substance Discriminative Stimulus Effect Vehicle Control Group Escape Platform Safety Pharmacology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Readings

  1. Anonymous (2000) ICH S7A: safety pharmacology studies for human pharmaceuticals. European agency for the evaluation of medicinal products. Evaluation of medicines for human use. CPMP/ICH/539/00, London, 16 Nov 2000Google Scholar
  2. Aspen JM, Winger G (1997) Ethanol effects on self-administration of alfentanil, cocaine, and nomifensine in rhesus monkeys. Psychopharmacology 130:222–227PubMedCrossRefGoogle Scholar
  3. Ator NA, Griffiths RR (1989) Differential generalization to pentobarbital in rats trained to discriminate lorazepam, chlordiazepoxide, diazepam, and triazolam. Psychopharmacology 98:20–30PubMedCrossRefGoogle Scholar
  4. Balster RL (1991) Drug abuse potential evaluation in animals. Br J Addiction 86:1549–1558CrossRefGoogle Scholar
  5. Bammer C (1982) Pharmacological investigations of neurotransmitter involvement in passive avoidance responding: a review and some new results. Neurosci Biobehav Rev 6:247–296PubMedCrossRefGoogle Scholar
  6. Bass AS, Cartwright ME, Mahon C, Morrison R, Snyder R, McNamara P, Bradley P, Zhou YY, Hunter J (2009) Exploratory drug safety: a discovery strategy to reduce attrition in development. J Pharmacol Toxicol Methods 60:69–78PubMedCrossRefGoogle Scholar
  7. Bergman J, Madras BK, Johnson SE, Spealman RD (1989) Effects of cocaine and related drugs in nonhuman primates. III. Self-administration by squirrel monkeys. J Pharmacol Exp Ther 251:150–155PubMedGoogle Scholar
  8. Bohlen M, Cameron A, Metten P, Crabbe JC, Wahlsten D (2009) Calibration of rotational acceleration for the rotarod test of rodent motor coordination. J Neurosci Methods 178:10–14PubMedCrossRefGoogle Scholar
  9. Boissier JR, Simon P (1965) Action de la caféine sur la motilité spontanée de la souris. Arch Int Pharmacodyn 158:212–221PubMedGoogle Scholar
  10. Brady JV, Griffiths RR (1976) Behavioral procedures for evaluating the relative abuse potential of CNS drugs in primates. Fed Proc 35:2245–2253PubMedGoogle Scholar
  11. Broadbear JH, Winger G, Woods JH (2005) Self-administration of methohexital, midazolam and ethanol: effects on the pituitary-adrenal axis in rhesus monkeys. Psychopharmacology (Berl) 178:83–91CrossRefGoogle Scholar
  12. Caine SB, Negus SS, Mello NK, Patel S, Bristow L, Kulagowski J, Vallone D, Saiardi A, Borrelli E (2002) Role of dopamine D2-like receptors in cocaine self-administration: studies with D2 receptor mutant mice and novel D2 receptor antagonists. J Neurosci 22:2977–2988PubMedGoogle Scholar
  13. Capacio BR, Harris LW, Anderson DR, Lennox WJ, Gales V, Dawson JS (1992) Use of the accelerating rotarod for assessment of motor performance decrement induced by potential anticonvulsant compounds in nerve agent poisoning. Drug Chem Toxicol 15:177–201PubMedCrossRefGoogle Scholar
  14. Cavero I (2009) Exploratory safety pharmacology: a new safety paradigm to de-risk drug candidates prior to selection for regulatory science investigations. Expert Opin Drug Saf 8:627–647PubMedCrossRefGoogle Scholar
  15. Colpaert FC (1987) Drug discrimination: methods of manipulation, measurement, and analysis. In: Bozarth MA (ed) Methods of assessing the reinforcing properties of abused drugs. Springer, New York, pp 341–372CrossRefGoogle Scholar
  16. Colpaert FC, Slangen JL (1982) Drug discrimination applications in CNS pharmacology. Elsevier Biomedical Press, AmsterdamGoogle Scholar
  17. Corrigall WA (1999) Nicotine self-administration in animals as a dependence model. Nicotine Tobacco Res 1:11–20CrossRefGoogle Scholar
  18. D’Amour FE, Smith DL (1941) A method for determining loss of pain sensation. J Pharmacol Exp Ther 72:74–79Google Scholar
  19. Danhof M, Visser SA (2002) Pharmaco-electroencephalography and pharmacokinetic-pharmacodynamic modeling in drug development: focus on preclinical steps. Methods Find Exp Clin Pharmacol 24(Suppl D):127–128PubMedGoogle Scholar
  20. Dimpfel W, Spuler M, Wessel K (1992) Different neuroleptics show common dose and time dependent effects in quantitative field potential analysis in freely moving rats. Psychopharmacology (Berl) 107:195–202CrossRefGoogle Scholar
  21. Dunham NW, Miya TS (1957) A note on a simple apparatus for detecting neurological deficit in mice and in rats. J Am Pharm Assoc 46:208–209Google Scholar
  22. Dunnett SB, Evenden JL, Iversen SD (1988) Delay-dependent short-term memory deficits in aged rats. Psychopharmacology 96:174–180PubMedCrossRefGoogle Scholar
  23. Dürmüller N, Guillaume P, Lacroix P, Porsolt RD, Moser P (2007) The use of the dog electroencephalogram (EEG) in safety pharmacology to evaluate proconvulsant risk. J Pharmacol Toxicol Methods 56:234–238PubMedCrossRefGoogle Scholar
  24. Easter A, Bell ME, Damewood JR Jr, Redfern WS, Valentin JP, Winter MJ, Fonck C, Bialecki RA (2009) Approaches to seizure risk assessment in preclinical drug discovery. Drug Discov Today 14:876–884PubMedCrossRefGoogle Scholar
  25. Ebert U, Cramer S, Löscher W (1997) Phenytoin’s effect on the spread of seizure activity in the amygdala kindling model. Naunyn Schmiedebergs Arch Pharmacol 356:341–347PubMedCrossRefGoogle Scholar
  26. Eddy NB, Leimbach D (1953) Synthetic analgesics. II. Dithienylbutenyl- and dithienylbutylamines. J Pharmacol Exp Ther 107:385–393PubMedGoogle Scholar
  27. Esteve J, Farre AJ, Roser R (1988) Pharmacological profile of droxicam. Gen Pharmacol 19:49–54PubMedCrossRefGoogle Scholar
  28. Foltin RW, Fischman MW (1992) The cardiovascular and subjective effects of intravenous cocaine and morphine combinations in humans. J Pharmacol Exp Ther 261:623–632PubMedGoogle Scholar
  29. France CP, Moerschbaecher JM, Woods JH (1991) MK-801 and related compounds in monkeys: discriminative stimulus effects and effects on a conditional discrimination. J Pharmacol Exp Ther 257:727–734PubMedGoogle Scholar
  30. France CP, Medzihradsky F, Woods JH (1994) Comparison of kappa opioids in rhesus monkeys: behavioral effects and binding affinities. J Pharmacol Exp Ther 268:47–58PubMedGoogle Scholar
  31. France CP, Gerak LR, Winger GD, Medzihradsky F, Bagley JR, Brockunier LL, Woods JH (1995) Behavioral effects and receptor binding affinities of fentanyl derivatives in rhesus monkeys. J Pharmacol Exp Ther 274:17–28PubMedGoogle Scholar
  32. Franklin KB (1998) Analgesia and abuse potential: an accidental association or a common substrate? Pharmacol Biochem Behav 59:993–1002PubMedCrossRefGoogle Scholar
  33. Froger-Colléaux C, Rompion S, Guillaume P, Porsolt RD, Castagné V, Moser P (2011) Continuous evaluation of drug withdrawal in the rat using telemetry: effects of morphine and chlordiazepoxide. J Pharmacol Toxicol Methods 64:81–88PubMedCrossRefGoogle Scholar
  34. Gerak LR, France CP (1999) Discriminative stimulus effects of flumazenil in untreated and in diazepam-treated rhesus monkeys. Psychopharmacology 146:252–261PubMedCrossRefGoogle Scholar
  35. Glatt A, Duerst T, Mueller B, Demieville H (1983) EEG evaluation of drug effects in the rat. Neuropsychobiology 9:163–166PubMedCrossRefGoogle Scholar
  36. Gold LH, Balster RL (1996) Evaluation of the cocaine-like discriminative stimulus effects and reinforcing effects of modafinil. Psychopharmacology 126:286–292PubMedCrossRefGoogle Scholar
  37. Goudie AJ, Harrison AA, Leathley MJ (1993) Evidence for a dissociation between benzodiazepine withdrawal signs. Neuroreport 4:295–299PubMedCrossRefGoogle Scholar
  38. Grasing K, Wang A, Schlussman S (1996) Behavioral measures of anxiety during opiate withdrawal. Behav Brain Res 80:195–201PubMedCrossRefGoogle Scholar
  39. Griffiths RR, Balster RL (1979) Opioids: similarity between evaluations of subjective and animal self-administration results. Clin Pharmacol Ther 25:611–617PubMedGoogle Scholar
  40. Griffiths RR, Bigelow GE, Henningfield JE (1980) Similarities in animal and human drug taking behavior. In: Mello NK (ed) Advances in substance abuse, behavioral and biological research, vol 1. JAI Press, Greenwich, pp 1–90Google Scholar
  41. Irwin S (1968) Comprehensive behavioral assessment: 1a A systematic quantitative procedure for assessing the behavioral and physiologic state of the mouse. Psychopharmacologia 13:222–257PubMedCrossRefGoogle Scholar
  42. Itil TM (1981) The discovery of psychotropic drugs by computer-analyzed cerebral bioelectrical potentials (CEEG). Drug Dev Res 1:373–407CrossRefGoogle Scholar
  43. Jouvet M (1969) Biogenic amines and the states of sleep. Science 163:32–41PubMedCrossRefGoogle Scholar
  44. Kalinichev M, Holtzman SG (2003) Changes in urination/defecation, auditory startle response, and startle-induced ultrasonic vocalizations in rats undergoing morphine withdrawal: similarities and differences between acute and chronic dependence. J Pharmacol Exp Ther 304:603–609PubMedCrossRefGoogle Scholar
  45. Krall RL, Penry JK, White BG, Kupferberg HJ, Swinyard EA (1978) Antiepileptic drug development: II. Anticonvulsant drug screening. Epilepsia 19:409–428PubMedCrossRefGoogle Scholar
  46. Krijzer FN, van der Molen R (1987) Classification of psychotropic drugs by rat EEG analysis: the anxiolytic profile in comparison to the antidepressant and neuroleptic profile. Neuropsychobiology 18:51–56PubMedCrossRefGoogle Scholar
  47. Krijzer F, Koopman P, Olivier B (1993) Classification of psychotropic drugs based on pharmaco-electrocorticographic studies in vigilance-controlled rats. Neuropsychobiology 28:122–137PubMedCrossRefGoogle Scholar
  48. Kupferberg H (2001) Animal models used in the screening of antiepileptic drugs. Epilepsia 42:7–12PubMedGoogle Scholar
  49. Kushikata T, Hirota K, Yoshida H, Kudo M, Lambert DG, Smart D, Jerman JC, Matsuki A (2003) Orexinergic neurons and barbiturate anesthesia. Neuroscience 121:855–863PubMedCrossRefGoogle Scholar
  50. Lancel M (1999) Role of GABA-A receptors in the regulation of sleep: initial sleep responses to peripherally administered modulators and agonists. Sleep 22:33–42PubMedGoogle Scholar
  51. Lemaire M, Böhme GA, Piot O, Roques BP, Blanchard JC (1994) CCK-A and CCK-B selective receptor agonists and antagonists modulate olfactory recognition in male rats. Psychopharmacology 115:435–440PubMedCrossRefGoogle Scholar
  52. Lindgren S, Bass AS, Briscoe R, Bruse K, Friedrichs GS, Kallman MJ, Markgraf C, Patmore L, Pugsley MK (2008) Benchmarking safety pharmacology regulatory packages and best practice. J Pharmacol Toxicol Methods 58:99–109PubMedCrossRefGoogle Scholar
  53. Löscher W (2002) Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res 50:105–123PubMedCrossRefGoogle Scholar
  54. Löscher W (2009) Preclinical assessment of proconvulsant drug activity and its relevance for predicting adverse events in humans. Eur J Pharmacol 610:1–11PubMedCrossRefGoogle Scholar
  55. Lynch JJ III, Shek EW, Castagné V, Mittelstadt SW (2010) The proconvulsant effects of leptin on glutamate receptor-mediated seizures in mice. Brain Res Bull 82:99–103PubMedCrossRefGoogle Scholar
  56. Lynch JJ III, Castagné V, Moser PC, Mittelstadt SW (2011) Comparison of methods for the assessment of locomotor activity in rodent safety pharmacology studies. J Pharmacol Toxicol Methods 64:74–80PubMedCrossRefGoogle Scholar
  57. Maldonado R, Rodriguez de Fonseca F (2002) Cannabinoid addiction: behavioral models and neural correlates. J Neurosci 22:3326–3331PubMedGoogle Scholar
  58. Mattson JL, Spencer PJ, Albee RR (1996) A performance standard for clinical and functional observational battery examination of rats. J Am Coll Toxicol 15:239–250CrossRefGoogle Scholar
  59. Meert TF (1994) Pharmacological evaluation of alcohol withdrawal-induced inhibition of exploratory behavior and supersensitivity to harmine-induced tremor. Alcohol Alcohol 29:91–102PubMedGoogle Scholar
  60. Morris RGM (1981) Spatial localization does not require the presence of local cues. Learn Motiv 12:239–260CrossRefGoogle Scholar
  61. Moscardo E, Rostello C (2010) An integrated system for video and telemetric electroencephalographic recording to measure behavioral and physiological parameters. J Pharmacol Toxicol Methods 62:64–71PubMedCrossRefGoogle Scholar
  62. Moser P, Wolinsky T, Castagné V, Duxon M (2011a) Current approaches and issues in non-clinical evaluation of abuse and dependence. J Pharmacol Toxicol Methods 63:160–167PubMedCrossRefGoogle Scholar
  63. Moser P, Wolinsky T, Duxon M, Porsolt RD (2011b) How good are current approaches to nonclinical evaluation of abuse and dependence? J Pharmacol Exp Ther 336:588–595PubMedCrossRefGoogle Scholar
  64. Negus SS, Mello NK (2004) Effects of chronic methadone treatment on cocaine- and food-maintained responding under second-order, progressive-ratio and concurrent-choice schedules in rhesus monkeys. Drug Alcohol Depend 74:297–309PubMedCrossRefGoogle Scholar
  65. Porsolt RD (1997) Safety pharmacology – a critical perspective. Drug Dev Res 41:51–57CrossRefGoogle Scholar
  66. Porsolt RD, Lemaire M, Dürmüller N, Roux S (2002) New perspectives in CNS safety pharmacology. Fundam Clin Pharmacol 16:197–207PubMedCrossRefGoogle Scholar
  67. Pugsley MK, Authier S, Curtis MJ (2008) Principles of safety pharmacology. Br J Pharmacol 154:1382–1399PubMedCrossRefGoogle Scholar
  68. Quesney LF (1986) Clinical and EEG features of complex partial seizures of temporal lobe origin. Epilepsia 27(Suppl 2):S27–S45PubMedCrossRefGoogle Scholar
  69. Reiter LR, McPhail RC (1979) Motor activity: a survey of methods with potential use in toxicity testing. Neurobehav Toxicol 1:53–66PubMedGoogle Scholar
  70. Remmer H (1972) Induction of drug metabolizing enzyme system in the liver. Eur J Clin Pharmacol 5:116–136CrossRefGoogle Scholar
  71. Roux S, Hubert I, Lenegre A, Milinkevitch D, Porsolt RD (1994) Effects of piracetam on indices of cognitive function in a delayed alternation task in young and aged rats. Pharmacol Biochem Behav 49:683–688PubMedCrossRefGoogle Scholar
  72. Ruigt GSF, Van Proosdij JN, Van Delft AML (1989) A large scale, high resolution, automated system for rat sleep staging. I: methodology and technical aspects. EEG Clin Neurophysiol 73:52–63CrossRefGoogle Scholar
  73. Rustay NR, Wahlsten D, Crabbe JC (2003) Influence of task parameters on rotarod performance and sensitivity to ethanol in mice. Behav Brain Res 141:237–249PubMedCrossRefGoogle Scholar
  74. Saelens JK, Granat FR, Sawyer WK (1971) The mouse jumping test: a simple screening method to estimate the physical dependence capacity of analgesics. Arch Int Pharmacodyn Ther 190:213–218PubMedGoogle Scholar
  75. Sala M, Leone MP, Lampugnani P, Braida D, Gori E (1995) Different kinetics of tolerance to behavioral and electroencephalographic effects of chlordiazepoxide in the rat. Eur J Pharmacol 273:35–45PubMedCrossRefGoogle Scholar
  76. Sawyer TF, Hengehold AK, Perez WA (1984) Chemosensory and hormonal mediation of social memory in male rats. Behav Neurosci 98:908–913PubMedCrossRefGoogle Scholar
  77. Schechter MD, Calcagnetti DJ (1993) Trends in place preference conditioning, with a cross-indexed bibliography. Neurosci Biobehav Rev 17:21–41PubMedCrossRefGoogle Scholar
  78. Semba J, Wakuta M, Maeda J, Suhara T (2004) Nicotine withdrawal induces subsensitivity of hypothalamic-pituitary-adrenal axis to stress in rats: implications for precipitation of depression during smoking cessation. Psychoneuroendocrinology 29:215–226PubMedCrossRefGoogle Scholar
  79. Shelton KL, Dukat M, Allan AM (2004) Effects of 5-HT3 receptor over-expression on the discriminative stimulus effects of ethanol. Alcohol Clin Exp Res 28:1161–1171PubMedCrossRefGoogle Scholar
  80. Shoaib M, Stolerman IP, Kumar RC (1994) Nicotine-induced place preferences following prior nicotine exposure in rats. Psychopharmacology (Berl) 113:445–452CrossRefGoogle Scholar
  81. Simon P, Chermat R, Doaré L, Bourin M, Farinotti R (1992) Interactions imprévues de divers psychotropes avec les effets du barbital et du pentobarbital chez la souris. J Pharmacol Paris 13:241–252Google Scholar
  82. Solinas M, Panililio LV, Goldberg SR (2004) Exposure to delta-9-tetrahydrocannabinol (THC) increases subsequent heroin taking but not heroin’s reinforcing efficacy: a self-administration study in rats. Neuropsychopharmacology 29:1301–1311PubMedCrossRefGoogle Scholar
  83. Solinas M, Panlilio LV, Justinova Z, Yasar S, Goldberg SR (2006) Using drug-discrimination techniques to study the abuse-related effects of psychoactive drugs in rats. Nat Protoc 1:1194–1206PubMedCrossRefGoogle Scholar
  84. Squire LR, Stark CE, Clark RE (2004) The medial temporal lobe. Annu Rev Neurosci 27:279–306PubMedCrossRefGoogle Scholar
  85. Swinyard EA, Brown WC, Goodman LS (1952) Comparative assays of antiepileptic drugs in mice and rats. J Pharmacol Exp Ther 106:319–330PubMedGoogle Scholar
  86. Thomsen M, Caine SB (2005) Chronic intravenous drug self-administration in rats and mice. In: Current protocols in neurosciences. Wiley, New York, pp 9.20.1–9.20.40Google Scholar
  87. Van Rinsen H, Glatt AF (1993) Introduction and history of the use of electroencephalography in animal drug studies. Neuropsychobiology 28:118–121CrossRefGoogle Scholar
  88. Von Voigtlander PF, Lewis RA (1991) A rapid screening method for the assessment of benzodiazepine receptor-related physical dependence in mice. Evaluation of benzodiazepine-related agonists and partial agonists. J Pharmacol Methods 26:1–5CrossRefGoogle Scholar
  89. Walker EA, Picker MJ, Dykstra LA (2001) Three-choice discrimination in pigeons is based on relative efficacy differences among opioids. Psychopharmacology 155:389–396PubMedCrossRefGoogle Scholar
  90. White HS, Porter RJ, Kupferberg HJ (2008) Screening of new compounds and the role of the pharmaceutical industry. In: Engel JJ, Pedley TA (eds) Epilepsy. A comprehensive textbook, 2nd edn. Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, pp 1469–1485Google Scholar
  91. Wilcox KM, Rowlett JK, Paul IA, Ordway GA, Woolverton WL (2000) On the relationship between the dopamine transporter and the reinforcing effects of local anesthetics: practical and theoretical concerns. Psychopharmacology 153:139–147PubMedCrossRefGoogle Scholar
  92. Yoshimura M, Yonehara N, Ito T, Kawai Y, Tamura T (2000) Effects of topically applied capsaicin cream on neurogenic inflammation and thermal sensitivity in rats. Jpn J Pharmacol 82:116–121PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vincent Castagné
    • 1
  • Christelle Froger-Colléaux
    • 1
  • Elise Esneault
    • 1
  • Hernier Anne Marie
    • 1
  • Martine Lemaire
    • 1
  • Roger D. Porsolt
    • 1
  1. 1.Porsolt SASBoulogne-BillancourtFrance

Personalised recommendations