Skip to main content

Phenolic Acids

Abstract

Phenolic acids are plant metabolites widely spread throughout the plant kingdom. Recent interest in phenolic acids stems from the potential protection they offer against oxidative damage diseases (e.g., coronary heart disease, stroke, and cancers) when consumed in fruits and vegetables. This chapter discusses the function of plant phenolic acids associated with diverse roles, including nutrient uptake, protein synthesis, photosynthesis, and allelopathy. It also provides an update of the health-promoting benefits of their important biological and pharmacological properties, especially anti-inflammatory, antioxidant, and antimutagenic and anticarcinogenic activities. The main methodologies currently being used for the extraction and quantification of these important phenolic compounds are also discussed.

Keywords

  • Biosynthesis
  • food
  • health
  • phenolic acids
  • plant cell culture

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

4CL4:

Coumarate:coenzyme A ligase

CA:

Caffeic acid

CA4H:

Cinnamic acid 4-hydroxylase

CO:

p-coumaric acid BA-Benzoic acid

DAD:

Diode array detection

E:

Ellagic

FA:

Ferulic

G:

Gentisic

GA:

Gallic acid

GC-MS:

Gas chromatography–mass spectrometry

HCA:

Hydrocinnamic acid

HPLC:

High-performance liquid chromatography

JA:

Jasmonic acid

LC-MS:

Liquid chromatography–mass spectrometry

MS:

Mass spectrometry

NADPH:

Nicotinamide adenine dinucleotide phosphate (reduced form)

PAL:

Phenylalanine ammonia lyase

PDAD:

Photodiode array detection

RA:

Rosmarinic acid

RP:

Reversed phase

SA:

Salicylic acid

SIA:

Sinapic acid

TLC:

Thin-layer chromatography

UV:

Ultraviolet

References

  1. Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13

    CrossRef  CAS  Google Scholar 

  2. Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry & molecular biology of plants. American Society of Plant Physiologists, Rockville, p 1250

    Google Scholar 

  3. Herrmann KM, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 50:473–503

    CrossRef  CAS  Google Scholar 

  4. Clifford MN (1999) Chlorogenic acids and other cinnamates – nature, occurrence and dietary burden. J Sci Food Agric 79:362

    CrossRef  CAS  Google Scholar 

  5. Dixon R, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085

    CAS  Google Scholar 

  6. Maas JL, Galletta GJ, Stoner GD (1991) Ellagic acid, an anticarcinogen in fruits, especially in strawberries: a review. HortScience 26:10

    Google Scholar 

  7. Strube M, Dragsted LO, Larsen JC (1993) Naturally occurring antitumourigens. I. Plant phenols. Nordiske Seminar- og Arbejdsrapporter 605. Nordic Council of Ministers, Copenhagen

    Google Scholar 

  8. Strack D (1997) Phenolic metabolism. In: Dey PM, Harborne JB (eds) Plant biochemistry. Academic, London, p 387

    CrossRef  Google Scholar 

  9. Shahidi F, Nacsk M (1995) Food phenolics: sources, chemistry, effects and application. Technomic Publ, Lancaster

    Google Scholar 

  10. Andreasen MF, Christensen LP, Meyer AS, Hansen A (2000) Content of phenolic acids and ferulic acid dehydrodimers in rye (Secale cereale L.) varieties. J Agric Food Chem 48:2837

    CrossRef  CAS  Google Scholar 

  11. Hartley RD, Jones EC (1978) Carbohydrates and carbohydrate esters of ferulic acid released from cell walls of lolium multiflorum by treatment with cellulotyic enzymes. Phytochemistry 15:3052

    Google Scholar 

  12. Brett C, Waldron K (1996) Cell wall architecture and the skeletal role of the cell wall. In: Brett C, Waldron K (eds) Physiology and biochemistry of plant cell walls. Chapman and Hall, London, pp 4–57

    Google Scholar 

  13. Lam TBT, Kadoya K, Liyama K (2001) Bonding of hydroxycinnamic acids to lignin: ferulic and p-coumaric acids are predominantly linked at the benzyl position of lignin, not the â-position, in grass cell walls. Phytochemistry 57:987

    CrossRef  CAS  Google Scholar 

  14. Klick S, Herrmann K (1998) Glucosides and glucose esters of hydroxybenzoic acids in plants. Phytochemistry 27:2177

    CrossRef  Google Scholar 

  15. Shahidi F, Naczk M (2004) Phenolics in food and nutraceuticals: sources, applications and health effects. CRC Press, Boca Raton, FL

    Google Scholar 

  16. Macheix JJ, Fleuriet A, Billot J (1990) Fruit phenolics. CRC Press, Boca Raton

    Google Scholar 

  17. Luy JF, Jiang H, Wu K, Zheng X, Cai Y, Katakowski M, Chopp M (2010) Effects of mixtures of phenolic acids on phosphorus uptake by cucumber seedlings. Eur J Pharmacol 641:102

    CrossRef  Google Scholar 

  18. Mersie W, Singh M (1993) Phenolic acids affect photosynthesis and protein synthesis by isolated leaf cells of velvet-leaf. J Chem Ecol 19:1293

    CrossRef  CAS  Google Scholar 

  19. Blum U, Shafer SR, Lehman ME (1999) Soils: concepts vs. an experimental model. Crit Rev Plant Sci 18:673

    CrossRef  CAS  Google Scholar 

  20. Moreno PRH (1995) Influence of stress factors on the secondary metabolism in suspension cultured Catharanthus roseus cells. Ph.D., Leiden University

    Google Scholar 

  21. Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5(4):359–368

    CrossRef  CAS  Google Scholar 

  22. Mirjalili MJ, Moyano E, Bonfill M, Cusido RM, Palazón J (2009) Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules 14:2373

    CrossRef  CAS  Google Scholar 

  23. Palacio L, Baeza MC, Cantero JJ, Cusidó R, Goleniowski ME (2008) In vitro propagation of “jarilla” (Larrea divaricata cav.) and secondary metabolites production. Biol Pharm Bull 31:2321

    CrossRef  CAS  Google Scholar 

  24. Palacio L, Cantero JJ, Cusidó R, Goleniowski ME (2010) Effect of inoculum age on kinetic of biomass formation and phenolic accumulations in Larrea divaricata Cav. cell suspension culture. Mol Med Chem 21:64

    Google Scholar 

  25. Zhong JJ (2001) Biochemical engineering of the production of plant-specific secondary metabolites by cell suspension cultures. Adv Biochem Eng Biotechnol 72:1–26

    CrossRef  CAS  Google Scholar 

  26. Park MD, Uddin R, Xu H, Lee SY, Kim YK (2008) Biotechnological applications for rosmarinic acid production in plant African. J Biotechnol 7:4959

    CAS  Google Scholar 

  27. Tada H, Murakami Y, Omoto T, Shimomura K, Ishimaru K (1996) Rosmarinic acid and related phenolics in hairy root cultures of Ocimum basilicum. Phytochemistry 42:431

    CrossRef  CAS  Google Scholar 

  28. Chen H, Chen F, Zhang YL, Song JY (1999) Production of lithospermic acid B and rosmarinic acid in hairy root cultures of Salvia miltiorrhiza. J Ind Microbiol Biotechnol 22:133

    CrossRef  CAS  Google Scholar 

  29. Li W, Koike K, Asada Y, Yoshikawa T, Nikaido T (2005) Rosmarinic acid production by Coleus forskohlii hairy root cultures. Plant Cell Tissue Organ Cult 80:151

    CrossRef  CAS  Google Scholar 

  30. Grzegorczyk I, Krolicka A, Wysokinska H (2006) Establishment of Salvia officinalis L. hairy root cultures for the production of rosmarinic acid. Z Naturforsch 61:351

    CAS  Google Scholar 

  31. Tan SC (2000) Determinants of eating quality in fruits and vegetables. Proc Nutr Soc Aust 24:183

    Google Scholar 

  32. Fernandez de Simon B, Perez-Ilzarbe J, Hernandez T, Gomez-Cordoves CEI (1992) Importance of phenolic compounds for the characterization of fruit juices. J Agric Food Chem 40:1531

    CrossRef  CAS  Google Scholar 

  33. Katalinic V, Milos M, Kulisic T, Jukic M (2006) Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem 94:550

    CrossRef  CAS  Google Scholar 

  34. Kim DO, Lee CY (2004) Antimelanogenic and antioxidant properties of gallic acid. Food Sci Nutr 44:253

    CAS  Google Scholar 

  35. Koshihara Y, Neichi T, Murota SI, Fujimoto AN, Tatsuno T (1984) Caffeic acid is a selective inhibitor for leukotriene biosynthesis. Biochim Biophys Acta 792:92

    CrossRef  CAS  Google Scholar 

  36. Lamaison JL, Petitjeanfreytet C (1996) Medicinal Lamiaceae with antioxidant activity, potential sources of rosmarinic acid. Pharm Acta Helvetiae 66:185

    Google Scholar 

  37. Yanishlieva N, Gordon M (2001) Antioxidants in food. J Agric Food Chem 52:2391

    Google Scholar 

  38. De la Rosa LA, Alvarez-Parrilla E, Gonzalez-Aguilar GA (2010) Fruit and vegetable phytochemicals- chemistry, nutritional value, and stability, 1st edn. Wiley-Blackwell, Ames

    Google Scholar 

  39. Harris CS, Mo F, Migahed L, Chepelev L, Haddad PS, Wright JS, Willmore WG, Arnason JT, Bennett SAL (2007) Plant phenolics regulate neoplastic cell growth and survival: a quantitative structure-activity and biochemical analysis. Can J Physiol Pharmacol 85:1124

    CrossRef  CAS  Google Scholar 

  40. Jacob RA, Burri BJ (1996) Oxidative damage and defense. Am J Clin Nutr 63:985

    Google Scholar 

  41. Huang MT, Ferraro T (1992) Phenolic compounds in food and cancer prevention. In: Phenolic compounds in food and their effects on health. II. Antioxidants and cancer prevention. American Chemical Society, Washington, DC, p 8

    CrossRef  Google Scholar 

  42. Block G, Patterson B, Subar A (1992) Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. Nutr Cancer 18:1–29

    CrossRef  CAS  Google Scholar 

  43. Olthof MR, Hollman PCH, Katan MB (2001) Chlorogenic acid and caffeic acid are absorbed in humans. J Nutr 131:66

    CAS  Google Scholar 

  44. Falsaperlaa M, Morgiab G, Tartaronec A, Arditoc R, Romano G (2005) Support ellagic acid therapy in patients with hormone refractory prostate cancer (HRPC) on standard chemotherapy using vinorelbine and estramustine. Phosphate. Eur Urol 47:449

    CrossRef  Google Scholar 

  45. Kampa M, Hatzoglou A, Notas G, Damianaki A, Bakogeorgou E, Gemetzi C, Kouroumalis E, Martin PM, Castanas E (2000) Wine antioxidant polyphenols inhibit the proliferation of human prostate cancer cell lines. Nutr Cancer 37:105

    CrossRef  Google Scholar 

  46. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Rad Biol Med 20:933

    CrossRef  CAS  Google Scholar 

  47. Trichopoulou A, Bamia C, Trichopoulos D (2005) Mediterranean diet and survival among patients with coronary heart disease in Greece. Arch Intern Med 165:929

    CrossRef  Google Scholar 

  48. Fujisawa S, Atsumi T, Kadoma Y, Sakagami H (2002) Antioxidant and prooxidant action of eugenol-related compounds and their cytotoxicity. Toxicology 177:39

    CrossRef  CAS  Google Scholar 

  49. Hosoda A, Ozaki Y, Kashiwada A, Mutoh M, Wakabayashi K, Mizuno K, Nomura E, Taniguchi H (2002) Syntheses of ferulic acid derivatives and their suppressive effects on cyclooxygenase-2 promoter activity. Bioorg Med Chem 10:1189

    CrossRef  CAS  Google Scholar 

  50. Lee SK, Mbwambo ZH, Chung HS, Luyengi L, Gamez EJC, Mehta RG, Kinghorn AD, Pezzuto JM (1998) Evaluation of the antioxidant potential of natural products. Comb Chem HighThroughput Screen 1:1

    Google Scholar 

  51. Gruz J, Ayaz FA, Torun H, Strand M (2011) Phenolic acid content and radical scavenging activity of extracts from medlar (Mespilus germanica L.) fruit at different stages of ripening. Food Chem 124:271

    CrossRef  CAS  Google Scholar 

  52. Stuart AE, Brooks CJW, Prescott RJ, Blackwell A (2000) 6-Methylsalicylic acid is a phytotoxin. It has antibacterial and antifeeding repellent and antifeedant activity of salicylic acid and related compounds against the biting midge, Culicoides impunctatus (Diptera: Ceratopogonidae). J Med Entomol 37:222

    CrossRef  CAS  Google Scholar 

  53. Heil M, Bostock RM (2002) Systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann Bot 89(5):503

    CrossRef  CAS  Google Scholar 

  54. Verberne MC, Budi Muljono RA, Verpoorte R (1999) Salicylicacid biosynthesis. In: Hooykaas PPJ, Hall MA, Libbenga KR (eds) Biochemistry and molecular biology of plant hormones. Elsevier Science B.V, Amsterdam

    Google Scholar 

  55. Natella F, Nardini M, Di Felice M, Scaccini C (1999) Benzoic and cinnamic acid derivatives as antioxidants: structure-activity relation. Free radical research group, national institute of nutrition, Roma, Italy. J Agric Food Chem 47:1453–2323

    CrossRef  CAS  Google Scholar 

  56. Sircar D, Mitra A (2009) Accumulation of p-hydroxybenzoic acid in hairy roots of Daucus carota: confirming biosynthetic steps through feeding of inhibitors and precursors. J Plant Physiol 166:1370

    CrossRef  CAS  Google Scholar 

  57. Pugazhendhi D, Pope GS, Darbre PD (2005) Oestrogenic activity of p-hydroxybenzoic acid (common metabolite of paraben esters) and methylparaben in human breast cancer cell lines. J Appl Toxicol 25:301

    CrossRef  CAS  Google Scholar 

  58. Chong KP, Rossall S, Atong M (2009) Oestrogenic activity of p-hydroxybenzoic acid(common metabolite of paraben esters) and methylparaben in human breast cancer cell lines. J Agric Sci 1:15–20

    Google Scholar 

  59. Ashidate K, Kawamura M, Mimura D, Tohda H, Miyazaki S, Teramoto T, Hirata Y, Yamamoto Y (2005) Gentisic acid, an aspirin metabolite, inhibits oxidation of low-density lipoprotein and the formation of cholesterol ester hydroperoxides in human plasma. Eur J Pharmacol 513:173

    CrossRef  CAS  Google Scholar 

  60. Sharma S, Khan N, Sultana S (2004) Modulatory effect of gentisic acid on the augmentation of biochemical events of tumor promotion stage by benzoyl peroxide and ultraviolet radiation in Swiss albino mice. Toxicol Lett 28:293

    CrossRef  Google Scholar 

  61. Fernandez IS, Cuevas P, Angulo J, Lopez-Navajas P, Canales-Mayordomo A, Gonzalez-Corrochano R, Lozano RM, Valverde S, Jimenez-Barbero J, Romero A, Gimenez-Gallego G (2010) Gentisic acid, a compound associated with plant defense and a metabolite of aspirin, heads a new class of in vivo fibroblast growth factor inhibitors. J Biol Chem 285:11714

    CrossRef  CAS  Google Scholar 

  62. Wang HF, Provan GJ, Helliwell K (2003) Determination of hamamelitannin, catechins and gallic acid in witch hazel bark, twig and leaf by HPLC. J Pharm Biomed Anal 33:539

    CrossRef  CAS  Google Scholar 

  63. Wu JM, Jan PS, Yu HC, Haung HY, Fang HJ, Chang YI, Cheng JW, Chen HM (2009) Structure and function of a custom anticancer peptide, CB1a. Peptides 30:839

    CrossRef  Google Scholar 

  64. King PJ, Ma G, Miao W, Jia Q, McDougall BR, Reinecke MG, Cornell C, Kuan J, Kim TR, Robinson WE Jr (1999) Structure-activity relationships: analogues of the dicaffeoylquinic and dicaffeoyltartaric acids as potent inhibitors of human immunodeficiency virus type 1 integrase and replication. Med Chem 42:497

    CrossRef  CAS  Google Scholar 

  65. Kratz JM, Andrighetti-Frohner CR, Leal PC, Nunes RJ, Yunes RA, Trybala E, Bergstrom T, Barardi CRM, Simoes CMO (2008) Evaluation of anti-HSV-2 activity of gallic acid and pentyl gallate. Biol Pharm Bull 31:903

    CrossRef  CAS  Google Scholar 

  66. Itoh A, Isoda K, Kondoh M, Kawase M, Kobayashi M, Tamesada M, Yagi K (2009) Hepatoprotective effect of syringic acid and vanillic acid on concanavalin A-induced liver injury. Biol Pharm Bull 32:1215

    CrossRef  CAS  Google Scholar 

  67. Dhananjaya BL, Nataraju A, Gowda CDR, Sharath BK, D'Souza CJM (2009) Vanillic acid as a novel specific inhibitor of snake venom 5′-nucleotidase: a pharmacological tool in evaluating the role of the enzyme in snake envenomation. Biochemistry 74:1315

    CAS  Google Scholar 

  68. Pari L, Mohamed Jalaludeen A (2011) Protective role of sinapic acid against arsenic: induced toxicity in rats. Chem Biol Interact 194:40

    CrossRef  CAS  Google Scholar 

  69. Kanchana G, Shyni WJ, Rajadurai M, Periasamy R (2011) Evaluation of antihyperglycemic effect of sinapic acid in normal and streptozotocin-induced diabetes in albino rats. J Pharm 5:3338

    Google Scholar 

  70. Njoku OV, Obi C (2009) Phytochemical constituents of some selected medicinal plants. Afr J Pure Appl Chem 3:228

    Google Scholar 

  71. Ralph J, Grabber JH, Hatfield RD (1995) Lignin-ferulate crosslinks in grasses: active incorporation of ferulate polysaccharide esters into ryegrass lignins. Carbohydr Res 275:167

    CrossRef  CAS  Google Scholar 

  72. Parker ML, Waldron KW (1995) Texture of Chinese water chestnut: involvement of cell wall phenolics. J Sci Food Agric 68:337

    CrossRef  CAS  Google Scholar 

  73. Dewick PM (2002) Medicinal natural products: a biosynthetic approach, 2nd edn. Wiley, Chichester, pp 112–129

    Google Scholar 

  74. Geissmann T, Neukom H (1971) Vernetzung von Phenolcarbonsäureestern von Polysacchariden durch oxydative phenolische Kupplung Helv. Chim Acta 54:1108

    CrossRef  CAS  Google Scholar 

  75. Grabber JJH, Hatfield RD, Wende G (1996) New discoveries relating to diferulates. USDFRC Research Summary

    Google Scholar 

  76. Han EH, Choi JH, Hwang YP, Park HJ, Choi CY, Chung YC, Seo JK, Jeong HG (2009) Immunostimulatory activity of aqueous extract isolated from Prunella vulgaris. Food Chem Toxicol 47:62

    CrossRef  CAS  Google Scholar 

  77. Hraš AR, Hadolin M, Knez Z, Bauman D (2000) Comparison of antioxidative and synergistic effects of rosemary extract with α-tocopherol, ascorbyl palmitate and citric acid in sunflower oil. Food Chem 71:229

    CrossRef  Google Scholar 

  78. Rimando AM, Inoshiri S, Otsuka H, Kohda H, Yamazaki K, Padolina WG, Torres L, Quintana EG, Cantoria MC (1987) Screening for mast cell histamine release inhibitory activity of Philippine medicinal plants: active constituent of Ehretia microphylla. Shoyakugaku Zasshi 41:242

    CAS  Google Scholar 

  79. Kariya K, Fukumoto Y, Tsuda T, Yamamoto T, Fukuzaki H, Takai Y (1987) Antiproliferative action of protein kinase C in cultured rabbit aortic smooth muscle cells. Exp Cell Res 173:504

    CrossRef  CAS  Google Scholar 

  80. Sanbongi C, Takano H, Osakabe N, Sasa N, Natsume M, Yanagisawa R, Inoue KI, Sadakane K, Ichinose T, Yoshikawa T (2004) Rosmarinic acid in perilla extract inhibits allergic inflammation induced by mite allergen, in a mouse model. Clin Exp Allergy 34:971

    CrossRef  CAS  Google Scholar 

  81. Lee HS, Widmer BW (1996) Phenolic compounds. In: Nollet LML (ed) Handbook of food analysis. Physical characterization and nutriet analysis. Marcel Dekker, New York, p 821

    Google Scholar 

  82. Ahmet C, Saban K, Hamdullah K, Ercan K (2005) Antifungal properties of essential oil and crude extracts of Hypericum linarioides Bosse. Biochem Syst Ecol 33:245

    CrossRef  Google Scholar 

  83. Marko-Varga G, Barcelo D (1992) Liquid chromatographic retention and separation of phenols and related aromatic compounds on reversed phase columns. Chromatogrphy 34:146

    CrossRef  CAS  Google Scholar 

  84. Hertog MGL, Hollman PCH, Katan MB (1992) Content of potentially anticarcinogenic flavonoids of vegetables and fruits commonly consumed in The Netherlands. J Agric Food Chem 40:1598

    Google Scholar 

  85. Riedel H, Cai Z, Kütük O, Smetanska I (2010) Obtaining phenolic acids from cell cultures of various Artemisia species. Afr J Biotechnol 9:8805

    CAS  Google Scholar 

  86. Konczak-Islam I, Okuno S, Yoshimoto M, Yamakawa O (2003) Composition of phenolics and anthocyanins in a sweet potato cell suspension culture. Biochem J 14:155

    CAS  Google Scholar 

  87. Kang SM, Jung HY, Kang YM, Min JY, Karigar CS, Yang JK, Kim SW, Ha YR, Lee SH, Choi MS (2004) Biotransformation and impact of ferulic acid on phenylpropanoid and capsaicin levels in Capsicum annuum L. cv. P1482 cell suspension cultures. J Agric Food Chem 53:3449

    CrossRef  Google Scholar 

  88. Godoy-Hernandez GC, Vazquez-Flota FA, Loyola-Vargas VM (2000) he exposure to trans-cinnamic acid of osmotically stressed Catharanthus roseus cells cultured in a 14-L bioreactor increases alkaloid accumulation. Biotechnol Lett 22:921

    CrossRef  CAS  Google Scholar 

  89. Budi Muljono RA, Looman AMG, Verpoorte R, Scheffer JJC (1998) Assay of salicylic acid and related compounds in plant cell cultures by capillary GC. Phytochem Anal 9:3

    CrossRef  Google Scholar 

  90. Budi Muljono RA (2001) The isochorismate pathway as a route to 2, 3-dihydroxybenzoic acid in Catharanthus roseus cell cultures. Ph.D. thesis, University of Leiden.

    Google Scholar 

  91. Palacio L, Cantero JJ, Cusidó R, Goleniowski ME (2011) Phenolic compound production by Larrea divaricata Cav. plant cell cultures and effect of precursor feeding. Process Biochem 46:418

    CrossRef  CAS  Google Scholar 

  92. Chakraborty M, Karun A, Mitra A (2009) Accumulation of phenylpropanoid derivatives in chitosan-induced cell suspension culture of Cocos nucifera. J Plant Physiol 166:63

    CrossRef  CAS  Google Scholar 

  93. Loescher R, Heide L (1994) Biosynthesis of p-hydroxybenzoate from p-coumarate and p-coumaroylcoenzyme A in cell-free extracts of Lithospermum erythrorhizon cell cultures. Plant Physiol 106:271

    CAS  Google Scholar 

  94. Yang JG, Uchiyama T (2000) Hydroxycinnamic acids and their dimers involved in the cessation of cell elongation in Mentha suspension culture. Biosci Biotechnol Biochem 64:862

    CrossRef  CAS  Google Scholar 

  95. Yoshida-Shimokawa T, Yoshida S, Kakegawa K, Ishii T (2001) Enzymic feruloylation of arabinoxylan-trisaccharide by feruloyl-CoA: arabinoxylan-trisaccharide O-hydroxycinnamoyl transferase from Oryza sativa. Planta 212:470

    CrossRef  CAS  Google Scholar 

  96. Zhao J, Lou J, Mou Y, Li P, Wu J, Zhou L (2011) Diterpenoids Tanshinones and phenolic acids from cultured hairy roots of Salvia milthiorrhiza. Molecules 16:2259

    CrossRef  CAS  Google Scholar 

  97. Morimoto S, Goto Y, Shoyama Y (1994) Production of lithospermic acid B and rosmarinic acid in callus tissue and regenerated plantlets of Salvia miltiorrhiza. J Nat Prod 57:817

    CrossRef  CAS  Google Scholar 

  98. Chong J, Pierrel MA, Atanassova R, Werck-Reichhart D, Fritig B, Saindrenan P (2001) Free and conjugated benzoic acid in tobacco plants and cell cultures. Induced accumulation upon elicitation of defense responses and role as salicylic acid precursors. Plant Physiol 125:318

    CrossRef  CAS  Google Scholar 

  99. Sommer J, Schroeder C, Stoeckigt J (1997) In vivo formation of vanillin glucoside. Plant Cell Tiss Org Cult 50:119

    CrossRef  CAS  Google Scholar 

  100. Maggi-Capeyron MF, Ceballos P, Cristol JP, Delbosc S, Le Doucen C, Pons M, Leger CL, Descomps B (2001) Wine phenolic antioxidants inhibit ap-1 transcriptional activity. J Agric Food Chem 49:5646

    CrossRef  CAS  Google Scholar 

  101. Makino T, Ono T, Nakamura T, Muso E, Honda G, Sasayama S (1999) Suppressive effect of rosmarinic acid on mesangioproliferative glomerulonephritis in rats. J Am Soc Nephrol 10:552

    Google Scholar 

  102. Rommel A, Wrolstad RE (1993) Ellagic acid content of red raspberry juice as influenced by cultivar, processing, and environmental factors. J Agric Food Chem 41:1951

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Goleniowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Goleniowski, M., Bonfill, M., Cusido, R., Palazón, J. (2013). Phenolic Acids. In: Ramawat, K., Mérillon, JM. (eds) Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_64

Download citation