Skip to main content

Spatial Data and Statistical Methods: A Chronological Overview

  • Reference work entry
  • First Online:
Handbook of Regional Science

Abstract

We review some of the special properties of spatial data and the ways in which these have influenced developments in spatial data analysis. We adopt a historical perspective beginning in the early twentieth century before moving to the development of spatial autocorrelation statistics in geography’s Quantitative Revolution. Phases of development after the Quantitative Revolution are divided into emergence of spatial econometrics, the development of exploratory methods for spatial data analysis, and local statistics for handling heterogeneity. We then consider more recent advances in the areas of spatial data mining, the “new” geostatistics, and Bayesian hierarchical statistical modeling of spatial data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anselin L (1988) Spatial econometrics: methods and models. Kluwer, Dordrecht

    Book  Google Scholar 

  • Anselin L (2010) Thirty years of spatial econometrics. Pap Reg Sci 89:3–25

    Article  Google Scholar 

  • Besag J (1974) Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc, B 36:192–225

    Google Scholar 

  • Cliff AD, Ord JK (1973) Spatial Autocorrelation. Pion, London

    Google Scholar 

  • Cressie N (1991) Statistics for spatial data. Wiley, New York

    Google Scholar 

  • Cressie N, Wikle C (2011) Statistics for spatio-temporal data. Wiley, New York

    Google Scholar 

  • Cressie N, Calder CA, Clark TS, Ver Hoef JM, Wikle CK (2009) Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical modelling. Ecol Appl 19:553–570

    Article  Google Scholar 

  • Elliott P, Richardson S, Abellan JJ, Thomson A, de Hoogh C, Jarup L, Briggs DJ (2009) Geographic density of landfill sites and risk of congenital abnormalities in England. Occup Environ Med 66:81–89

    Article  Google Scholar 

  • Fingleton B (2000) Spatial econometrics, economic geography, dynamics and equilibrium: a ‘third way’? Environ Plan A 32:1481–1498

    Article  Google Scholar 

  • Fischer M, Wang J (2011) Spatial data analysis: models, methods and techniques. Springer, Heidelberg

    Book  Google Scholar 

  • Fotheringham S, Brunsdon C, Charlton M (2000) Quantitative geography: perspectives on spatial data analysis. SAGE, London

    Google Scholar 

  • Gelfand A, Vounatsou P (2003) Proper multivariate conditional autoregressive models for spatial data. Biostatistics 4:11–25

    Article  Google Scholar 

  • Goodchild MG, Haining RP (2004) GIS and spatial data analysis: converging perspectives. Pap Reg Sci 83:363–385

    Article  Google Scholar 

  • Haining RP (1990) Spatial data analysis in the social and environmental sciences. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Haining RP (2003) Spatial data analysis: theory and practice. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Haining RP (2009) The special nature of spatial data. In: Fotheringham AS, Rogerson PA (eds) The SAGE handbook of spatial analysis. SAGE, Los Angeles, pp 5–24

    Chapter  Google Scholar 

  • Haining RP, Kerry R, Oliver M (2010) Geography, spatial data analysis and Geostatistics: an overview. Geogr Anal 42:7–31

    Article  Google Scholar 

  • Jones JP III, Casetti E (1992) Applications of the expansion method. Routledge, London

    Google Scholar 

  • Kerry R, Goovaerts P, Haining RP, Ceccato V (2010) Applying geostatistical analysis to crime data: car-related thefts in the Baltic States. Geogr Anal 42:53–77

    Article  Google Scholar 

  • Kulldorff M (1997) A spatial scan statistic. Commun stat: theory methods 26:1481–1496

    Google Scholar 

  • Le Sage J (2000) Bayesian estimation of limited dependent variable spatial autoregressive models. Geogr Anal 32:19–35

    Google Scholar 

  • Lloyd CD (2011) Local models for spatial analysis. CRC Press, Boca Raton

    Google Scholar 

  • Lu H, Reilly CS, Banerjee S, Carlin B (2007) Bayesian areal wombling via adjacency modelling. Environ Ecol Stat 14:433–452

    Article  Google Scholar 

  • Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246–1266

    Article  Google Scholar 

  • Miller H, Han J (2009) Geographic data mining and knowledge discovery. CRC Press, Boca Raton

    Google Scholar 

  • Neprash JA (1934) Some problems in the correlation of spatially distributed variables. J Am Stat Assoc 29(suppl):167–168

    Google Scholar 

  • Oliver MA, Webster R, Lajaunie C, Mann JR, Muir KR, Parkes SE, Cameron AH, Stevens MCG (1998) Binomial cokriging for estimating and mapping the risk of childhood cancer. Math Med Biol 15:279–297

    Article  Google Scholar 

  • Paelinck J, Klaassen L (1979) Spatial econometrics. Saxon House, Farnborough

    Google Scholar 

  • Ripley BD (1981) Spatial statistics. Wiley, New York

    Book  Google Scholar 

  • Waller LA (2009) Detection of clustering in spatial data. In: Fotheringham AS, Rogerson PA (eds) The SAGE handbook of spatial analysis. SAGE, Los Angeles, pp 299–320

    Google Scholar 

  • Whittle P (1954) On stationary processes in the plane. Biometrika 41:434–449

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Haining .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Haining, R. (2014). Spatial Data and Statistical Methods: A Chronological Overview. In: Fischer, M., Nijkamp, P. (eds) Handbook of Regional Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23430-9_71

Download citation

Publish with us

Policies and ethics