Skip to main content

Diterpenes for Therapeutic Use

  • Reference work entry
  • First Online:
Natural Products

Abstract

Diterpenes are a structurally diverse class of C20 natural compounds, widely distributed in nature and originating by condensation of four isoprene units derived from mevalonate or deoxyxylulose phosphate pathways. The latter, recently discovered, originates the diterpene compounds in plants. Diterpenes can be classified as linear, bicyclic, tricyclic or tetracyclic, pentacyclic, and macrocyclic diterpenes depending on their skeletal core. In nature, they are commonly found in a polyoxygenated form with keto and hydroxyl groups, these last often esterified by small-sized aliphatic or aromatic acids.

Diterpenes have attracted growing attention because of their interesting biological and pharmacological activities. Although thousands of diterpene compounds have been described in nature from terrestrial and marine organisms, only few of them became clinically effective. Overall, the anticancer drug taxol, used in therapy against ovarian, breast, and lung cancer, with its synthetic water-soluble analogue taxotere, is an example of unusual structure discovered from nature and used as medicine. Promising diterpenes are the ginkgolides showing potent and selective antagonistic activity toward platelet-activating factor increasing in conditions of shock, burns, ulceration, and inflammation skin diseases. Also used in therapy is the diterpene resiniferatoxin, an ultrapotent vanilloid, isolated from the Euphorbia resinifera latex, in clinical trials for bladder hyperiflexia and diabetic neuropathy. The diterpenes used in therapy will be described together with other promising bioactive diterpenes with particular attention to those isolated from plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DMAPP:

Dimethylallyl diphosphate

DXP:

Deoxyxylulose

GGPP:

Geranylgeranyl pyrophosphate

IPP:

Isopentenyl diphosphate

MDR:

Multidrug resistance

MVA:

Mevalonic acid

PGP:

p-Glycoprotein

References

  1. Dickschat JS (2011) Isoprenoids in three-dimensional space: the stereochemistry of terpene biosynthesis. Nat Prod Rep 28:1917

    Article  CAS  Google Scholar 

  2. Schuhr CA, Radykewicz T, Sagner S, Latzel C, Zenk MH, Arigoni D, Bacher A, Rohdich F, Eisenreich W (2003) Quantitative assessment of crosstalk between the two isoprenoid biosynthesis pathways in plants by NMR spectroscopy. Phytochem Rev 2:2

    Article  Google Scholar 

  3. Crawford DJ, Giannasi DE (1982) Plant chemosystematics. Bioscience 32:114

    Article  CAS  Google Scholar 

  4. Barile E, Corea G, Lanzotti V (2008) Diterpenes from Euphorbia as potential leads from drug design. Nat Prod Com 3:1003

    Google Scholar 

  5. Pan L, Charcache de Blanco EJ, Kinghorn AD (2009) Plant-derived natural products as leads for drug discovery. In: Osbourn AE, Lanzotti V (eds) Plant-derived natural products: synthesis, function and applications. Springer, Dordrecht, p 547

    Google Scholar 

  6. Lange BM, Rujan T, Martin W, Croteau R (2000) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci 97:13177

    Google Scholar 

  7. Fujita E, Nagao Y, Node M, Kaneko K, Nakazawa S, Kuroda H (1976) Antitumor activity of the Isodon diterpenoids: structural requirements for the activity. Experientia 32:203

    Article  CAS  Google Scholar 

  8. Kubo I, Nakanishi K (1979) Some terpenoid insect antifeedants from tropical plants. Advances in pesticides science. In: Geissbuhler H, Brooks GT, Kearney PC (eds) Pergamon, Oxford, p 284

    Google Scholar 

  9. Casida JE (1976) Prospectus for new types of insecticides. In: Metcalf RL, MecKelvey JJ (eds) The future for insecticides. Wiley Interscience, New York, p 349

    Google Scholar 

  10. Kullenberg B, Bergstrom G, Stallberg-Stenhagen S (1970) Volatile components of the cephalic marking secretion of male bumblebees. Acta Chem Scand 24:1481

    Article  CAS  Google Scholar 

  11. Seo S, Seto H, Koshino H, Yoshida S, Ohashi Y (2003) A diterpene as an endogenous signal for the activation of defense responses to tobacco mosaic virus infection and wounding in tobacco. Plant Cell 15:863

    Article  CAS  Google Scholar 

  12. Tursch B, Braekman JC, Daloze D, Dedeurwaerder H, Karlsson R (1978) Chemical studies of marine invertebrates. XXXI(1). Crassolide, a highly oxygenated diterpene from the soft coral lobophytum crassum. (Coelenterata, Octocorallia, Alcyonacea). Bull Soc Chim Belges 87:75

    Article  CAS  Google Scholar 

  13. Hanson JR (1990) The chemistry of the gibberellins. Nat Prod Rep 7:41

    Article  CAS  Google Scholar 

  14. Raven PH, Evert RF, Eichhorn SE (2005) Biology of plants. WH Freeman, New York, p 119

    Google Scholar 

  15. Sommer A (2008) Vitamin A deficiency and clinical disease: An historical overview. J Nutr 138:1835

    CAS  Google Scholar 

  16. Kataev E, Khaybullin RN, Sharipova RR, Strobykina IY (2011) Ent-kaurane diterpenoids and gycosides: Isolation, properties, and chemical transformations. Rev J Chem 2:93

    Article  Google Scholar 

  17. Son Bredenberg JB (1957) Ferruginol and Δ9-dehydroferruginol. Acta Chem Scand 11:932

    Article  Google Scholar 

  18. Kubo I, Taniguchi IM, Satomura Y, Kubota T (1974) Diterpenoids from Isodon species and their biological activities. Agric Biol Chem 38:1261

    Article  CAS  Google Scholar 

  19. Fenical W (1978) The biology of seaweeds. In: Scheuer PJ (ed) Marine natural products. Academic, New York, Vol II, p 183

    Google Scholar 

  20. Barrero AF, Herrador MM, Arteaga P, Arteaga JF, Arteaga AF (2012) Communic acids: occurrence, properties and use as chirons for the synthesis of bioactive compounds. Molecules 17:1448

    Article  CAS  Google Scholar 

  21. Zerbe P, Chiang A, Yuen M, Hamberger B, Hamberger B, Draper J, Britton R, Bohlmann J (2012) Bifunctional cis-Abienol synthase from Abies balsamea discovered by transcriptome sequencing and its Implications for diterpenoid fragrance production. J Biol Chem 287:12121

    Article  CAS  Google Scholar 

  22. Kashman Y, Rudi A, Yosief T, Gravalos DG (1999) PCT Int Appl WO 9933832 A1 19990708

    Google Scholar 

  23. Andersen NR, Lorck HO, Rasmussen PR (1983) Fermentation, isolation and characterization of antibiotic. J Antibiot 36:753

    Article  CAS  Google Scholar 

  24. Bhat SV (1993) Forskolin and congeners. Prog Chem Org Nat Prod 62:1

    CAS  Google Scholar 

  25. Nicolson K, Evans G, O’Toole PW (1999) Potentiation of methicillin activity against methicillin-resistant Staphylococcus aureus by diterpenes. FEMS Microbiol Lett 179:233

    Article  CAS  Google Scholar 

  26. Ling T, Chowdhury C, Kramer BA, Vong BG, Palladino MA, Theodorakis EA (2001) Synthesis of the Anti-inflammatory agent (-)-acanthoic acid. J Org Chem 66:8843

    Article  CAS  Google Scholar 

  27. Kane BE, McCurdy CR, Ferguson DM (2008) Toward a structure-based model of salvinorin a recognition of the kappa-opioid receptor. J Med Chem 5:1824

    Article  Google Scholar 

  28. Hanson JR, de Oliveira BH (1993) Stevioside and related sweet diterpenoid glycosides. Nat Prod Rep 10:301

    Article  CAS  Google Scholar 

  29. Braquet P, Esanu A, Buisine E, Hosford D, Broquet C, Koltai M (1991) Recent progress in ginkgolide research. Med Res Rev 11:295

    Article  CAS  Google Scholar 

  30. Appendino G (1995) The phytochemistry of the yew tree. Nat Prod Rep 12:349

    Article  CAS  Google Scholar 

  31. Appendino G, Ech-Chahad A, Minassi A, De Petrocellis L, Di Marzo V (2010) Structure-activity relationships of the ultrapotent vanilloid resiniferatoxin (RTX). Bioorg Med Chem Lett 20:97

    Article  CAS  Google Scholar 

  32. Barile E, Borriello M, Di Pietro A, Doreau A, Fattorusso C, Fattorusso E, Lanzotti V (2008) Discovery of a new series of jatrophane and lathyrane diterpenes as potent and specific P-glycoprotein modulators. Org Biomol Chem 6:1756

    Article  CAS  Google Scholar 

  33. Corea G, Fattorusso E, Lanzotti V, Taglialatela-Scafati O, Appendino G, Ballero M, Simon PN, Dumontet C, Di Pietro A (2003) Jatrophane diterpenes as P-glycoprotein inhibitors. First insights of structure-activity relationship and discovery of a new powerful lead. J Med Chem 46:3395

    Article  CAS  Google Scholar 

  34. Corea G, Fattorusso E, Lanzotti V, Di Meglio P, Maffia P, Grassia G, Ialenti A, Ianaro A (2005) Discovery and biological evaluation of the novel naturally occurring diterpene pepluanone as antiinflammatory agent. J Med Chem 48:7055

    Article  CAS  Google Scholar 

  35. Barile E, Fattorusso E, Ialenti A, Ianaro A, Lanzotti V (2007) Bioorg Med Chem Lett 17:4196

    Article  CAS  Google Scholar 

  36. Barile E, Lanzotti V (2007) Biogenetical related highly oxygenated macrocyclic diterpenes from sea spurge Euphorbia paralias. Org Lett 9:3603

    Article  CAS  Google Scholar 

  37. Corea G, Di Pietro A, Dumontet C, Fattorusso E, Lanzotti V (2009) Jatrophane diterpenes from Euphorbia spp. as modulators of multidrug resistance in cancer therapy. Phytochemistry Rev 8:431

    Article  CAS  Google Scholar 

  38. Corea G, Fattorusso E, Lanzotti V, Motti R, Simon PN, Dumontet C, Di Pietro A (2004) Jatrophane diterpenes as modulators of multidrug resistance. Advances of Structure-Activity Relationships and Discovery of the Potent Lead Pepluanin A. J Med Chem 47:988

    Article  CAS  Google Scholar 

  39. Osbourn AE, Lanzotti V (2009) Plant-derived natural products: synthesis, function and applications. Springer, Dordrecht

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia Lanzotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Lanzotti, V. (2013). Diterpenes for Therapeutic Use. In: Ramawat, K., Mérillon, JM. (eds) Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_192

Download citation

Publish with us

Policies and ethics