Transgenic Animals

  • Will S. Redfern
  • Jean-Pierre Valentin
Reference work entry


Safety pharmacology studies are defined as:

“Those studies that investigate the potential undesirable pharmacodynamic effects of a substance on physiological functions in relation to exposure in the therapeutic range and above.” (ICH S7A International Guidelines on Safety Pharmacology Studies; Anon 2001)


Transgenic Animal Conditional Knockout Hair Cell Loss Wellcome Trust Sanger Institute Safety Pharmacology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

  1. Aiba A, Nakao H (2007) Conditional mutant mice using tetracycline-controlled gene expression system in the brain. Neurosci Res 58:113–117PubMedCrossRefGoogle Scholar
  2. Anon (2001) ICH S7A: safety pharmacology studies for human pharmaceuticals. Available at:
  3. Anon (2009) ICH M3(R2): guidance on nonclinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals. Available at:
  4. Bailey KR, Rustay NR, Crawley JN (2006) Behavioral phenotyping of transgenic and knockout mice: practical concerns and potential pitfalls. ILAR J 47:124–131PubMedCrossRefGoogle Scholar
  5. Banfor PN, Mittelstadt S, Amberg W, Behl B, Kempf-Grote A, Lange U, Larsen M, Marsh K, Ochse M, Sydor J, Vogg B, King A (2011) Use of drug efflux transporter knockout mice to differentiate peripheral from centrally-mediated cardiovascular effects. J Pharmacol Toxicol Methods 64:e52CrossRefGoogle Scholar
  6. Bass AS, Vargas HM, Valentin J-P, Kinter LB, Hammond T, Wallis R, Siegl PKS, Yamamoto K (2011) Safety pharmacology in 2010 and beyond: survey of significant events of the past10 years and a roadmap to the immediate-, intermediate- and long-term future in recognition of the tenth anniversary of the safety pharmacology society. J Pharmacol Toxicol Methods 64:7–15PubMedCrossRefGoogle Scholar
  7. Bolon B (2004) Genetically engineered animals in drug discovery and development: a maturing resource for toxicologic research. Basic Clin Pharmacol Toxicol 95:154–161PubMedGoogle Scholar
  8. Chaible LM, Corat MA, Abdelhay E, Dagli ML (2010) Genetically modified animals for use in research and biotechnology. Genet Mol Res 9:1469–1482PubMedCrossRefGoogle Scholar
  9. Chalfie M (2009) GFP: lighting up life. Proc Natl Acad Sci USA 106:10073–10080PubMedCrossRefGoogle Scholar
  10. Cheng J, Ma X, Gonzalez FJ (2011) Pregnane X receptor- and CYP3A4-humanized mouse models and their applications. Br J Pharmacol 163:461–468PubMedCrossRefGoogle Scholar
  11. Cheung C, Gonzalez FJ (2008) Humanized mouse lines and their application for prediction of human drug metabolism and toxicological risk assessment. J Pharmacol Exp Ther 327:288–299PubMedCrossRefGoogle Scholar
  12. Crawley JN (2008) Behavioral phenotyping strategies for mutant mice. Neuron 57:809–818PubMedCrossRefGoogle Scholar
  13. Forster R, Ancian P, Fredholm M, Simianer H, Whitelaw B, under the auspices of the Steering Group of the RETHINK Project (2010) The minipig as a platform for new technologies in toxicology. J Pharmacol Toxicol Meth 62:227–235Google Scholar
  14. Friedel RH, Wurst W, Wefers B, Kühn R (2011) Generating conditional knockout mice. Methods Mol Biol Transl Mouse Methods Protoc 693:205–231CrossRefGoogle Scholar
  15. Furth PA, St Onge L, Boger H, Gruss P, Gossen M, Kistner A, Bujard H, Hennighausen L (1994) Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc Natl Acad Sci USA 91:9302–9306PubMedCrossRefGoogle Scholar
  16. Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Menoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325:433PubMedCrossRefGoogle Scholar
  17. Gonzalez FJ (2007) Animal models for human risk assessment: the peroxisome proliferator-activated receptor alpha-humanized mouse. Nutr Rev 65:S2–S6PubMedCrossRefGoogle Scholar
  18. Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 89:5547–5551PubMedCrossRefGoogle Scholar
  19. Gossen M, Bonin AL, Bujard H (1993) Control of gene activity in higher eukaryotic cells by prokaryotic regulatory elements. Trends Biochem Sci 18:471–475PubMedCrossRefGoogle Scholar
  20. Hamlin RL, Kijtawornrat A (2008) Use of the rabbit with a failing heart to test for torsadogenicity. Pharmacol Ther 119:179–185PubMedCrossRefGoogle Scholar
  21. Hassanain HH (2009a) Overexpression of Rac-D in the heart leads to cardiomyopathy: a novel model for drug study. J Pharmacol Toxicol Methods 60:256Google Scholar
  22. Hassanain HH (2009b) Overexpression of profilin 1 in blood vessels leads to vascular remodeling and hypertension: A novel model for drug study. J Pharmacol Toxicol Methods 60:256Google Scholar
  23. Jiang XL, Gonzalez FJ, Yu AM (2011) Drug-metabolizing enzyme, transporter, and nuclear receptor genetically modified mouse models. Drug Metab Rev 43:27–40PubMedCrossRefGoogle Scholar
  24. Keller KA, Banks C (2006) Multidose general toxicology studies. In: Keller K, Jacobson-Kram D (eds) Toxicological testing handbook: principles, applications and data interpretation, 2nd edn. Taylor & Francis, New York, pp 149–184Google Scholar
  25. Kleiman A, Tuckermann JP (2007) Glucocorticoid receptor action in beneficial and side effects of steroid therapy: lessons from conditional knockout mice. Mol Cell Endocrinol 275:98–108PubMedCrossRefGoogle Scholar
  26. Kramer K, Kinter L, Brockway BP, Voss HP, Remie R, Van Zutphen BL (2001) The use of radiotelemetry in small laboratory animals: recent advances. Contemp Top Lab Anim Sci 40:8–16PubMedGoogle Scholar
  27. Lau J, Minett MS, Zhao J, Dennehy U, Wang F, Wood JN, Bogdanov YD (2011) Temporal control of gene deletion in sensory ganglia using a tamoxifen-inducible Advillin-Cre-ERT2 recombinase mouse. Mol Pain 7:100PubMedCrossRefGoogle Scholar
  28. Lin JH (2008) Applications and limitations of genetically modified mouse models in drug discovery and development. Curr Drug Metab 9:419–438PubMedCrossRefGoogle Scholar
  29. Moore AM, Borschel GH, Santosa KA, Flagg ER, Tong AY, Kasukurthi R, Newton P, Yan Y, Hunter DA, Johnson PJ, Mackinnon SE (2012) A transgenic rat expressing green fluorescent protein (GFP) in peripheral nerves provides a new hindlimb model for the study of nerve injury and regeneration. J Neurosci Methods 204:19–27PubMedCrossRefGoogle Scholar
  30. Normile D (2010) Molecular genetics. One-two punch elevates rats to the knockout ranks. Science 329:892PubMedCrossRefGoogle Scholar
  31. Odening KE, Kirk M, Lorvidhaya P, Brunner M, Hyder O, Centracchio J, Schofield L, Donahay T, Chaves L, Peng X, Zehender M, Koren G (2008) Transgenic LQT1 and LQT2 rabbits provide a new model for safety screening for IKr or IKs blocking propensity of drugs. J Pharmacol Toxicol Methods 58:148–149CrossRefGoogle Scholar
  32. Olson H, Betton G, Robinson D, Thomas K, Monro A, Kolaja G, Lilly P, Sanders J, Sipes G, Bracken W, Dorato M, Van Deun K, Smith P, Berger B, Heller A (2000) Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol 32:56–67PubMedCrossRefGoogle Scholar
  33. Redfern WS, Valentin J-P (2011) Trends in safety pharmacology: posters presented at the annual meetings of the safety pharmacology society 2001–2010. J Pharmacol Toxicol Methods 64:102–110PubMedCrossRefGoogle Scholar
  34. Redfern WS, Wakefield ID (2006) Safety pharmacology. In: Keller K, Jacobson-Kram D (eds) Toxicological testing handbook: principles, applications and data interpretation, 2nd edn. Taylor & Francis, New York, pp 33–78Google Scholar
  35. Redfern WS, Wakefield ID, Prior H, Pollard CE, Hammond TG, Valentin J-P (2002) Safety pharmacology – a progressive approach. Fund Clin Pharmacol 16:161–173CrossRefGoogle Scholar
  36. Redfern WS, Waldron G, Winter MJ, Butler P, Holbrook M, Wallis R, Valentin J-P (2008) Zebrafish assays as early safety pharmacology screens: paradigm shift or red herring? J Pharmacol Toxicol Methods 58:110–117PubMedCrossRefGoogle Scholar
  37. Remy S, Tesson L, Usal C, Menoret S, Bonnamain V, Nerriere-Daguin V, Rossignol J, Boyer C, Nguyen TH, Naveilhan P, Lescaudron L, Anegon I (2010) New lines of GFP transgenic rats relevant for regenerative medicine and gene therapy. Transgenic Res 19:745–763PubMedCrossRefGoogle Scholar
  38. Rutten K, De Vry J, Bruckmann W, Tzschentke TM (2011) Pharmacological blockade or genetic knockout of the NOP receptor potentiates the rewarding effect of morphine in rats. Drug Alcohol Depen 114:253–256Google Scholar
  39. Seeliger MW, Beck SC, Pereyra-Munoz N, Dangel S, Tsai JY, Luhmann UF, van de Pavert SA, Wijnholds J, Samardzija M, Wenzel A, Zrenner E, Narfstrom K, Fahl E, Tanimoto N, Acar N, Tonagel F (2005) In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy. Vision Res 45:3512–3519PubMedCrossRefGoogle Scholar
  40. Song R, Yang RF, Wu N, Su RB, Li J, Peng XQ, Li X, Gaal J, Xi ZX, Gardner EL (2012) YQA14: a novel dopamine D3 receptor antagonist that inhibits cocaine self-administration in rats and mice, but not in D3 receptor-knockout mice. Addict Biol 17:259–273PubMedCrossRefGoogle Scholar
  41. Spergel DJ, Kruth U, Shimshek DR, Sprengel R, Seeburg PH (2001) Using reporter genes to label selected neuronal populations in transgenic mice for gene promoter, anatomical, and physiological studies. Prog Neurobiol 63:673–686PubMedCrossRefGoogle Scholar
  42. Stanley LA, Horsburgh BC, Ross J, Scheer N, Wolf CR (2009) Drug transporters: gatekeepers controlling access of xenobiotics to the cellular interior. Drug Metab Rev 41:27–65PubMedCrossRefGoogle Scholar
  43. Stark KL, Gross C, Richardson-Jones J, Zhuang X, Hen R (2007) A novel conditional knockout strategy applied to serotonin receptors. Handbook Exp Pharmacol 178:347–363CrossRefGoogle Scholar
  44. Strom SC, Davila J, Grompe M (2010) Chimeric mice with humanized liver: tools for the study of drug metabolism, excretion, and toxicity. Methods Mol Biol 640:491–509PubMedCrossRefGoogle Scholar
  45. Sun H, Levesque P, Li D (2008) KCNA5-deficient mice do not have enhanced arrhythmia susceptibility. J Pharmacol Toxicol Methods 58:149CrossRefGoogle Scholar
  46. Tesson L, Cozzi J, Menoret S, Remy S, Usal C, Fraichard A, Anegon I (2005) Transgenic modifications of the rat genome. Transgenic Res 14:531–546PubMedCrossRefGoogle Scholar
  47. Tesson L, Usal C, Menoret S, Leung E, Niles BJ, Remy S, Santiago Y, Vincent AI, Meng X, Zhang L, Gregory PD, Anegon I, Cost GJ (2011) Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29:695–696PubMedCrossRefGoogle Scholar
  48. Tong C, Li P, Wu NL, Yan Y, Ying QL (2010) Production of p53 gene knockout rats by homologous recombination in embryonic stem cells. Nature 467(7312):211–213PubMedCrossRefGoogle Scholar
  49. Törnell J, Snaith M (2002) Transgenic systems in drug discovery: from target identification to humanized mice. Drug Discov Today 7:461–470PubMedCrossRefGoogle Scholar
  50. Ueta Y, Dayanithi G, Fujihara H (2011) Hypothalamic vasopressin response to stress and various physiological stimuli: visualization in transgenic animal models. Horm Behav 59:221–226PubMedCrossRefGoogle Scholar
  51. Valentin J-P, Hammond TG (2008) Safety and secondary pharmacology: successes, threats, challenges and opportunities. J Pharmacol Toxicol Methods 58:77–87PubMedCrossRefGoogle Scholar
  52. Valentin J-P, Bialecki R, Ewart L, Hammond TG, Leishmann D, Lindgren S, Martinez V, Pollard C, Redfern WS, Wallis R (2009) A framework to assess the translation of safety pharmacology data to humans. J Pharmacol Toxicol Methods 60:152–158PubMedCrossRefGoogle Scholar
  53. Wolf CR, Henderson CJ (1998) Use of transgenic animals in understanding molecular mechanisms of toxicity. J Pharm Pharmacol 50:567–574PubMedCrossRefGoogle Scholar
  54. Yorgason JG, Kalinec GM, Luxford WM, Warren FM, Kalinec F (2010) Acetaminophen ototoxicity after acetaminophen/hydrocodone abuse: evidence from two parallel in vitro mouse models. Otolaryngol Head Neck Surg 142:814–819PubMedCrossRefGoogle Scholar
  55. Yoshizato K, Tateno C, Utoh R (2012) Mice with liver composed of human hepatocytes as an animal model for drug testing. Curr Drug Discov Technol 9:63–76PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Safety Pharmacology Department, Global Safety AssessmentAstraZeneca R&DCheshireUnited Kingdom

Personalised recommendations