Skip to main content

Neurotoxic Alkaloids from Cyanobacteria

  • Reference work entry
  • First Online:
Natural Products

Abstract

Cyanobacteria produce a wealth of secondary metabolites that are very diverse in chemical structure and in biological activity. A number of neurotoxins have been identified in strains of cyanobacteria including anatoxin-a and its higher homologue homoanatoxin-a, anatoxin-a(S), saxitoxins, and related paralytic shellfish toxins. This chapter focuses on these neurotoxic alkaloids from cyanobacteria, with emphasis on the chemical, biochemical, toxicological, and biosynthetic aspects. Anatoxin-a and homoanatoxin-a are two deadly potent agonists of the nicotinic acetylcholine receptor at the neuromuscular junction, provoking the rapid death of animals after respiratory failure. The chemistry and the pharmacology of these neurotoxins have been well studied, while their biosynthesis was recently deciphered. Our knowledge concerning anatoxin-a(S), an irreversible inhibitor of acetylcholine esterase, lies far behind and future work will be needed. Saxitoxin and its analogues, the paralytic shellfish toxins, have been associated with massive intoxication episodes in marine environment. They act as blockers of voltage-gated sodium channels provoking death in animals at low doses. The chemistry, pharmacology, and biosynthesis of saxitoxins have been well described. The genetic origin of the biosynthetic genes of this ancient toxin has been studied by detailed phylogenetic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACP:

Acyl carrier protein

AOP:

Advance oxidation process

AT:

Acyltransferase

ATX:

Anatoxin-a

CM:

Methyltransferase

Cy:

Cyclase

DH:

Dehydratase

ER:

Enoyl reductase

GC-MS:

Gas chromatography coupled to mass spectrometry

HATX:

Homoanatoxin-a

HPLC:

High pressure liquid chromatography

i.p.:

Intraperitoneal

KR:

Keto reductase

KS:

Ketosynthase

LC-FLD:

Liquid chromatography coupled to a fluorescence detector

LC-MS2 :

Liquid chromatography coupled to tandem mass spectrometry

LC-UV:

Liquid chromatography coupled to a UV detector

LD:

Lethal dose

nAChR:

nicotinic acetylcholine receptor

PKS:

Polyketide synthase

PSP:

Paralytic shellfish poisoning

PST:

Paralytic shellfish toxin

References

  1. Carmichael WW, Biggs DF, Peterson MA (1979) Pharmacology of anatoxin-a, produced by the freshwater cyanophyte Anabaena flos-aquae NRC-44-1. Toxicon 17:229–236

    Article  CAS  Google Scholar 

  2. Spivak CE, Witkop B, Albuquerque EX (1980) Anatoxin-a: a novel, potent agonist at the nicotinic receptor. Mol Pharmacol 18:384–394

    CAS  Google Scholar 

  3. Wonnacott S, Swanson KL, Albuquerque EX, Huby NJ, Thompson P, Gallagher T (1992) Homoanatoxin: a potent analogue of anatoxin-A. Biochem Pharmacol 43:419–423. doi:0006-2952(92)90558-Z [pii]

    Article  CAS  Google Scholar 

  4. Mahmood NA, Carmichael WW (1986) The pharmacology of anatoxin-a(s), a neurotoxin produced by the freshwater cyanobacterium Anabaena flos-aquae NRC 525-17. Toxicon 24:425–434. doi:10.1016/0041-0101(86)90074-7

    Article  CAS  Google Scholar 

  5. Mahmood NA, Carmichael WW (1987) Anatoxin-a(s), an anticholinesterase from the cyanobacterium Anabaena flos-aquae NRC-525-17. Toxicon 25:1221–1227

    Article  CAS  Google Scholar 

  6. Strichartz G, Rando T, Hall S, Gitschier J, Hall L, Magnani B, Bay CH (1986) On the mechanism by which saxitoxin binds to and blocks sodium channels. Ann N Y Acad Sci 479:96–112

    Article  CAS  Google Scholar 

  7. Su Z, Sheets M, Ishida H, Li F, Barry WH (2004) Saxitoxin blocks L-type ICa. J Pharmacol Exp Ther 308(1):324–9

    Article  CAS  Google Scholar 

  8. Wang J, Salata JJ, Bennett PB (2003) Saxitoxin is a gating modifier of HERG K + channels. J Gen Physiol 121:583–598

    Article  CAS  Google Scholar 

  9. Edwards DJ, Marquez BL, Nogle LM, McPhail K, Goeger DE, Roberts MA, Gerwick WH (2004) Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. Chem Biol 11:817–833. doi:10.1016/j.chembiol.2004.03.030

    Article  CAS  Google Scholar 

  10. LePage KT, Goeger D, Yokokawa F, Asano T, Shioiri T, Gerwick WH, Murray TF (2005) The neurotoxic lipopeptide kalkitoxin interacts with voltage-sensitive sodium channels in cerebellar granule neurons. Toxicol Lett 158:133–139. doi:10.1016/j.toxlet.2005.03.007

    Article  CAS  Google Scholar 

  11. Li WI, Berman FW, Okino T, Yokokawa F, Shioiri T, Gerwick WH, Murray TF (2001) Antillatoxin is a marine cyanobacterial toxin that potently activates voltage-gated sodium channels. Proc Natl Acad Sci USA 98:7599–7604. doi:10.1073/pnas.121085898

    Article  CAS  Google Scholar 

  12. Orjala J, Nagle DG, Hsu V, Gerwick WH (1995) Antillatoxin: an exceptionally ichthyotoxic cyclic lipopeptide from the tropical cyanobacterium Lyngbya majuscula. J Am Chem Soc 117:8281–8282

    Article  CAS  Google Scholar 

  13. Rao SD, Banack SA, Cox PA, Weiss JH (2006) BMAA selectively injures motor neurons via AMPA/kainate receptor activation. Exp Neurol 201:244–252. doi:10.1016/j.expneurol.2006.04.017

    Article  CAS  Google Scholar 

  14. Chiu AS, Gehringer MM, Welch JH, Neilan BA (2011) Does alpha-amino-beta-methylaminopropionic acid (BMAA) play a role in neurodegeneration? Int J Environ Res Public Health 8:3728–3746. doi:10.3390/ijerph8093728

    Article  CAS  Google Scholar 

  15. Moore RE (1996) Cyclic peptides and depsipeptides from cyanobacteria: a review. J Ind Microbiol 16:134–143

    Article  CAS  Google Scholar 

  16. Gerwick WH, Tong Tan L, Sitachitta N (2001) Nitrogen-containing metabolites from marine cyanobacteria. In: The alkaloids: chemistry and biology, vol 57. Academic, San Diego, pp 75–184

    Google Scholar 

  17. Chorus I (2001) Cyanotoxins, occurrence, causes, consequences. Springer, Heidelberg

    Google Scholar 

  18. Devlin JP, Edwards OE, Gorham PR, Hunter NR, Pike RK, Stavric B (1977) Anatoxin-a, a toxic alkaloid from Anabaena flos-aquae NRC-44h. Can J Chem 55:1367–1371

    Article  CAS  Google Scholar 

  19. Skulberg OM, Skulberg R, Carmichael W, Anderson RA, Matsunaga S, Moore R (1992) Investigations of a neurotoxic oscillatorialean strain (Cyanophyceae) and its toxin. Isolation and characterization of homoanatoxin-a. Environ Toxicol Chem 11:321–329

    Article  CAS  Google Scholar 

  20. Matsunaga S, Moore R, Carmichael W (1989) Anatoxin-a(s), a potent anticholinesterase from Anabaena flos-aquae. J Am Chem Soc 111:8021–8023

    Article  CAS  Google Scholar 

  21. Schantz EJ, Ghazarossian VE, Schnoes HK, Strong FM, Springer JP, Pezzanite JO, Clardy J (1975) Letter: the structure of saxitoxin. J Am Chem Soc 97:1238

    Article  CAS  Google Scholar 

  22. Wiese M, D’Agostino PM, Mihali TK, Moffitt MC, Neilan BA (2010) Neurotoxic alkaloids: saxitoxin and its analogs. Mar Drugs 8:2185–2211. doi:10.3390/md8072185

    Article  CAS  Google Scholar 

  23. Tillett D, Dittmann E, Erhard M, von Dohren H, Borner T, Neilan BA (2000) Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chem Biol 7:753–764

    Article  CAS  Google Scholar 

  24. Moffitt MC, Neilan BA (2004) Characterization of the nodularin synthetase gene cluster and proposed theory of the evolution of cyanobacterial hepatotoxins. Appl Environ Microbiol 70:6353–6362

    Article  CAS  Google Scholar 

  25. Mihali TK, Kellmann R, Muenchhoff J, Barrow KD, Neilan BA (2008) Characterization of the gene cluster responsible for cylindrospermopsin biosynthesis. Appl Environ Microbiol 74:716–722. doi:10.1128/AEM.01988-07

    Article  CAS  Google Scholar 

  26. Mejean A, Mann S, Maldiney T, Vassiliadis G, Lequin O, Ploux O (2009) Evidence that biosynthesis of the neurotoxic alkaloids anatoxin-a and homoanatoxin-a in the cyanobacterium Oscillatoria PCC 6506 occurs on a modular polyketide synthase initiated by L-proline. J Am Chem Soc 131:7512–7513. doi:10.1021/ja9024353

    Article  CAS  Google Scholar 

  27. Kellmann R, Mihali TK, Jeon YJ, Pickford R, Pomati F, Neilan BA (2008) Biosynthetic intermediate analysis and functional homology reveal a saxitoxin gene cluster in cyanobacteria. Appl Environ Microbiol 74:4044–4053

    Article  CAS  Google Scholar 

  28. Devlin JP, Edwards OE, Gorham PR, Hunter NR, Pike RK, Stavric B (1977) Anatoxin-a, a toxic alkaloid from Anabaena-Flos-Aquae Nrc-44h. Can J Chem 55:1367–1371. doi:10.1139/v77-189

    Article  CAS  Google Scholar 

  29. Huber C (1972) The crystal structure and absolute configuration of 2,9-diacetyl-9-azabicyclo[1,2,4]non-2,3-ene. Acta Crystallogr Sect B 28:2577–2582. doi:10.1107/S0567740872006491

    Article  CAS  Google Scholar 

  30. Campbell HF, Edwards OE, Kolt R (1977) Synthesis of nor-anatoxin-a and anatoxin-A. Can J Chem 55:1372–1379. doi:10.1139/v77-190

    Article  CAS  Google Scholar 

  31. Carmichael WW, Biggs DF, Gorham PR (1975) Toxicology and pharmacological action of Anabaena flos-aquae toxin. Science 187:542–544. doi:10.1126/science.803708

    Article  CAS  Google Scholar 

  32. Skulberg OM, Carmichael WW, Andersen RA, Matsunaga S, Moore RE, Skulberg R (1992) Investigations of a neurotoxic Oscillatorialean strain (Cyanophyceae) and Its toxin - isolation and characterization of homoanatoxin-A. Environ Toxicol Chem 11:321–329. doi:10.1002/etc.5620110306

    Article  CAS  Google Scholar 

  33. Méjean A, Mann S, Maldiney T, Vassiliadis G, Lequin O, Ploux O (2009) Evidence that biosynthesis of the neurotoxic alkaloids anatoxin-a and homoanatoxin-a in the cyanobacterium Oscillatoria PCC 6506 occurs on a modular polyketide synthase initiated by L-proline. J Am Chem Soc 131:7512–7513. doi:10.1021/ja9024353

    Article  CAS  Google Scholar 

  34. Koskinen AM, Rapoport H (1985) Synthetic and conformational studies on anatoxin-a: a potent acetylcholine agonist. J Med Chem 28:1301–1309. doi:10.1021/jm00147a032

    Article  CAS  Google Scholar 

  35. Bates HA, Rapoport H (1979) Synthesis of anatoxin-a via intra-molecular cyclization of iminium salts. J Am Chem Soc 101:1259–1265. doi:10.1021/ja00499a035

    Article  CAS  Google Scholar 

  36. Petersen JS, Fels G, Rapoport H (1984) Chirospecific syntheses of (+)- and (-)-anatoxin a. J Am Chem Soc 106:4539–4547. doi:10.1021/ja00328a040

    Article  CAS  Google Scholar 

  37. Wonnacott S, Jackman S, Swanson KL, Rapoport H, Albuquerque EX (1991) Nicotinic pharmacology of anatoxin analogs. II. Side chain structure-activity relationships at neuronal nicotinic ligand binding sites. J Pharmacol Exp Ther 259:387–391

    CAS  Google Scholar 

  38. Huby NJS, Thompson P, Wonnacott S, Gallagher T (1991) Structural modification of anatoxin-a. Synthesis of model affinity ligands for the nicotinic acetylcholine receptor. J Chem Soc Chem Commun 4:243–245. doi:10.1039/C39910000243

    Article  Google Scholar 

  39. Wonnacott S, Gallagher T (2006) The chemistry and pharmacology of anatoxin-a and related homotropanes with respect to nicotinic acetylcholine receptors. Mar Drugs 4:228–254. doi:10.3390/md403228

    Article  CAS  Google Scholar 

  40. Parsons PJ, Camp NP, Edwards N, Ravi Sumoreeah L (2000) Synthesis of (±)-anatoxin-a and analogues. Tetrahedron 56:309–315. doi:10.1016/s0040-4020(99)00909-6

    Article  CAS  Google Scholar 

  41. Mansell HL (1996) Synthetic approaches to anatoxin-a. Tetrahedron 52:6025–6061. doi:10.1016/0040-4020(95)01076-9

    Article  CAS  Google Scholar 

  42. Oh C-Y, Kim K-S, Ham W-H (1998) A formal total synthesis of (±)-anatoxin-a by an intramolecular Pd-catalyzed aminocarbonylation reaction. Tetrahedron Lett 39:2133–2136. doi:10.1016/s0040-4039(98)00078-1

    Article  CAS  Google Scholar 

  43. Aggarwal VK, Humphries PS, Fenwick A (1999) A formal asymmetric synthesis of (+)-anatoxin-a using an enantioselective deprotonation strategy on an eight-membered ring. Ange Chem Int Ed 38:1985–1986. doi:10.1002/(sici)1521-3773(19990712)38:13/14<1985::aid-anie1985>3.0.co;2-7

    Article  CAS  Google Scholar 

  44. Wegge T, Schwarz S, Seitz G (2000) A new and efficient synthetic route to enantiopure (+)-anatoxin-a from (−)-cocaine hydrochloride. Tetrahedron Asymmetr 11:1405–1410. doi:10.1016/s0957-4166(00)00059-8

    Article  CAS  Google Scholar 

  45. Brenneman JB, Machauer R, Martin SF (2004) Enantioselective synthesis of (+)-anatoxin-a via enyne metathesis. Tetrahedron 60:7301–7314. doi:10.1016/j.tet.2004.06.021

    Article  CAS  Google Scholar 

  46. Mori M, Tomita T, Kita Y, Kitamura T (2004) Synthesis of (+)-anatoxin-a using enyne metathesis. Tetrahedron Lett 45:4397–4399. doi:10.1016/j.tetlet.2004.03.171

    Article  CAS  Google Scholar 

  47. Ho T-L, Zinurova E (2006) A concise route to racemic anatoxin a from cycloocta-1,5-diene. Helv Chim Acta 89:134–137. doi:10.1002/hlca.200690005

    Article  CAS  Google Scholar 

  48. Tomita T, Kita Y, Kitamura T, Sato Y, Mori M (2006) Further studies on enantioselective synthesis of (+)-anatoxin-a using enyne metathesis: unexpected inversion of chirality via a skeletal rearrangement of 9-azabicyclo[4.2.1]nonene derivative. Tetrahedron 62:10518–10527. doi:10.1016/j.tet.2006.05.088

    Article  CAS  Google Scholar 

  49. Roe SJ, Stockman RA (2008) A two-directional approach to the anatoxin alkaloids: second synthesis of homoanatoxin and efficient synthesis of anatoxin-a. Chem Commun (Camb): 3432–3434. doi: 10.1039/b804304c

    Google Scholar 

  50. Thompson PE, Manallack DT, Blaney FE, Gallagher T (1992) Conformational studies on (+)-anatoxin-a and derivatives. J Comput Aided Mol Des 6:287–298. doi:10.1007/bf00123382

    Article  CAS  Google Scholar 

  51. Himberg K (1989) Determination of anatoxin-a, the neurotoxin of Anabaena flos-aquae cyanobacterium, in algae and water by gas chromatography—mass spectrometry. J Chromatogr A 481:358–362. doi:10.1016/s0021-9673(01)96779-2

    Article  CAS  Google Scholar 

  52. Ross MM, Kidwell DA, Callahan JH (1989) Mass spectrometric analysis of anatoxin-a. J Anal Toxicol 13:317–321. doi:10.1093/jat/13.6.317

    Article  CAS  Google Scholar 

  53. Zotou A, Jefferies TM, Brough PA, Gallagher T (1993) Determination of anatoxin-a and homoanatoxin in blue-green-algal extracts by high-performance liquid-chromatography and gas-chromatography mass-spectrometry. Analyst 118:753–758. doi:10.1039/AN9931800753

    Article  CAS  Google Scholar 

  54. James KJ, Sherlock IR (1996) Determination of the cyanobacterial neurotoxin, anatoxin-a, by derivatisation using 7-fluoro-4-nitro-2,1,3-benzoxadiazole (NBD-F) and HPLC analysis with fluorimetric detection. Biomed Chromatogr 10:46–47. doi:10.1002/(SICI)1099-0801(199601)10:1<46::AID-BMC551>3.0.CO;2-7 [pii]

    Article  CAS  Google Scholar 

  55. Takino M, Daishima S, Yamaguchi K (1999) Analysis of anatoxin-a in freshwaters by automated on-line derivatization-liquid chromatography-electrospray mass spectrometry. J Chromatogr A 862:191–197. doi:10.1016/s0021-9673(99)00943-7

    Article  CAS  Google Scholar 

  56. James KJ, Furey A, Sherlock IR, Stack MA, Twohig M, Caudwell FB, Skulberg OM (1998) Sensitive determination of anatoxin-a, homoanatoxin-a and their degradation products by liquid chromatography with fluorimetric detection. J Chromatogr A 798:147–157. doi:10.1016/s0021-9673(97)01207-7

    Article  CAS  Google Scholar 

  57. Stevens DK, Krieger RI (1991) Stability studies on the cyanobacterial nicotinic alkaloid anatoxin-A. Toxicon 29:167–179. doi:10.1016/0041-0101(91)90101-v

    Article  CAS  Google Scholar 

  58. Al Momani F (2007) Degradation of cyanobacteria anatoxin-a by advanced oxidation processes. Sep Purif Technol 57:85–93. doi:10.1016/j.seppur.2007.03.008

    Article  CAS  Google Scholar 

  59. Rodriguez E, Sordo A, Metcalf JS, Acero JL (2007) Kinetics of the oxidation of cylindrospermopsin and anatoxin-a with chlorine, monochloramine and permanganate. Water Res 41:2048–2056. doi:10.1016/j.watres.2007.01.033

    Article  CAS  Google Scholar 

  60. Rodriguez E, Onstad GD, Kull TP, Metcalf JS, Acero JL, von Gunten U (2007) Oxidative elimination of cyanotoxins: comparison of ozone, chlorine, chlorine dioxide and permanganate. Water Res 41:3381–3393. doi:10.1016/j.watres.2007.03.033

    Article  CAS  Google Scholar 

  61. Onstad GD, Strauch S, Meriluoto J, Codd GA, Von Gunten U (2007) Selective oxidation of key functional groups in cyanotoxins during drinking water ozonation. Environ Sci Technol 41:4397–4404. doi:10.1021/es0625327

    Article  CAS  Google Scholar 

  62. Afzal A, Oppenlander T, Bolton JR, El-Din MG (2010) Anatoxin-a degradation by advanced oxidation processes: vacuum-UV at 172 nm, photolysis using medium pressure UV and UV/H(2)O(2). Water Res 44:278–286. doi:10.1016/j.watres.2009.09.021

    Article  CAS  Google Scholar 

  63. Merel S, Clément M, Thomas O (2010) State of the art on cyanotoxins in water and their behaviour towards chlorine. Toxicon 55:677–691. doi:10.1016/j.toxicon.2009.10.028

    Article  CAS  Google Scholar 

  64. Westrick JA (2008) Cyanobacterial toxin removal in drinking water treatment processes and recreational waters. Adv Exp Med Biol 619:275–290. doi:10.1007/978-0-387-75865-7_13

    Article  CAS  Google Scholar 

  65. Carrière A, Prévost M, Zamyadi A, Chevalier P, Barbeau B (2010) Vulnerability of Quebec drinking-water treatment plants to cyanotoxins in a climate change context. J Water Health 8:455–465. doi:10.2166/wh.2009.207

    Article  CAS  Google Scholar 

  66. Smith RA, Lewis D (1987) A rapid analysis of water for anatoxin a, the unstable toxic alkaloid from Anabaena flos-aquae, the stable non-toxic alkaloids left after bioreduction and a related amine which may be nature’s precursor to anatoxin a. Vet Hum Toxicol 29:153–154

    CAS  Google Scholar 

  67. Harada K-I, Kimura Y, Ogawa K, Suzuki M, Dahlem AM, Beasley VR, Carmichael WW (1989) A new procedure for the analysis and purification of naturally occurring anatoxin-a from the blue-green alga Anabaena flos-aquae. Toxicon 27:1289–1296. doi:10.1016/0041-0101(89)90060-3

    Article  CAS  Google Scholar 

  68. Furey A, Crowley J, Lehane M, James KJ (2003) Liquid chromatography with electrospray ion-trap mass spectrometry for the determination of anatoxins in cyanobacteria and drinking water. Rapid Commun Mass Spectrom 17:583–588. doi:10.1002/rcm.932

    Article  CAS  Google Scholar 

  69. Furey A, Crowley J, Hamilton B, Lehane M, James KJ (2005) Strategies to avoid the mis-identification of anatoxin-a using mass spectrometry in the forensic investigation of acute neurotoxic poisoning. J Chromatogr A 1082:91–97. doi:10.1016/j.chroma.2005.05.040

    Article  CAS  Google Scholar 

  70. Rawn DF, Lau BP, Niedzwiadek B, Lawrence JF (2005) Improved method for the determination of anatoxin-a and two of its metabolites in blue-green algae using liquid chromatography with fluorescence detection. J AOAC Int 88:1741–1747

    CAS  Google Scholar 

  71. Namera A, So A, Pawliszyn J (2002) Analysis of anatoxin-a in aqueous samples by solid-phase microextraction coupled to high-performance liquid chromatography with fluorescence detection and on-fiber derivatization. J Chromatogr A 963:295–302. doi:10.1016/s0021-9673(02)00648-9

    Article  CAS  Google Scholar 

  72. Rellan S, Gago-Martinez A (2007) Improved conditions for the application of solid phase microextraction prior to HPLC-FLD analysis of anatoxin-a. J Sep Sci 30:2522–2528. doi:10.1002/jssc.200700103

    Article  CAS  Google Scholar 

  73. K-i H, Nagai H, Kimura Y, Suzuki M, Park H-D, Watanabe MF, Luukkainen R, Sivonen K, Carmichael WW (1993) Liquid chromatography/mass spectrometric detection of anatoxin-a, a neurotoxin from cyanobacteria. Tetrahedron 49:9251–9260. doi:10.1016/0040-4020(93)80011-h

    Article  Google Scholar 

  74. James KJ, Crowley J, Hamilton B, Lehane M, Skulberg O, Furey A (2005) Anatoxins and degradation products, determined using hybrid quadrupole time-of-flight and quadrupole ion-trap mass spectrometry: forensic investigations of cyanobacterial neurotoxin poisoning. Rapid Commun Mass Spectrom 19:1167–1175. doi:10.1002/rcm.1894

    Article  CAS  Google Scholar 

  75. Bogialli S, Bruno M, Curini R, Di Corcia A, Lagana A (2006) Simple and rapid determination of anatoxin-a in lake water and fish muscle tissue by liquid-chromatography-tandem mass spectrometry. J Chromatogr A 1122:180–185. doi:10.1016/j.chroma.2006.04.064

    Article  CAS  Google Scholar 

  76. Dimitrakopoulos IK, Kaloudis TS, Hiskia AE, Thomaidis NS, Koupparis MA (2010) Development of a fast and selective method for the sensitive determination of anatoxin-a in lake waters using liquid chromatography-tandem mass spectrometry and phenylalanine-d5 as internal standard. Anal Bioanal Chem 397:2245–2252. doi:10.1007/s00216-010-3727-3

    Article  CAS  Google Scholar 

  77. Wood SA, Holland PT, MacKenzie L (2011) Development of solid phase adsorption toxin tracking (SPATT) for monitoring anatoxin-a and homoanatoxin-a in river water. Chemosphere 82:888–894. doi:10.1016/j.chemosphere.2010.10.055

    Article  CAS  Google Scholar 

  78. Marc M, Outurquin F, Renard P-Y, Créminon C, Franck X (2009) Synthesis of a (+)-anatoxin-a analogue for monoclonal antibodies production. Tetrahedron Lett 50:4554–4557. doi:10.1016/j.tetlet.2009.05.094

    Article  CAS  Google Scholar 

  79. Azevedo J, Osswald J, Guilhermino L, Vasconcelos V (2011) Development and validation of an SPE-HPLC-FL method for the determination of anatoxin-a in water and trout (Oncorhincus mykiss). Anal Lett 44:1431–1441. doi:10.1080/00032719.2010.512682

    Article  CAS  Google Scholar 

  80. Hiller S, Krock B, Cembella A, Luckas B (2007) Rapid detection of cyanobacterial toxins in precursor ion mode by liquid chromatography tandem mass spectrometry. J Mass Spectrom 42:1238–1250. doi:10.1002/jms.1257

    Article  CAS  Google Scholar 

  81. Osswald J, Rellan S, Gago A, Vasconcelos V (2007) Toxicology and detection methods of the alkaloid neurotoxin produced by cyanobacteria, anatoxin-a. Environ Int 33:1070–1089. doi:10.1016/j.envint.2007.06.003

    Article  CAS  Google Scholar 

  82. Kotut K, Ballot A, Krienitz L (2006) Toxic cyanobacteria and their toxins in standing waters of Kenya: implications for water resource use. J Water Health 4:233–245. doi:10.2166/wh.2006.015

    CAS  Google Scholar 

  83. Wood SA, Holland PT, Stirling DJ, Briggs LR, Sprosen J, Ruck JG, Wear RG (2006) Survey of cyanotoxins in New Zealand water bodies between 2001 and 2004. New Zeal J Mari Fresh 40:585–597. doi:10.1080/00288330.2006.9517447

    Article  CAS  Google Scholar 

  84. Wood SA, Selwood AI, Rueckert A, Holland PT, Milne JR, Smith KF, Smits B, Watts LF, Cary CS (2007) First report of homoanatoxin-a and associated dog neurotoxicosis in New Zealand. Toxicon 50:292–301. doi:10.1016/j.toxicon.2007.03.025

    Article  CAS  Google Scholar 

  85. Wood SA, Rasmussen JP, Holland PT, Campbell R, Crowe ALM (2007) First report of the cyanotoxin anatoxin-a from aphanizomenon issatschenkoi (cyanobacteria). J Phycol 43:356–365. doi:10.1111/j.1529-8817.2007.00318.x

    Article  CAS  Google Scholar 

  86. Wood SA, Jentzsch K, Rueckert A, Hamilton DP, Cary SC (2009) Hindcasting cyanobacterial communities in Lake Okaro with germination experiments and genetic analyses. FEMS Microbiol Ecol 67:252–260. doi:10.1111/j.1574-6941.2008.00630.x

    Article  CAS  Google Scholar 

  87. Wood SA, Heath MW, Kuhajek J, Ryan KG (2010) Fine-scale spatial variability in anatoxin-a and homoanatoxin-a concentrations in benthic cyanobacterial mats: implication for monitoring and management. J Appl Microbiol 109:2011–2018. doi:10.1111/j.1365-2672.2010.04831.x

    Article  CAS  Google Scholar 

  88. Heath MW, Wood SA, Ryan KG (2011) Spatial and temporal variability in Phormidium mats and associated anatoxin-a and homoanatoxin-a in two New Zealand rivers. Aquat Microb Ecol 64:69–79. doi:10.3354/ame01516

    Article  Google Scholar 

  89. Méjean A, Peyraud-Thomas C, Kerbrat AS, Golubic S, Pauillac S, Chinain M, Laurent D (2010) First identification of the neurotoxin homoanatoxin-a from mats of Hydrocoleum lyngbyaceum (marine cyanobacterium) possibly linked to giant clam poisoning in New Caledonia. Toxicon 56:829–835. doi:10.1016/j.toxicon.2009.10.029

    Article  CAS  Google Scholar 

  90. Williams CD, Aubel MT, Chapman AD, D’Aiuto PE (2007) Identification of cyanobacterial toxins in Florida’s freshwater systems. Lake Reserv Manage 23:144–152. doi:10.1080/07438140709353917

    Article  Google Scholar 

  91. Hedman CJ, Krick WR, Karner Perkins DA, Harrahy EA, Sonzogni WC (2008) New measurements of cyanobacterial toxins in natural waters using high performance liquid chromatography coupled to tandem mass spectrometry. J Environ Qual 37:1817–1824. doi:10.2134/jeq2007.0368

    Article  CAS  Google Scholar 

  92. Tango PJ, Butler W (2008) Cyanotoxins in tidal waters of Chesapeake Bay. Northeastern Nat 15:403–416. doi:10.1656/1092-6194-15.3.403

    Article  Google Scholar 

  93. Graham JL, Loftin KA, Meyer MT, Ziegler AC (2010) Cyanotoxin mixtures and taste-and-odor compounds in cyanobacterial blooms from the Midwestern United States. Environ Sci Technol 44:7361–7368. doi:10.1021/es1008938

    Article  CAS  Google Scholar 

  94. Bellinger BJ, Hagerthey SE (2010) Presence and diversity of algal toxins in subtropical peatland periphyton: The Florida Everglades, USA1. J Phycol 46:674–678. doi:10.1111/j.1529-8817.2010.00832.x

    Article  CAS  Google Scholar 

  95. Osswald J, Rellan S, Gago-Martinez A, Vasconcelos V (2009) Production of anatoxin-a by cyanobacterial strains isolated from Portuguese fresh water systems. Ecotoxicology 18:1110–1115. doi:10.1007/s10646-009-0375-5

    Article  CAS  Google Scholar 

  96. Cadel-Six S, Peyraud-Thomas C, Brient L, de Marsac NT, Rippka R, Mejean A (2007) Different genotypes of anatoxin-producing cyanobacteria coexist in the Tarn River, France. Appl Environ Microbiol 73:7605–7614. doi:10.1128/AEM.01225-07

    Article  CAS  Google Scholar 

  97. Carrasco D, Moreno E, Paniagua T, Cd H, Wormer L, Sanchis D, Cirés S, Martín-del-Pozo D, Codd GA, Quesada A (2007) Anatoxin-a occurrence and potential cyanobacterial anatoxin-a producers in Spanish reservoirs. J Phycol 43:1120–1125. doi:10.1111/j.1529-8817.2007.00402.x

    Article  CAS  Google Scholar 

  98. Messineo V, Bogialli S, Melchiorre S, Sechi N, Lugliè A, Casiddu P, Mariani MA, Padedda BM, Corcia AD, Mazza R, Carloni E, Bruno M (2009) Cyanobacterial toxins in Italian freshwaters. Limnologica 39:95–106. doi:10.1016/j.limno.2008.09.001

    Article  CAS  Google Scholar 

  99. Sieroslawska A, Rymuszka A, Kalinowska R, Skowronski T, Bownik A, Pawlik-Skowronska B (2010) Toxicity of cyanobacterial bloom in the eutrophic dam reservoir (Southeast Poland). Environ Toxicol Chem 29:556–560. doi:10.1002/etc.86

    Article  CAS  Google Scholar 

  100. Ballot A, Fastner J, Lentz M, Wiedner C (2010) First report of anatoxin-a-producing cyanobacterium Aphanizomenon issatschenkoi in northeastern Germany. Toxicon 56:964–971. doi:10.1016/j.toxicon.2010.06.021

    Article  CAS  Google Scholar 

  101. Li Z, Yu J, Yang M, Zhang J, Burch MD, Han W (2010) Cyanobacterial population and harmful metabolites dynamics during a bloom in Yanghe Reservoir, North China. Harmful Algae 9:481–488. doi:10.1016/j.hal.2010.03.003

    Article  CAS  Google Scholar 

  102. Aronstam RS, Witkop B (1981) Anatoxin-a interactions with cholinergic synaptic molecules. Proc Natl Acad Sci USA 78:4639–4643

    Article  CAS  Google Scholar 

  103. Osswald J, Carvalho AP, Claro J, Vasconcelos V (2009) Effects of cyanobacterial extracts containing anatoxin-a and of pure anatoxin-a on early developmental stages of carp. Ecotoxicol Environ Saf 72:473–478. doi:10.1016/j.ecoenv.2008.05.011

    Article  CAS  Google Scholar 

  104. Sieroslawska A, Rymuszka A (2010) Evaluation of genotoxic potential of neurotoxin anatoxin-a with the use of umuC test. Neuro Endocrinol Lett 31(Suppl 2):16–20. doi:NEL31S210A04 [pii]

    CAS  Google Scholar 

  105. Rymuszka A, Sieroslawska A (2010) Study on apoptotic effects of neurotoxin anatoxin-a on fish immune cells. Neuro Endocrinol Lett 31(Suppl 2):11–15. doi:NEL31S210A03 [pii]

    CAS  Google Scholar 

  106. Hemscheidt T, Rapala J, Sivonen K, Skulberg OM (1995) Biosynthesis of anatoxin-a in Anabaena flos-aquae and homoanatoxin-a in Oscillatoria formosa. J Chem Soc Chem Commun 13:1361–1362. doi:10.1039/C39950001361

    Article  Google Scholar 

  107. Namikoshi M, Murakami T, Fujiwara T, Nagai H, Niki T, Harigaya E, Watanabe MF, Oda T, Yamada J, Tsujimura S (2004) Biosynthesis and transformation of homoanatoxin-a in the cyanobacterium Raphidiopsis mediterranea Skuja and structures of three new homologues. Chem Res Toxicol 17:1692–1696. doi:10.1021/tx0498152

    Article  CAS  Google Scholar 

  108. Cadel-Six S, Iteman I, Peyraud-Thomas C, Mann S, Ploux O, Mejean A (2009) Identification of a polyketide synthase coding sequence specific for anatoxin-a-producing Oscillatoria cyanobacteria. Appl Environ Microbiol 75:4909–4912. doi:10.1128/AEM.02478-08

    Article  CAS  Google Scholar 

  109. Méjean A, Mazmouz R, Mann S, Calteau A, Médigue C, Ploux O (2010) The genome sequence of the cyanobacterium Oscillatoria sp. PCC 6506 reveals several gene clusters responsible for the biosynthesis of toxins and secondary metabolites. J Bacteriol 192:5264–5265. doi:10.1128/JB.00704-10

    Article  CAS  Google Scholar 

  110. Selwood AI, Holland PT, Wood SA, Smith KF, McNabb PS (2007) Production of anatoxin-a and a novel biosynthetic precursor by the cyanobacterium Aphanizomenon issatschenkoi. Environ Sci Technol 41:506–510. doi:10.1021/es061983o

    Article  CAS  Google Scholar 

  111. Méjean A, Mann S, Vassiliadis G, Lombard B, Loew D, Ploux O (2010) In vitro reconstitution of the first steps of anatoxin-a biosynthesis in Oscillatoria PCC 6506: from free L-proline to acyl carrier protein bound dehydroproline. Biochemistry 49:103–113. doi:10.1021/bi9018785

    Article  CAS  Google Scholar 

  112. Mann S, Lombard B, Loew D, Méjean A, Ploux O (2011) Insights into the reaction mechanism of the prolyl-acyl carrier protein oxidase involved in anatoxin-a and homoanatoxin-a biosynthesis. Biochemistry 50:7184–7197. doi:10.1021/bi200892a

    Article  CAS  Google Scholar 

  113. Rantala-Ylinen A, Kana S, Wang H, Rouhiainen L, Wahlsten M, Rizzi E, Berg K, Gugger M, Sivonen K (2011) Anatoxin-a synthetase gene cluster of the cyanobacterium Anabaena sp. strain 37 and molecular methods to detect potential producers. Appl Environ Microbiol 77:7271–7278. doi:10.1128/AEM.06022-11

    Article  CAS  Google Scholar 

  114. Namikoshi M, Murakami T, Watanabe MF, Oda T, Yamada J, Tsujimura S, Nagai H, Oishi S (2003) Simultaneous production of homoanatoxin-a, anatoxin-a, and a new non-toxic 4-hydroxyhomoanatoxin-a by the cyanobacterium Raphidiopsis mediterranea Skuja. Toxicon 42:533–538. doi:S0041010103002332 [pii]

    Article  CAS  Google Scholar 

  115. Rapala J, Lahti K, Sivonen K, Niemelä SI (1994) Biodegradability and adsorption on lake sediments of cyanobacterial hepatotoxins and anatoxin-a. Lett Appl Microbiol 19:423–428. doi:10.1111/j.1472-765X.1994.tb00972.x

    Article  CAS  Google Scholar 

  116. Cook WO, Beasley VR, Dahlem AM, Dellinger JA, Harlin KS, Carmichael WW (1988) Comparison of effects of anatoxin-a(s) and paraoxon, physostigmine and pyridostigmine on mouse brain cholinesterase activity. Toxicon 26:750–753. doi:10.1016/0041-0101(88)90282-6

    Article  CAS  Google Scholar 

  117. Cook WO, Beasley VR, Lovell RA, Dahlem AM, Hooser SB, Mahmood NA, Carmichael WW (1989) Consistent inhibition of peripheral cholinesterases by neurotoxins from the freshwater cyanobacterium Anabaena flos-aquae: studies of ducks, swine, mice and a steer. Environ Toxicol Chem 8:915–922. doi:10.1002/etc.5620081010

    CAS  Google Scholar 

  118. Cook WO, Dellinger JA, Singh SS, Dahlem AM, Carmichael WW, Beasley VR (1989) Regional brain cholinesterase activity in rats injected intraperitoneally with anatoxin-a(s) or paraoxon. Toxicol Lett 49:29–34. doi:10.1016/0378-4274(89)90097-0

    Article  CAS  Google Scholar 

  119. Hyde EG, Carmichael WW (1991) Anatoxin-a(s), a naturally occurring organophosphate, is an irreversible active site-directed inhibitor of acetylcholinesterase (EC 3.1.1.7). J Biochem Toxicol 6:195–201. doi:10.1002/jbt.2570060305

    Article  CAS  Google Scholar 

  120. Matsunaga S, Moore RE, Niemczura WP, Carmichael WW (1989) Anatoxin-a(S), a potent anticholinesterase from Anabaena-flos-aquae. J Am Chem Soc 111:8021–8023. doi:10.1021/ja00202a057

    Article  CAS  Google Scholar 

  121. Moura S, Pinto E (2010) Synthesis of cyclic guanidine intermediates of anatoxin-a(s) in both racemic and enantiomerically pure forms. Synlett: 967–969. doi:10.1055/s-0029-1219559

    Google Scholar 

  122. Hemscheidt T, Burgoyne DL, Moore RE (1995) Biosynthesis of Anatoxin-a(S) - (2s,4s)-4-Hydroxyarginine as an Intermediate. J Chem Soc Chem Commun 2:205–206. doi:10.1039/C39950000205

    Article  Google Scholar 

  123. Henriksen P, Carmichael WW, An J, Moestrup Ø (1997) Detection of an anatoxin-a(s)-like anticholinesterase in natural blooms and cultures of cyanobacteria/blue-green algae from danish lakes and in the stomach contents of poisoned birds. Toxicon 35:901–913. doi:10.1016/s0041-0101(96)00190-0

    Article  CAS  Google Scholar 

  124. Onodera H, Oshima Y, Henriksen P, Yasumoto T (1997) Confirmation of anatoxin-a(s), in the cyanobacterium Anabaena lemmermannii, as the cause of bird kills in Danish lakes. Toxicon 35:1645–1648. doi:10.1016/S0041-0101(97)00038-X

    Article  CAS  Google Scholar 

  125. Molica RJR, Oliveira EJA, Carvalho PVVC, Costa ANSF, Cunha MCC, Melo GL, Azevedo SMFO (2005) Occurrence of saxitoxins and an anatoxin-a(s)-like anticholinesterase in a Brazilian drinking water supply. Harmful Algae 4:743–753. doi:10.1016/j.hal.2004.11.001

    Article  CAS  Google Scholar 

  126. Becker V, Ihara P, Yunes JS, Huszar VLM (2010) Occurrence of anatoxin-a(s) during a bloom of Anabaena crassa in a water-supply reservoir in southern Brazil. J Appl Phycol 22:235–241. doi:10.1007/s10811-009-9451-8

    Article  CAS  Google Scholar 

  127. Devic E, Li D, Dauta A, Henriksen P, Codd GA, Marty JL, Fournier D (2002) Detection of anatoxin-a(s) in environmental samples of cyanobacteria by using a biosensor with engineered acetylcholinesterases. Appl Environ Microbiol 68:4102–4106. doi:10.1128/AEM.68.8.4102-4106.2002

    Article  CAS  Google Scholar 

  128. Villatte F, Schulze H, Schmid RD, Bachmann TT (2002) A disposable acetylcholinesterase-based electrode biosensor to detect anatoxin-a(s) in water. Anal Bioanal Chem 372:322–326. doi:10.1007/s00216-001-1127-4

    Article  CAS  Google Scholar 

  129. Dorr FA, Rodriguez V, Molica R, Henriksen P, Krock B, Pinto E (2010) Methods for detection of anatoxin-a(s) by liquid chromatography coupled to electrospray ionization-tandem mass spectrometry. Toxicon 55:92–99. doi:10.1016/j.toxicon.2009.07.017

    Article  CAS  Google Scholar 

  130. Moore BS, Ohtani I, de Koning CB, Moore RE, Carmichael WW (1992) Biosynthesis of anatoxin-a(s). Origin of the carbons. Tetrahedron Lett 33:6595–6598. doi:10.1016/s0040-4039(00)60994-2

    Article  CAS  Google Scholar 

  131. Shumway SE (1995) Phycotoxin-related shellfish poisoning: bivalve molluscs are not the only vectors. Rev Fish Sci 3:1–31

    Article  Google Scholar 

  132. Bricelj VM, Lee JH, Cembella AD, Anderson DM (1990) Uptake kinetics of paralytic shellfish toxins from the dinoflagellate Alexandrium fundyense in the mussel Mytilus edulis. Mar Ecol Prog Ser 63:177–188

    Article  CAS  Google Scholar 

  133. Llewellyn LE, Dodd MJ, Robertson A, Ericson G, de Koning C, Negri AP (2002) Post-mortem analysis of samples from a human victim of a fatal poisoning caused by the xanthid crab, Zosimus aeneus. Toxicon 40:1463–1469

    Article  CAS  Google Scholar 

  134. Robertson A, Stirling D, Robillot C, Llewellyn L, Negri A (2004) First report of saxitoxin in octopi. Toxicon 44:765–771

    Article  CAS  Google Scholar 

  135. Sato S, Kodoma M, Ogata T, Saitanu K, Furuya M, Hirayama K, Kakinuma K (1997) Saxitoxin as a toxic principle of a freshwater puffer Tetraodon fugi in Thailand. Toxicon 35:137–140

    Article  CAS  Google Scholar 

  136. Zaman L, Arakawa O, Shimosu A, Onoue Y (1997) Occurrence of paralytic shellfish poison in Bangladeshi freshwater puffers. Toxicon 35:423–431

    Article  CAS  Google Scholar 

  137. Nakamura M, Oshima Y, Yasumoto T (1984) Occurrence of saxitoxin in puffer fish. Toxicon 22:381–385. doi:0041-0101(84)90082-5 [pii]

    Article  CAS  Google Scholar 

  138. Kodoma M, Ogata T, Nogushi T, Maruyama J, Hashimoto K (1983) Occurance of saxitoxin and other toxins in the liver of the puffferfish Takifugu pardalis. Toxicon 21:897–900

    Article  Google Scholar 

  139. Deeds JR, Landsberg JH, Etheridge SM, Pitcher GC, Longan SW (2008) Non-traditional vectors for paralytic shellfish poisoning. Mar Drugs 6:308–348. doi:10.3390/md20080015

    Article  CAS  Google Scholar 

  140. Hallegraeff GM (1995) Harmful algal blooms: a global overview. Paper presented at the Manual on Harmful Marine Microalgae, Paris, France

    Google Scholar 

  141. Chevalier A, Duchesne EA (1851) Mémoire sur les empoisonnements par les huïtres, les moules, les crabes, et par certain poissons de mer et de riviere. Annales d’Hygiene Publique (Paris) 46:108–147

    Google Scholar 

  142. Chevalier A, Duchesne EA (1851) Mémoire sur les empoisonnements par les huîtres, les moules, les crabes, et par certain poissons de mer et de riviere. Annales d’Hygiene Publique (Paris) 45:387–437

    Google Scholar 

  143. Quayle DB (1969) Paralytic shellfish poisoning in British Colombia. Bull Fish Res Board Can 168:1–68

    Google Scholar 

  144. Vancouver G (1801) A voyage of discovery to the North Pacific Ocean and around the world, vol 4. John Shockdale, London, pp 44–47

    Google Scholar 

  145. Halstead BW (1965) Chapter II. Phylum protozoa: history of research. In: Poisonous and venomous marine animals, vol 1. United States Government Printing Office, Washington, DC, pp 161–168

    Google Scholar 

  146. Sommer H, Meyer KF (1937) Paralytic shellfish poisoning. AMA Arch Pathol 24:560–598

    CAS  Google Scholar 

  147. Sommer H, Whedon WF, Kofoid CA, Stohler R (1937) Relation of paralytic shellfish poison to certain plankton organisms of the genus Gonyaulax. AMA Arch Pathol 24:537

    CAS  Google Scholar 

  148. Bordner J, Thiessen WE, Bates HA, Rapoport H (1975) The structure of a crystalline derivative of saxitoxin. The structure of saxitoxin. J Am Chem Soc 97:6008–6012

    Article  CAS  Google Scholar 

  149. Shimizu Y, Norte M, Hori A, Genenah A, Kobayashi M (1984) Biosynthesis of saxitoxin analogues: the unexpected pathway. J Am Chem Soc 106:6433–6434

    Article  CAS  Google Scholar 

  150. Gupta S, Norte M, Shimizu Y (1989) Biosynthesis of saxitoxin analogues: the origin and introduction mechanism of the side-chain carbon. J Chem Soc Chem Commun 19:1421–1424

    Article  Google Scholar 

  151. Alam M, Ikawa M, Sasner JJ Jr, Sawyer PJ (1973) Purification of Aphanizomenon flos-aquae toxin and its chemical and physiological properties. Toxicon 11:65–72

    Article  CAS  Google Scholar 

  152. Sawyer PJ, Gentile JH, Sasner JJ Jr (1968) Demonstration of a toxin from Aphanizomenon flos-aquae (L.) Ralfs. Can J Microbiol 14:1199–1204

    Article  CAS  Google Scholar 

  153. Adelman WJ Jr, Fohlmeister JF, Sasner JJ Jr, Ikawa M (1982) Sodium channels blocked by aphantoxin obtained from the blue-green alga, Aphanizomenon flos-aquae. Toxicon 20:513–516. doi:0041-0101(82)90017-4 [pii]

    Article  CAS  Google Scholar 

  154. Sasner JJ, Jr., Ikawa M, Foxall TL (1983) Studies on Aphanizomenon and Microcystis toxins. ACS Symposium Series, vol 262, Sea Food Toxins, American Chemical Society, Washington DC, pp 391–406

    Google Scholar 

  155. Mahmood NA, Carmichael WW (1986) Paralytic shellfish poisons produced by the freshwater cyanobacterium Aphanizomenon flos-aquae NH-5. Toxicon 24:175–186

    Article  CAS  Google Scholar 

  156. Negri AP, Jones GJ (1995) Bioaccumulation of paralytic shellfish poisoning (PSP) toxins from the cyanobacterium Anabaena circinalis by the freshwater mussel Alathyria condola. Toxicon 33:667–678

    Article  CAS  Google Scholar 

  157. Pereira P, Dias E, Franca S, Pereira E, Carolino M, Vasconcelos V (2004) Accumulation and depuration of cyanobacterial paralytic shellfish toxins by the freshwater mussel Anodonta cygnea. Aquat Toxicol (Amsterdam) 68:339–350

    Article  CAS  Google Scholar 

  158. Negri AP, Jones GJ, Hindmarsh M (1995) Sheep mortality associated with paralytic shellfish poisons from the cyanobacterium Anabaena circinalis. Toxicon 33:1321–1329

    Article  CAS  Google Scholar 

  159. Molica R, Onodera H, Garcia C, Rivas M, Andrinolo D, Nascimento S, Meguro H, Oshima Y, Azevedo S, Lagos N (2002) Toxins in the freshwater cyanobacterium Cylindrospermopsis raciborskii (Cyanophyceae) isolated from Tabocas reservoir in Caruaru, Brazil, including demonstration of a new saxitoxin analogue. Phycologia 41:606–611

    Article  Google Scholar 

  160. Oshima Y (1995) Postcolumn derivatization liquid chromatographic method for paralytic shellfish toxins. J AOAC Int 78:528–532

    CAS  Google Scholar 

  161. Humpage AR, Rositano J, Bretag AH, Brown R, Baker PD, Nicholson BC, Steffensen DA (1994) Paralytic shellfish poisons from Australian cyanobacterial blooms. Aust J Mar Freshwat Res 45:761–771

    Article  CAS  Google Scholar 

  162. Carmichael WW, Mahmood NA, Hyde EG (1990) Natural toxins from cyanobacteria (blue-green algae). In: Marine toxins: origin, structure, and molecular pharmacology, vol 418, American Chemical Society symposium series. American Chemical Society, Washington, DC, pp 87–106

    Chapter  Google Scholar 

  163. Onodera H, Satake M, Oshima Y, Yasumoto T, Carmichael Wayne W (1997) New saxitoxin analogues from the freshwater filamentous cyanobacterium Lyngbya wollei. Nat Toxins 5:146–151

    Article  CAS  Google Scholar 

  164. Dell’Aversano C, Walter JA, Burton IW, Stirling DJ, Fattorusso E, Quilliam MA (2008) Isolation and structure elucidation of new and unusual saxitoxin analogues from mussels. J Nat Prod 71:1518–1523. doi:10.1021/np800066r

    Article  CAS  Google Scholar 

  165. Arakawa O, Nishio S, Noguchi T, Shida Y, Onoue Y (1995) A new saxitoxin analogue from a xanthid crab Atergatis floridus. Toxicon 33:1577–1584

    Article  CAS  Google Scholar 

  166. Arakawa O, Noguchi T, Shida Y, Onoue Y (1994) Occurrence of carbamoyl-N-hydroxy derivatives of saxitoxin and neosaxitoxin in a xanthid crab Zosimus aeneus. Toxicon 32:175–183

    Article  CAS  Google Scholar 

  167. Zaman L, Arakawa O, Shimosu A, Shida Y, Onoue Y (1998) Occurrence of a methyl derivative of saxitoxin in Bangladeshi freshwater puffers. Toxicon 36:627–630

    Article  CAS  Google Scholar 

  168. Negri A, Stirling D, Quilliam M, Blackburn S, Bolch C, Burton I, Eaglesham G, Thomas K, Walter J, Willis R (2003) Three novel hydroxybenzoate saxitoxin analogues isolated from the dinoflagellate Gymnodinium catenatum. Chem Res Toxicol 16:1029–1033

    Article  CAS  Google Scholar 

  169. Yotsu-Yamashita M, Kim YH, Dudley SC Jr, Choudhary G, Pfahnl A, Oshima Y, Daly JW (2004) The structure of zetekitoxin AB, a saxitoxin analog from the Panamanian golden frog Atelopus zeteki. Proc Natl Acad Sci USA 101:4346–4351

    Article  CAS  Google Scholar 

  170. Kellmann R, Neilan BA (2007) Biochemical characterisation of paralytic shellfish toxin biosynthesis in vitro. J Phycol 43:497–508

    Article  CAS  Google Scholar 

  171. Rogers RC, Rapoport H (1980) The pKa’s of saxitoxin. J Am Chem Soc 102:7335

    Article  CAS  Google Scholar 

  172. Schantz EJ, Mold JD, Stanger DW, Shavel J, Riel FJ, Bowden JP, Luynch JM, Wyler RS, Riegel B, Sommer H (1957) Paralytic shellfish poison. VI A procedure for the isolation and purification of the poison from toxic clam and mussel tissues Journal of the American Chemical Society 79:5230–5235

    Article  CAS  Google Scholar 

  173. Shimizu Y, Hsu CP, Genenah A (1981) Structure of Saxitoxin in Solutions and Stereochemistry of Dihydrosaxitoxins. J Am Chem Soc 103:605–609

    Article  CAS  Google Scholar 

  174. Stafford RG, Hines HB (1995) Urinary elimination of saxitoxin after intra-venous injection. Toxicon 33:1501–1510

    Article  CAS  Google Scholar 

  175. Hong CY, Kishi Y (1992) Enantioselective total synthesis of (-)-decarbamoylsaxitoxin. J Am Chem Soc 114:7001–7006

    Article  CAS  Google Scholar 

  176. Tanino H, Nakata T, Kaneko T, Kishi Y (1977) Stereospecific total synthesis of D, L-saxitoxin. J Am Chem Soc 99:2818–2819

    Article  CAS  Google Scholar 

  177. Jacobi PA, Martinelli MJ, Polanc S (1984) Total synthesis of (+/-)-saxitoxin. J Am Chem Soc 106:5594–5598

    Article  CAS  Google Scholar 

  178. Fleming JJ, McReynolds MD, Du Bois J (2007) (+)-Saxitoxin: a first and second generation stereoselective synthesis. J Am Chem Soc 129:9964–9975. doi:10.1021/Ja071501o

    Article  CAS  Google Scholar 

  179. Iwamoto O, Koshino H, Hashizume D, Nagasawa K (2007) Total synthesis of (-)-decarbamoyloxysaxitoxin. Ange Chem Int Ed 46:8625–8628. doi:0.1002/Anie.200703326

    Article  CAS  Google Scholar 

  180. Iwamoto O, Shinohara R, Nagasawa K (2009) Total synthesis of (-)- and (+)-decarbamoyloxysaxitoxin and (+)-saxitoxin. Chem Asian J 4:277–285. doi:10.1002/Asia.200800382

    Article  CAS  Google Scholar 

  181. Strichartz GR, Hall S, Magnani B, Hong CY, Kishi Y, Debin JA (1995) The potencies of synthetic analogues of saxitoxin and the absolute stereoselectivity of decarbamoyl saxitoxin. Toxicon 33:723–737. doi:004101019500031G [pii]

    Article  CAS  Google Scholar 

  182. Mulcahy JV, Du Bois J (2008) A stereoselective synthesis of (+)-gonyautoxin 3. J Am Chem Soc 130:12630–12631. doi:10.1021/Ja805651g

    Article  CAS  Google Scholar 

  183. LeDoux M, Hall S (2000) Proficiency testing of eight French laboratories in using the AOAC mouse bioassay for paralytic shellfish poisoning: interlaboratory collaborative study. J AOAC Int 83:305–310

    CAS  Google Scholar 

  184. Jellett JF, Marks LJ, Stewart JE, Dorey ML, Watson Wright W, Lawrence JF (1992) Paralytic shellfish poison (saxitoxin family) bioassays: automated endpoint determination and standardization of the in vitro tissue culture bioassay, and comparison with the standard mouse bioassay. Toxicon 30:1143–1156

    Article  CAS  Google Scholar 

  185. Truman P, Lake RJ (1996) Comparison of mouse bioassay and sodium channel cytotoxicity assay for detecting paralytic shellfish poisoning toxins in shellfish extracts. J AOAC Int 79:1130–1133

    CAS  Google Scholar 

  186. Jellett JF, Roberts RL, Laycock MV, Quilliam MA, Barrett RE (2002) Detection of paralytic shellfish poisoning (PSP) toxins in shellfish tissue using MIST Alert, a new rapid test, in parallel with the regulatory AOAC mouse bioassay. Toxicon 40:1407–1425

    Article  CAS  Google Scholar 

  187. Micheli L, Di Stefano S, Moscone D, Palleschi G, Marini S, Coletta M, Draisci R, delli Quadri F (2002) Production of antibodies and development of highly sensitive formats of enzyme immunoassay for saxitoxin analysis. Anal Bioanal Chem 373:678–684

    Article  CAS  Google Scholar 

  188. Llewellyn LE, Negri AP, Doyle J, Baker PD, Beltran EC, Neilan BA (2001) Radioreceptor assays for sensitive detection and quantitation of saxitoxin and its analogues from strains of the freshwater cyanobacterium, Anabaena circinalis. Environ Sci Technol 35:1445–1451

    Article  CAS  Google Scholar 

  189. Llewellyn LE, Doyle J, Jellett J, Barrett R, Alison C, Bentz C, Quilliam M (2001) Measurement of paralytic shellfish toxins in molluscan extracts: comparison of the microtitre plate saxiphilin and sodium channel radioreceptor assays with mouse bioassay, HPLC analysis and a commercially available cell culture assay. Food Addit Contam 18:970–980

    Article  CAS  Google Scholar 

  190. Ruberu SR, Liu YG, Wong CT, Perera SK, Langlois GW, Doucette GJ, Powell CL (2003) Receptor binding assay for paralytic shellfish poisoning toxins: optimization and interlaboratory comparison. J AOAC Int 86:737–745

    CAS  Google Scholar 

  191. Indrasena WM, Gill TA (1998) Fluorometric detection of paralytic shellfish poisoning toxins. Anal Biochem 264:230–236. doi:S0003-2697(98)92843-3 [pii] 10.1006/abio.1998.2843

    Article  CAS  Google Scholar 

  192. van de Riet J, Gibbs RS, Muggah PM, Rourke WA, MacNeil JD, Quilliam MA (2011) Liquid chromatography post-column oxidation (PCOX) method for the determination of paralytic shellfish toxins in mussels, clams, oysters, and scallops: collaborative study. J AOAC Int 94:1154–1176

    Google Scholar 

  193. Lawrence JF, Niedzwiadek B, Menard C (2004) Quantitative determination of paralytic shellfish poisoning toxins in shellfish using prechromatographic oxidation and liquid chromatography with fluorescence detection: interlaboratory study. J AOAC Int 87:83–100

    CAS  Google Scholar 

  194. Papageorgiou J, Nicholson BC, Linke TA, Kapralos C (2005) Analysis of cyanobacterial-derived saxitoxins using high-performance ion exchange chromatography with chemical oxidation/fluorescence detection. Environ Toxicol 20:549–559. doi:10.1002/tox.20144

    Article  CAS  Google Scholar 

  195. Quilliam MA, Janecek M, Lawrence JF (1993) Characterization of the oxidation products of paralytic shellfish poisoning toxins by liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom 7:482–487

    Article  CAS  Google Scholar 

  196. Sullivan JJ, Iwaoka WT (1983) High pressure liquid chromatographic determination of toxins associated with paralytic shellfish poisoning. J Assoc Off Anal Chem 66:297–303

    CAS  Google Scholar 

  197. Baker TR, Doucette GJ, Powell CL, Boyer GL, Plumley FG (2003) GTX(4) imposters: characterization of fluorescent compounds synthesized by Pseudomonas stutzeri SF/PS and Pseudomonas/Alteromonas PTB-1, symbionts of saxitoxin-producing Alexandrium spp. Toxicon 41:339–347

    Article  CAS  Google Scholar 

  198. Blay P, Hui JP, Chang J, Melanson JE (2011) Screening for multiple classes of marine biotoxins by liquid chromatography-high-resolution mass spectrometry. Anal Bioanal Chem 400:577–585. doi:10.1007/s00216-011-4772-2

    Article  CAS  Google Scholar 

  199. Turrell E, Stobo L, Lacaze JP, Piletsky S, Piletska E (2008) Optimization of hydrophilic interaction liquid chromatography/mass spectrometry and development of solid-phase extraction for the determination of paralytic shellfish poisoning toxins. J AOAC Int 91:1372–1386

    CAS  Google Scholar 

  200. Dell’Aversano C, Hess P, Quilliam MA (2005) Hydrophilic interaction liquid chromatography–mass spectrometry for the analysis of paralytic shellfish poisoning (PSP) toxins. J Chromatogr A 1081:190–201

    Article  CAS  Google Scholar 

  201. Pleasance S, Ayer SW, Laycock MV, Thibault P (1992) Ionspray mass spectrometry of marine toxins. III. Analysis of paralytic shellfish poisoning toxins by flow-injection analysis, liquid chromatography/mass spectrometry and capillary electrophoresis/mass spectrometry. Rapid Commun Mass Spectrom 6:14–24

    Article  CAS  Google Scholar 

  202. Sleno L, Volmer DA, Kovacevic B, Maksic ZB (2004) Gas-phase dissociation reactions of protonated saxitoxin and neosaxitoxin. J Am Soc Mass Spectrom 15:462–477

    Article  CAS  Google Scholar 

  203. Velzeboer RMA, Baker PD, Rositano J, Heresztyn T, Codd GA, Raggett SL (2000) Geographical patterns of occurrence and composition of saxitoxins in the cyanobacterial genus Anabaena (Nostocales, Cyanophyta) in Australia. Phycologia 39:395–407

    Article  Google Scholar 

  204. Ikawa M, Wegener K, Foxall TL, Sasner JJ Jr (1982) Comparison of the toxins of the blue-green alga Aphanizomenon flos-aquae with the gonyaulax toxins. Toxicon 20:747–752. doi:0041-0101(82)90122-2 [pii]

    Article  CAS  Google Scholar 

  205. Dias E, Pereira P, Franca S (2002) Production of paralytic shellfish toxins by Aphanizomenon sp. LMECYA 31 (cyanobacteria). J Phycol 38:705–712

    Article  CAS  Google Scholar 

  206. Pereira P, Onodera H, Andrinolo D, Franca S, Araujo F, Lagos N, Oshima Y (2000) Paralytic shellfish toxins in the freshwater cyanobacterium Aphanizomenon flos-aquae, isolated from Montargil reservoir, Portugal. Toxicon 38:1689–1702

    Article  CAS  Google Scholar 

  207. Lagos N, Onodera H, Zagatto PA, Andrinolo D, Azevedo S, Oshima Y (1999) The first evidence of paralytic shellfish toxins in the freshwater cyanobacterium Cylindrospermopsis raciborskii, isolated from Brazil. Toxicon 37:1359–1373

    Article  CAS  Google Scholar 

  208. Smith FM, Wood SA, van Ginkel R, Broady PA, Gaw S (2011) First report of saxitoxin production by a species of the freshwater benthic cyanobacterium, Scytonema Agardh. Toxicon 57:566–573. doi:10.1016/j.toxicon.2010.12.020

    Article  CAS  Google Scholar 

  209. Carmichael WW, Evans WR, Yin QQ, Bell P, Moczydlowski E (1997) Evidence for paralytic shellfish poisons in the freshwater cyanobacterium Lyngbya wollei (Farlow ex Gomont) comb. nov. Appl Environ Microbiol 63:3104–3110

    CAS  Google Scholar 

  210. Beltran EC, Neilan BA (2000) Geographical segregation of the neurotoxin-producing cyanobacterium Anabaena circinalis. Appl Environ Microbiol 66:4468–4474

    Article  CAS  Google Scholar 

  211. Sivonen K, Himberg K, Luukkaine R, Niemela SI, Poon GK, Codd GA (1989) Preliminary characterization of neurotoxic cyanobacteria blooms and strains from Finland. Toxic Assess 4:339–352

    Article  CAS  Google Scholar 

  212. Oshima Y, Hasegawa M, Yasumoto T, Hallegraeff G, Blackburn S (1987) Dinoflagellate Gymnodinium catenatum as the source of paralytic shellfish toxins in Tasmanian shellfish. Toxicon 25:1105–1111

    Article  CAS  Google Scholar 

  213. Sako Y, Naya N, Yoshida Y, Kim CH, Ushida A, Ishida Y (1995) Studies on stability and heredity of PSP toxin composition in the toxic dinoflagellate Alexandrium. In: Lassus P, Arzul G, Erard P, Gentien C, Marcaillou-Le Baut C (eds) Harmful marine algal blooms, Nantes (France). Lavoisier Publishing, London/Paris/New York, pp 345–350

    Google Scholar 

  214. Silva ES (1979) Intracellular bacteria, the origin of the dinoflagellates toxicity. In: IUPAC symposium on mycotoxins and phycotoxins. Pathotox Publication, Lausane, p 8

    Google Scholar 

  215. Kodoma M, Ogata T, Sakamoto S, Sato S, Honda T, Miwatani T (1990) Production of paralytic shellfish toxins by a bacterium Moraxella sp. isolated from Protogonyaulax tamarensis. Toxicon 28:707–714

    Article  Google Scholar 

  216. Gallacher S, Birkbeck TH (1995) Isolation of marine bacteria producing sodium channel blocking toxins and the seasonal variation in their frequency in sea water. In: Lassus P, Arzul G, Erard P, Gentien C, Marcaillou-Le Baut C (eds) Harmful marine algal blooms, Nantes, France. Lavoisier Publishing, London/Paris/New York, pp 445–450

    Google Scholar 

  217. Gallacher S, Flynn KJ, Franco JM, Brueggemann EE, Hines HB (1997) Evidence for production of paralytic shellfish toxins by bacteria associated with Alexandrium spp. (Dinophyta) in culture. Appl Environ Microbiol 63:239–245

    CAS  Google Scholar 

  218. Gallacher S, Flynn KJ, Leftly J, Lewis J, Munro PD, Birkbeck TH (1996) Bacterial production of sodium channel blocking toxins. In: Yasumoto T, Oshima Y, Fukuyo Y (eds) Harmful and toxic algal blooms – proceedings of the seventh international conference on toxic phytoplankton, Sendai, Japan. Intergovernmental Oceanographic Commission of UNESCO, pp 355–358

    Google Scholar 

  219. Kotaki Y, Tajiri M, Oshima Y, Yasumoto T (1983) Identification of a calcareous red alga as the primary source of paralytic shellfish toxins in coral reef crabs and gastropods. Bull Jnp Soc Sci Fish (Nippon Suisan Gakkaishi) 49:283–286

    Article  Google Scholar 

  220. Oshima Y, Kotaki Y, Harada T, Yasumoto T (1984) Paralytic shellfish toxins in tropical waters. In: Ragelis E (ed) Seafood Toxins. American Chemical Society, Washington, D.C., pp 160–170

    Google Scholar 

  221. Arakawa O, Noguchi T, Onoue Y (1995) Paralytic shellfish toxin profiles of xanthid crabs Zosimus aeneus and Atergatis floridus collected on reefs of Ishigaki Island. Fish Sci 61:659–662

    CAS  Google Scholar 

  222. Nakashima K, Arakawa O, Taniyama S, Nonaka M, Takatani T, Yamamori K, Fuchi Y, Noguchi T (2004) Occurrence of saxitoxins as a major toxin in the ovary of a marine puffer Arothron firmamentum. Toxicon 43:207–212

    Article  CAS  Google Scholar 

  223. Shimizu Y (1993) Microalgal metabolites. Chem Rev 93:1685–1698

    Article  CAS  Google Scholar 

  224. Shimizu Y (1996) Microalgal metabolites: a new perspective. Annu Rev Microbiol 50:431–465

    Article  CAS  Google Scholar 

  225. Pomati F, Burns BP, Neilan BA (2004) Identification of an Na(+)-dependent transporter associated with saxitoxin-producing strains of the cyanobacterium Anabaena circinalis. Appl Environ Microbiol 70:4711–4719

    Article  CAS  Google Scholar 

  226. Pomati F, Neilan BA (2004) PCR-based positive hybridization to detect genomic diversity associated with bacterial secondary metabolism. Nucleic Acids Res 32:e7

    Article  Google Scholar 

  227. Taroncher-Oldenburg G, Anderson DM (2000) Identification and characterization of three differentially expressed genes, encoding S-adenosylhomocysteine hydrolase, methionine aminopeptidase, and a histone-like protein, in the toxic dinoflagellate Alexandrium fundyense. Appl Environ Microbiol 66:2105–2112

    Article  CAS  Google Scholar 

  228. Sako Y, Yoshida T, Uchida A, Arakawa O, Noguchi T, Ishida Y (2001) Purification and characterization of a sulfotransferase specific to N-21 of saxitoxin and gonyautoxin 2 + 3 from the toxic dinoflagellate Gymnodinium catenatum (Dinophyceae). J Phycol 37:1044–1051

    Article  CAS  Google Scholar 

  229. Yoshida T, Sako Y, Uchida A, Kakutani T, Arakawa O, Noguchi T, Ishida Y (2002) Purification and characterization of sulfotransferase specific to O-22 of 11-hydroxy saxitoxin from the toxic dinoflagellate Gymnodinium catenatum (Dinophyceae). Fisheries Science 68:634–642

    Article  CAS  Google Scholar 

  230. Kellmann R, Mihali TK, Neilan BA (2008) Identification of a saxitoxin biosynthesis gene that has an evolutionary history with frequent horizontal gene transfer events. J Mol Evol 67:526–538. doi:10.1007/s00239-008-9169-2

    Article  CAS  Google Scholar 

  231. Mihali TK, Kellmann R, Neilan BA (2009) Characterisation of the paralytic shellfish toxin biosynthesis gene clusters in Anabaena circinalis AWQC131C and Aphanizomenon sp. NH-5. BMC Biochem 10:8. doi:10.1186/1471-2091-10-8

    Article  CAS  Google Scholar 

  232. Mihali TK, Carmichael WW, Neilan BA (2011) A putative gene cluster from a Lyngbya wollei bloom that encodes paralytic shellfish toxin biosynthesis. PLoS One 6:e14657. doi:10.1371/journal.pone.0014657

    Article  CAS  Google Scholar 

  233. Murray SA, Mihali TK, Neilan BA (2011) Extraordinary conservation, gene loss, and positive selection in the evolution of an ancient neurotoxin. Mol Biol Evol 28:1173–1182. doi:msq295 [pii] 10.1093/molbev/msq295

    Article  CAS  Google Scholar 

  234. Stüken A, Orr RJ, Kellmann R, Murray SA, Neilan BA, Jakobsen KS (2011) Discovery of nuclear-encoded genes for the neurotoxin saxitoxin in dinoflagellates. PLoS One 6:e20096. doi:10.1371/journal.pone.0020096

    Article  CAS  Google Scholar 

  235. Kao CY, Levinson SR (eds) (1986) Tetrodotoxin, saxitoxin, and the molecular biology of the sodium channel, vol 479, Anals of the New York Academy of Science. The New York Academy of Science, New York

    Google Scholar 

  236. Halstead BW, Schantz EJ (1984) Paralytic shellfish poisoning. WHO Offset, Albany, pp 1–59

    Google Scholar 

  237. Cembella AD, Shumway SE, Larocque R (1994) Sequestering and putative biotransformation of paralytic shellfish toxins by the sea scallop Placopecten magellanicus – seasonal and spatial scales in natural populations. J Exp Mar Biol Ecol 180:1–22

    Article  CAS  Google Scholar 

  238. Cembella AD, Shumway SE, Lewis NI (1993) Anatomical distribution and spatio-temporal variation in paralytic shellfish toxin composition in two bivalve species from the Gulf of Maine. J Shellfish Res 12:389–403

    Google Scholar 

  239. Llewellyn LE (2006) Saxitoxin, a toxic marine natural product that targets a multitude of receptors. Nat Prod Rep 23:200–222

    Article  CAS  Google Scholar 

  240. Hall S, Strichartz G (eds) (1990) Marine toxins: origin, structure, and molecular pharmacology, ACS symposium series. American Chemical Society, Washington, DC

    Google Scholar 

  241. Gessner BD, Bell P, Doucette GJ, Moczydlowski E, Poli MA, Van Dolah F, Hall S (1997) Hypertension and identification of toxin in human urine and serum following a cluster of mussel-associated paralytic shellfish poisoning outbreaks. Toxicon 35:711–722

    Article  CAS  Google Scholar 

  242. Cervantes Cianca RC, Faro LR, Duran BR, Alfonso PM (2011) Alterations of 3,4-dihydroxyphenylethylamine and its metabolite 3,4-dihydroxyphenylacetic produced in rat brain tissues after systemic administration of saxitoxin. Neurochem Int 59:643–647. doi:10.1016/j.neuint.2011.06.005

    Article  CAS  Google Scholar 

  243. Benton BJ, Keller SA, Spriggs DL, Capacio BR, Chang FC (1998) Recovery from the lethal effects of saxitoxin: a therapeutic window for 4-aminopyridine (4-AP). Toxicon 36:571–588

    Article  CAS  Google Scholar 

  244. Chang FC, Spriggs DL, Benton BJ, Keller SA, Capacio BR (1997) 4-Aminopyridine reverses saxitoxin (STX)- and tetrodotoxin (TTX)-induced cardiorespiratory depression in chronically instrumented guinea pigs. Fundam Appl Toxicol 38:75–88

    Article  CAS  Google Scholar 

  245. Chang FC, Bauer RM, Benton BJ, Keller SA, Capacio BR (1996) 4-Aminopyridine antagonizes saxitoxin-and tetrodotoxin-induced cardiorespiratory depression. Toxicon 34:671–690

    Article  CAS  Google Scholar 

  246. Schantz EJ (1986) Chemistry and biology of saxitoxin and related toxins. In: Kao CY, Levinson SR (eds) Tetrodotoxin, saxitoxin, and the molecular biology of the sodium channel, vol 479, Anals of the New York Academy of Science. The New York Academy of Science, New York, pp 15–23

    Google Scholar 

  247. Kao DY (1993) Paralytic shellfish poisoning. In: Falconer IR (ed) Algal toxins in seafood and drinking water. Academic, New York, pp 75–86

    Chapter  Google Scholar 

  248. Catterall WA (2012) Voltage-gated sodium channels at 60: structure, function, and pathophysiology. J Physiol. doi:10.1113/jphysiol.2011.224204

    Google Scholar 

  249. Cannon SC, McClatchey AI, Gusella JF (1993) Modification of the Na + current conducted by the rat skeletal muscle alpha subunit by coexpression with a human brain beta subunit. Pflugers Arch Eur J Physiol 423:155–157

    CAS  Google Scholar 

  250. Makita N, Bennett PB, George AL Jr (1996) Molecular determinants of beta 1 subunit-induced gating modulation in voltage-dependent Na + channels. J Neurosci 16:7117–7127

    CAS  Google Scholar 

  251. Catterall WA (2001) A 3D view of sodium channels. Nature 409: 988–989, 991. doi:10.1038/35059188

    Google Scholar 

  252. Sato C, Ueno Y, Asai K, Takahashi K, Sato M, Engel A, Fujiyoshi Y (2001) The voltage-sensitive sodium channel is a bell-shaped molecule with several cavities. Nature 409:1047–1051. doi:10.1038/35059098

    Article  CAS  Google Scholar 

  253. Stevens M, Peigneur S, Tytgat J (2011) Neurotoxins and their binding areas on voltage-gated sodium channels. Front Pharmacol 2:71. doi:10.3389/fphar.2011.00071

    Article  CAS  Google Scholar 

  254. Choudhary G, Shang L, Li X, Dudley SC Jr (2002) Energetic localization of saxitoxin in its channel binding site. Biophys J 83:912–919

    Article  CAS  Google Scholar 

  255. Penzotti JL, Lipkind G, Fozzard HA, Dudley SC Jr (2001) Specific neosaxitoxin interactions with the Na + channel outer vestibule determined by mutant cycle analysis. Biophys J 80:698–706

    Article  CAS  Google Scholar 

  256. Penzotti JL, Fozzard HA, Lipkind GM, Dudley SC Jr (1998) Differences in saxitoxin and tetrodotoxin binding revealed by mutagenesis of the Na + channel outer vestibule. Biophys J 75:2647–2657

    Article  CAS  Google Scholar 

  257. Tikhonov DB, Zhorov BS (2005) Modeling P-loops domain of sodium channel: homology with potassium channels and interaction with ligands. Biophys J 88:184–197. doi:10.1529/biophysj.104.048173

    Article  CAS  Google Scholar 

  258. Moczydlowski E, Hall S, Garber SS, Strichartz GS, Miller C (1984) Voltage-dependent blockade of muscle Na + channels by guanidinium toxins. J Gen Physiol 84:687–704

    Article  CAS  Google Scholar 

  259. Sapse AM, Rothchild R, Rhee K (2006) An ab initio study of the guanidinium groups in saxitoxin. J Mol Model 12:140–145. doi:10.1007/s00894-005-0005-y

    Article  CAS  Google Scholar 

  260. Terlau H, Heinemann SH, Stuhmer W, Pusch M, Conti F, Imoto K, Numa S (1991) Mapping the site of block by tetrodotoxin and saxitoxin of sodium channel II. FEBS Lett 293:93–96. doi:0014-5793(91)81159-6 [pii]

    Article  CAS  Google Scholar 

  261. Usup G, Leaw CP, Cheah MY, Ahmad A, Ng BK (2004) Analysis of paralytic shellfish poisoning toxin congeners by a sodium channel receptor binding assay. Toxicon 44:37–43. doi:10.1016/j.toxicon.2004.03.026

    Article  CAS  Google Scholar 

  262. Llewellyn L, Negri A, Quilliam M (2004) High affinity for the rat brain sodium channel of newly discovered hydroxybenzoate saxitoxin analogues from the dinoflagellate Gymnodinium catenatum. Toxicon 43:101–104

    Article  CAS  Google Scholar 

  263. Garrido R, Lagos N, Lagos M, Rodriguez-Navarro AJ, Garcia C, Truan D, Henriquez A (2007) Treatment of chronic anal fissure by gonyautoxin. Colorectal Dis 9:619–624. doi:10.1111/j.1463-1318.2006.01183.x

    Article  CAS  Google Scholar 

  264. Garrido R, Lagos N, Lattes K, Abedrapo M, Bocic G, Cuneo A, Chiong H, Jensen C, Azolas R, Henriquez A, Garcia C (2005) Gonyautoxin: new treatment for healing acute and chronic anal fissures. Dis Colon Rectum 48:335–340

    Article  Google Scholar 

  265. Garrido R, Lagos N, Lattes K, Azolas C, Bocic G, Cuneo A, Chiong H, Jensen C, Henriquez A, Fernandez C (2004) The gonyautoxin 2/3 epimers reduces anal tone when injected in the anal sphincter of healthy adults. Biol Res 37:395–403

    Article  CAS  Google Scholar 

  266. Minguez M, Herreros B, Benages A (2003) Chronic anal fissure. Curr Treat Options Gastroenterol 6:257–262

    Article  Google Scholar 

  267. Minguez M, Herreros B, Espi A, Garcia-Granero E, Sanchiz V, Mora F, Lledo S, Benages A (2002) Long-term follow-up (42 months) of chronic anal fissure after healing with botulinum toxin. Gastroenterology 123:112–117. doi:S0016508502000690 [pii]

    Article  Google Scholar 

  268. Lattes K, Venegas P, Lagos N, Lagos M, Pedraza L, Rodriguez-Navarro AJ, Garcia C (2009) Local infiltration of gonyautoxin is safe and effective in treatment of chronic tension-type headache. Neurol Res 31:228–233. doi:10.1179/174313209X380829

    Article  CAS  Google Scholar 

  269. Epstein-Barash H, Shichor I, Kwon AH, Hall S, Lawlor MW, Langer R, Kohane DS (2009) Prolonged duration local anesthesia with minimal toxicity. Proc Natl Acad Sci USA 106:7125–7130. doi:10.1073/pnas.0900598106

    Article  CAS  Google Scholar 

  270. Duncan KG, Duncan JL, Schwartz DM (2001) Saxitoxin: an anesthetic of the deepithelialized rabbit cornea. Cornea 20:639–642

    Article  CAS  Google Scholar 

  271. Kohane DS, Lu NT, Gokgol-Kline AC, Shubina M, Kuang Y, Hall S, Strichartz GR, Berde CB (2000) The local anesthetic properties and toxicity of saxitonin homologues for rat sciatic nerve block in vivo. Reg Anesth Pain Med 25:52–59

    CAS  Google Scholar 

  272. Sakura S, Bollen AW, Ciriales R, Drasner K (1995) Local anesthetic neurotoxicity does not result from blockade of voltage-gated sodium channels. Anesth Analg 81:338–346

    CAS  Google Scholar 

  273. Kohane DS, Yieh J, Lu NT, Langer R, Strichartz GR, Berde CB (1998) A re-examination of tetrodotoxin for prolonged duration local anesthesia. Anesthesiology 89:119–131

    Article  CAS  Google Scholar 

  274. Pearson LA, Neilan BA (2008) The molecular genetics of cyanobacterial toxicity as a basis for monitoring water quality and public health risk. Curr Opin Biotechnol 19:281–288. doi:S0958-1669(08)00030-X [pii] 10.1016/j.copbio.2008.03.002

    Article  CAS  Google Scholar 

  275. Al-Tebrineh J, Gehringer MM, Akcaalan R, Neilan BA (2011) A new quantitative PCR assay for the detection of hepatotoxigenic cyanobacteria. Toxicon 57:546–554. doi:10.1016/j.toxicon.2010.12.018

    Article  CAS  Google Scholar 

  276. Neilan BA, Pearson LA, Muenchhoff J, Moffitt MC, Dittmann E (2012) Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environ Microbiol. doi:10.1111/j.1462-2920.2012.02729.x

    Google Scholar 

  277. Brenner ED, Stevenson DW, McCombie RW, Katari MS, Rudd SA, Mayer KF, Palenchar PM, Runko SJ, Twigg RW, Dai G, Martienssen RA, Benfey PN, Coruzzi GM (2003) Expressed sequence tag analysis in Cycas, the most primitive living seed plant. Genome Biol 4:R78. doi:10.1186/gb-2003-4-12-r78

    Article  Google Scholar 

  278. Cox PA, Banack SA, Murch SJ (2003) Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam. Proc Natl Acad Sci USA 100:13380–13383. doi:10.1073/pnas.2235808100 100/23/13380 [pii]

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Kellmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Kellmann, R., Ploux, O., Neilan, B.A. (2013). Neurotoxic Alkaloids from Cyanobacteria. In: Ramawat, K., Mérillon, JM. (eds) Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_47

Download citation

Publish with us

Policies and ethics