Skip to main content

Mass Spectrometric Detection of Phenolic Acids

  • Reference work entry
  • First Online:
Natural Products

Abstract

Phenolics are an important class of natural products that have received immense interest for their remarkable biological activities. These are widely distributed in the plant kingdom. Nowadays, increasing attention is paid on rapid identification and characterization of phenolic acids from natural sources. This chapter particularly emphasizes on the diverse mass spectrometric application for the detection of phenolic acids, and several aspects related to fragmentation behavior of phenolic acids are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ESI:

Electro spray ionization

GC:

Gas chromatography

HPLC:

High-performance liquid chromatography

MALDI:

Matrix-assisted laser desorption/ionization

MS:

Mass spectrometry

References

  1. Carl-Ove A (1958) Mass spectrometric studies on amino acid and peptide derivatives. Acta Chem Scand 12:1353

    Google Scholar 

  2. The Nobel Prize in Chemistry 2002 Information for the Public (2007) The Nobel Foundation. Retrieved 29 Aug 2007

    Google Scholar 

  3. David SO (2000) Mass spectrometry desk reference. Global View Publishing, Pittsburgh. ISBN 0-9660813-2-3

    Google Scholar 

  4. Ashcroft AE (1997) Ionization methods in organic mass spectrometry. The Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  5. Sleno L, Volmer DA (2004) Ion activation methods for tandem mass spectrometry. J Mass Spectrom 39:1091–1112

    Article  CAS  Google Scholar 

  6. Bate-Smith EC, Swain T (1962) Flavonoid compounds. In: Mason HS, Florkin AM (eds) Comparative biochemistry, vol III. Academic Press, New York, pp 755–809

    Google Scholar 

  7. Harborne JB, Simmonds NW (1964) Biochemistry of phenolic compounds. Academic, London, p 101

    Google Scholar 

  8. Ribéreau-Gayon P (1972) Plant phenolics. Oliver and Boyd, Edinburgh, p 254

    Google Scholar 

  9. Schmitz-Hoerner R, Weissenbock G (2003) Contribution of phenolic compounds to the UV-B screening capacity of developing barley primary leaves in relation to DNA damage and repair under elevated UV-B levels. Phytochemistry 64:243–255

    Article  CAS  Google Scholar 

  10. Clé C, Hill LM, Niggeweg R, Martin CR, Guisez Y, Prinsen E, Jansen MAK (2008) Modulation of chlorogenic acid biosynthesis in Solanum lycopersicum; consequences for phenolic accumulation and UV-tolerance. Phytochemistry 69:2149–2156

    Article  Google Scholar 

  11. Chakraborty D, Sircar D, Mitra A (2008) Phenylalanine ammonia-lyase-mediated biosynthesis of 2-hydroxy-4-methoxybenzaldehyde in roots of Hemidesmus indicus. J Plant Physiol 165:1033–1040

    Article  CAS  Google Scholar 

  12. Kefeli VI, Kalevitch MV, Borsari B (2003) Phenolic cycle in plants and environment. J Cell Mol Biol 2:13–18

    Google Scholar 

  13. Dixon RA, Paiva NL (1995) Stress induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    CAS  Google Scholar 

  14. Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential use. Food Chem 99:191–203

    Article  CAS  Google Scholar 

  15. Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids are the signaling molecule in plant-microbe symbioses. Plant Signal Behav 5:359–368

    Article  CAS  Google Scholar 

  16. Chakraborty D, Mandal SM (2008) Fractional changes in phenolic acids composition in root nodules of Arachis hypogaea L. Plant Growth Regul 55:159–163

    Article  CAS  Google Scholar 

  17. Chakraborty D, Mandal SM, Chakraborty J, Bhattacharyaa PK, Bandyopadhyay A, Mitra A, Gupta K (2007) Antimicrobial activity of leaf extracts of Basilicum polystachyon (L) Moench. Indian J Exp Biol 45:744–748.

    CAS  Google Scholar 

  18. Saleem M, Nazir M, Shaiq Ali M, Hussain H, Sup Lee Y, Riaz N, Jabbar A (2010) Antimicrobial natural products: an update on future antibiotic drug candidates. Nat Prod Rep 27:238–254

    Article  CAS  Google Scholar 

  19. Fenselau C (1983) Fast atom bombardment (review). In: Benninghoven A (ed) Ion formation from organic solids: proceedings of the Second International Conference, vol 25, Springer series in chemical physics. Springer, New York, p 90

    Chapter  Google Scholar 

  20. Sundqvist B, Macfarlane RD (1985) 252Cf-plasma desorption mass spectrometry. Mass Spectrom Rev 4:421–460

    Article  CAS  Google Scholar 

  21. Cole RB (2000) Some tenets pertaining to electrospray ionization mass spectrometry. J Mass Spectrom 35:763–772

    Article  CAS  Google Scholar 

  22. Hartley RD (1971) Improved methods for the estimation of gas-liquid chromatography of lignin degradation products from plants. J Chromatogr 54:335–344

    Article  CAS  Google Scholar 

  23. Van de Casteele K, De Pooter H, Van Sumere CF (1976) Gas chromatographic separation and analysis of trimethylsilyl dervatives of some naturally occurring nonvolative phenolic compounds and related substances. J Chromatogr 121:49–63

    Article  CAS  Google Scholar 

  24. Schulz JM, Herrmann K (1980) Analysis of hydroxybenzoic and hydroxycinnamic acids in plant material. I. Sample preparation and thin-layer chromatography. J Chromatogr 195:85–94

    Article  CAS  Google Scholar 

  25. Christov R, Bankova V (1992) Gas chromatographic analysis of underivatized phenolic constituents from propolis using an electron-capture detector. J Chromatogr A 623:182–185

    Article  CAS  Google Scholar 

  26. Zuo Y, Wang C, Zhan J (2002) Separation, characterization, and quantitation of benzoic and phenolic antioxidants in American cranberry fruit by GC-MS. J Agric Food Chem 50:3789–3794

    Article  CAS  Google Scholar 

  27. Karas M, Bachmann D, Bahr U, Hillenkamp F (1987) Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Processes 78:53–68.

    Article  CAS  Google Scholar 

  28. Karas M (1996) Matrix-assisted laser desorption ionization MS: a progress report. Biochem Mass Spectrom 24:897–900

    CAS  Google Scholar 

  29. Wang J, Sporns P (2000) MALDI-ToF MS analysis of food flavonol glycosides. J Agric Food Chem 48:1657–1662

    Article  CAS  Google Scholar 

  30. Reed JD, Krueger CG, Vestling MM (2005) MALDI-TOF mass spectrometry of oligomeric food polyphenols. Phytochemistry 66:2248–2263

    Article  CAS  Google Scholar 

  31. Mandal SM, Dey S (2008) LC-MALDI-TOF MS-based rapid identification of phenolic acids. J Biomol Tech 19:116–121

    Google Scholar 

  32. Takahata Y, Ohnishi-Kameyama M, Furuta S, Takahashi M, Suda, I (2001) Highly polymerized procyanidins in brown soybean seed coat with a high radical-scavenging activity. J Agric Food Chem 49:5843–5847

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santi M. Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Mandal, S.M., Chakraborty, D. (2013). Mass Spectrometric Detection of Phenolic Acids. In: Ramawat, K., Mérillon, JM. (eds) Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_90

Download citation

Publish with us

Policies and ethics