Abstract
We review some of the special properties of spatial data and the ways in which these have influenced developments in spatial data analysis. We adopt a historical perspective beginning in the early twentieth century before moving to the development of spatial autocorrelation statistics in geography’s Quantitative Revolution. Phases of development after the Quantitative Revolution are divided into emergence of spatial econometrics, the development of exploratory methods for spatial data analysis, and local statistics for handling heterogeneity. We then consider more recent advances in the areas of spatial data mining, the “new” geostatistics, and Bayesian hierarchical statistical modeling of spatial data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anselin L (1988) Spatial econometrics: methods and models. Kluwer, Dordrecht
Anselin L (2010) Thirty years of spatial econometrics. Pap Reg Sci 89:3–25
Besag J (1974) Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc, B 36:192–225
Cliff AD, Ord JK (1973) Spatial Autocorrelation. Pion, London
Cressie N (1991) Statistics for spatial data. Wiley, New York
Cressie N, Wikle C (2011) Statistics for spatio-temporal data. Wiley, New York
Cressie N, Calder CA, Clark TS, Ver Hoef JM, Wikle CK (2009) Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical modelling. Ecol Appl 19:553–570
Elliott P, Richardson S, Abellan JJ, Thomson A, de Hoogh C, Jarup L, Briggs DJ (2009) Geographic density of landfill sites and risk of congenital abnormalities in England. Occup Environ Med 66:81–89
Fingleton B (2000) Spatial econometrics, economic geography, dynamics and equilibrium: a ‘third way’? Environ Plan A 32:1481–1498
Fischer M, Wang J (2011) Spatial data analysis: models, methods and techniques. Springer, Heidelberg
Fotheringham S, Brunsdon C, Charlton M (2000) Quantitative geography: perspectives on spatial data analysis. SAGE, London
Gelfand A, Vounatsou P (2003) Proper multivariate conditional autoregressive models for spatial data. Biostatistics 4:11–25
Goodchild MG, Haining RP (2004) GIS and spatial data analysis: converging perspectives. Pap Reg Sci 83:363–385
Haining RP (1990) Spatial data analysis in the social and environmental sciences. Cambridge University Press, Cambridge
Haining RP (2003) Spatial data analysis: theory and practice. Cambridge University Press, Cambridge
Haining RP (2009) The special nature of spatial data. In: Fotheringham AS, Rogerson PA (eds) The SAGE handbook of spatial analysis. SAGE, Los Angeles, pp 5–24
Haining RP, Kerry R, Oliver M (2010) Geography, spatial data analysis and Geostatistics: an overview. Geogr Anal 42:7–31
Jones JP III, Casetti E (1992) Applications of the expansion method. Routledge, London
Kerry R, Goovaerts P, Haining RP, Ceccato V (2010) Applying geostatistical analysis to crime data: car-related thefts in the Baltic States. Geogr Anal 42:53–77
Kulldorff M (1997) A spatial scan statistic. Commun stat: theory methods 26:1481–1496
Le Sage J (2000) Bayesian estimation of limited dependent variable spatial autoregressive models. Geogr Anal 32:19–35
Lloyd CD (2011) Local models for spatial analysis. CRC Press, Boca Raton
Lu H, Reilly CS, Banerjee S, Carlin B (2007) Bayesian areal wombling via adjacency modelling. Environ Ecol Stat 14:433–452
Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246–1266
Miller H, Han J (2009) Geographic data mining and knowledge discovery. CRC Press, Boca Raton
Neprash JA (1934) Some problems in the correlation of spatially distributed variables. J Am Stat Assoc 29(suppl):167–168
Oliver MA, Webster R, Lajaunie C, Mann JR, Muir KR, Parkes SE, Cameron AH, Stevens MCG (1998) Binomial cokriging for estimating and mapping the risk of childhood cancer. Math Med Biol 15:279–297
Paelinck J, Klaassen L (1979) Spatial econometrics. Saxon House, Farnborough
Ripley BD (1981) Spatial statistics. Wiley, New York
Waller LA (2009) Detection of clustering in spatial data. In: Fotheringham AS, Rogerson PA (eds) The SAGE handbook of spatial analysis. SAGE, Los Angeles, pp 299–320
Whittle P (1954) On stationary processes in the plane. Biometrika 41:434–449
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this entry
Cite this entry
Haining, R. (2014). Spatial Data and Statistical Methods: A Chronological Overview. In: Fischer, M., Nijkamp, P. (eds) Handbook of Regional Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23430-9_71
Download citation
DOI: https://doi.org/10.1007/978-3-642-23430-9_71
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23429-3
Online ISBN: 978-3-642-23430-9
eBook Packages: Business and EconomicsReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences