Skip to main content

Biological Activities of Pepper Alkaloids

  • Reference work entry
  • First Online:
Natural Products

Abstract

The distinct biting quality of black pepper (Piper nigrum) widely used in human dietary is attributed to the alkaloid piperine. Black pepper is also used as a food preservative and as a vital component in traditional medicines in India and China. Several physiological effects of black pepper and its bioactive alkaloid piperine have been reported in recent decades. By stimulating the digestive enzymes of pancreas, piperine enhances the digestive capacity. Piperine has been documented to enhance the bioavailability of a number of therapeutic drugs as well as phytochemicals by its inhibitory influence on drug transformation reactions in liver and intestine. It strongly inhibits hepatic and intestinal aryl hydrocarbon hydroxylase and glucuronyl transferase. Piperine’s bioavailability enhancing property is also partly attributed to increased absorption as a result of its effect on the ultrastructure of intestinal brush border. Piperine has been evidenced to have antidiarrheal property and an effect on intestinal motility and on the ultrastructure of intestinal microvilli improving absorbability of micronutrients. Piperine has been demonstrated in in vitro studies to protect against oxidative damage by inhibiting or quenching reactive oxygen species. Piperine treatment also lowers lipid peroxidation in vivo and beneficially influences antioxidant status in situations of oxidative stress. Piperine has been found to possess antimutagenic and antitumor influences.

Capsaicin, the pungent alkaloid of red pepper (Capsicum annuum), has been extensively studied for its biological effects which are of pharmacological relevance. These include cardioprotective influence, anti-lithogenic effect, anti-inflammatory and pain-relieving effect, thermogenic influence, and effects on gastrointestinal system. The involvement of neuropeptides, substance P, serotonin, and somatostatin in the pharmacological actions of capsaicin has been extensively investigated. Tropical application of capsaicin is proved to alleviate pain in arthritis, postoperative neuralgia, diabetic neuropathy, psoriasis, etc. Toxicological studies on capsaicin administered by different routes are documented. Capsaicin inhibits acid secretion and stimulates alkali and mucus secretion and particularly gastric mucosal blood flow which helps in prevention and healing of gastric ulcers. Antioxidant and anti-inflammatory properties of capsaicin are established in a number of studies. Chemopreventive potential of capsaicin is evidenced in cell line studies. The health beneficial hypocholesterolemic influence of capsaicin besides being cardioprotective has other implications, namely, prevention of cholesterol gallstones and protection of the structural integrity of erythrocytes under conditions of hypercholesterolemia. Beneficial influences of capsaicin on gastrointestinal system include digestive stimulant action and modulation of intestinal ultrastructure so as to enhance permeability to micronutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achaya KT (1994) Indian food: a historical companion. Oxford University Press, Delhi

    Google Scholar 

  2. Govindarajan VS (1977) Pepper – chemistry, technology & quality evaluation. Crit Rev Food Sci Nutr 9:115–225

    Article  CAS  Google Scholar 

  3. Nadkarni KM, Nadkarni AK (1976) Indian Materia Medica. Popular Prakashan Pvt. Ltd., Mumbai

    Google Scholar 

  4. Johri RK, Zutshi U (1992) An Ayurvedic formulation ‘trikatu’ and its constituents. J Ethnopharmacol 37:85–91

    Article  CAS  Google Scholar 

  5. Singh MB (1994) Maternal beliefs and practices regarding the diet and use of herbal medicines during measles and diarrhea in rural areas. Indian Pediatr 31:340–343

    CAS  Google Scholar 

  6. Bensky D (2004) Chinese herbal medicine: materia medica, 3rd edn (trans: Bensky D, Clavey S, Stoger E, Gamble A). Eastland Press, Seattle

    Google Scholar 

  7. Srinivasan K (2007) Black pepper and its pungent principle – piperine: a review of diverse physiological effects. Crit Rev Food Sci Nutr 47:735–748

    Article  CAS  Google Scholar 

  8. Atal CK, Dubey RK, Singh J (1985) Biochemical basis of enhanced drug bioavailability of piperine: evidence that piperine is a potent inhibitor of drug metabolism. J Pharmacol Exp Ther 232:258–262

    CAS  Google Scholar 

  9. Singh J, Dubey RK, Atal CK (1986) Piperine-mediated inhibition of glucuronidation activity in isolated epithelial cells of the guinea-pig small intestine: evidence that piperine lowers the endogenous UDP-glucuronic acid content. J Pharmacol Exp Ther 236:488–493

    CAS  Google Scholar 

  10. Reen RK, Singh J (1991) In vitro and in vivo inhibition of pulmonary cytochrome P450 activities by piperine, a major ingredient of piper species. Indian J Exp Biol 29:568–573

    CAS  Google Scholar 

  11. Reen RK, Roesch SF, Kiefer F, Wiebel FJ, Singh J (1996) Piperine impairs cytochrome P4501A1 activity by direct interaction with the enzyme and not by down regulation of CYP1A1 gene expression in rat hepatoma 5 L cell line. Biochem Biophys Res Commun 218:562–569

    Article  CAS  Google Scholar 

  12. Suresh D, Srinivasan K (2006) Influence of curcumin, capsaicin, and piperine on the rat liver drug-metabolizing enzyme system in vivo and in vitro. Can J Physiol Pharmacol 84:1259–1265

    Article  CAS  Google Scholar 

  13. Dalvi RR, Dalvi PS (1991) Comparison of the effects of piperine administered intra gastrically and intraperitoneally on the liver and liver mixed function oxidases in rats. Drug Metab Drug Interact 9:23–30

    Article  CAS  Google Scholar 

  14. Reen RK, Jamwal DS, Taneja SC, Koul JL, Dubey RK, Wiebel FJ, Singh J (1993) Impairment of UDP-glucose dehydrogenase and glucuronidation activities in liver and small intestine of rat and guinea pig in vitro by piperine. Biochem Pharmacol 46:229–238

    Article  CAS  Google Scholar 

  15. Dalvi RR, Dalvi PS (1991) Differences in the effects of piperine and piperonyl butoxide on hepatic drug-metabolizing enzyme system in rats. Drug Chem Toxicol 14:219–229

    Article  CAS  Google Scholar 

  16. Volak LP, Ghirmai S, Cashman JR, Court MH (2008) Curcuminoids inhibit multiple human cytochromes P450, UDP-glucuronosyl transferase, and sulfotransferase enzymes, whereas piperine is a relatively selective CYP3A4 inhibitor. Drug Metab Dispos 36:1594–1605

    Article  CAS  Google Scholar 

  17. Hu Z, Yang Z, Ho PC, Chan SY, Heng PW, Chan E (2005) Herb-drug interactions: a literature review. Drugs 65:1239–1282

    Article  CAS  Google Scholar 

  18. Atal CK, Zutshi U, Rao PG (1981) Scientific evidence on the role of Ayurvedic herbals on bioavailability of drugs. J Ethnopharmacol 4:229–232

    Article  CAS  Google Scholar 

  19. Bano G, Raina RK, Zutshi U, Bedi KL, Johri RK, Sharma SC (1991) Effect of piperine on bioavailability and pharmacokinetics of propranolol and theophylline in healthy volunteers. Eur J Clin Pharmacol 41:615–617

    Article  CAS  Google Scholar 

  20. Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS (1998) Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 64:353–356

    Article  CAS  Google Scholar 

  21. Badmaev VV, Majeed M, Prakash L (2000) Piperine derived from black pepper increases the plasma levels of coenzyme Q10 following oral supplementation. J Nutr Biochem 11:109–113

    Article  CAS  Google Scholar 

  22. Pattanaik S, Hota D, Prabhakar S, Kharbanda P, Pandhi P (2006) Effect of piperine on the steady-state pharmacokinetics of phenytoin in patients with epilepsy. Phytother Res 20:683–686

    Article  CAS  Google Scholar 

  23. Kasibhatta R, Naidu MU (2007) Influence of piperine on the pharmacokinetics of nevirapine under fasting conditions: a randomized, crossover, placebo-controlled study. Drugs 8:383–391

    CAS  Google Scholar 

  24. Allameh A, Saxena M, Biswas G, Raj HG, Singh J, Srivastava N (1992) Piperine, a plant alkaloid of the piper species, enhances the bioavailability of aflatoxin B1 in rat tissues. Cancer Lett 61:195–199

    Article  CAS  Google Scholar 

  25. Hiwale AR, Dhuley JN, Naik SR (2002) Effect of co-administration of piperine on pharmaco-kinetics of β-lactam antibiotics in rats. Indian J Exp Biol 40:277–281

    CAS  Google Scholar 

  26. Suresh D, Srinivasan K (2010) Tissue distribution and elimination of capsaicin, piperine and curcumin following oral intake in rats. Indian J Med Res 131:682–691

    CAS  Google Scholar 

  27. Velpandian T, Jasuja R, Bhardwaj RK, Jaiswal J, Gupta SK (2001) Piperine in food: interference in the pharmacokinetics of phenytoin. Eur J Drug Metab Pharmacokinet 26:241–247

    Article  CAS  Google Scholar 

  28. Lambert JD, Hong J, Kim DH, Mishin VM, Yang CS (2004) Piperine enhances the bioavailability of the tea polyphenol (−)-epigallocatechin-3-gallate in mice. J Nutr 134:1948–1952

    CAS  Google Scholar 

  29. Glatzel H (1968) Physiological aspects of flavour compounds. Ind Spices 5:13–21

    Google Scholar 

  30. Platel K, Srinivasan K (2004) Digestive stimulant action of spices: a myth or reality? Indian J Med Res 119:167–179

    CAS  Google Scholar 

  31. Bhat BG, Chandrasekhara N (1987) Effect of black pepper and piperine on bile secretion and composition in rats. Nahrung 31:913–916

    Article  CAS  Google Scholar 

  32. Platel K, Srinivasan K (2000) Influence of dietary spices or their active principles on pancreatic digestive enzymes in albino rats. Nahrung 44:42–46

    Article  CAS  Google Scholar 

  33. Platel K, Srinivasan K (1996) Influence of dietary spices or their active principles on digestive enzymes of small intestinal mucosa in rats. Int J Food Sci Nutr 47:55–59

    Article  CAS  Google Scholar 

  34. Prakash UNS, Srinivasan K (2011) Fat digestion and absorption in spice pretreated rats. J Sci Food Agric 92:503–510

    Article  CAS  Google Scholar 

  35. Platel K, Srinivasan K (2001) Studies on the influence of dietary spices on food transit time in experimental rats. Nutr Res 21:1309–1314

    Article  CAS  Google Scholar 

  36. Bajad S, Bedi KL, Singla AK, Johri RK (2001) Piperine inhibits gastric emptying and gastrointestinal transit in rats and mice. Planta Med 67:176–179

    Article  CAS  Google Scholar 

  37. Izzo AA, Capasso R, Pinto L, Di Carlo G, Mascolo N, Capasso F (2001) Effect of vanilloid drugs on gastrointestinal transit in mice. Br J Pharmacol 132:1411–1416

    Article  CAS  Google Scholar 

  38. Myers BM, Smith JL, Graham DY (1987) Effect of red pepper and black pepper on the stomach. Am J Gastroenterol 82:211–214

    CAS  Google Scholar 

  39. Vasudevan K, Vembar S, Veeraraghavan K, Haranath PS (2000) Influence of intra-gastric perfusion of aqueous spice extracts on acid secretion in anesthetized albino rats. Indian J Gastroenterol 19:53–56

    CAS  Google Scholar 

  40. Ononiwu IM, Ibeneme CE, Ebong OO (2002) Effects of piperine on gastric acid secretion in albino rats. Afr J Med Sci 31:293–295

    CAS  Google Scholar 

  41. Bai YF, Xu H (2000) Protective action of piperine against experimental gastric ulcer. Acta Pharmacol 21:357–359

    CAS  Google Scholar 

  42. Prakash UNS, Srinivasan K (2010) Gastrointestinal protective effect of dietary spices during ethanol-induced oxidant stress in experimental rats. Appl Physiol Nutr Metab 35:134–141

    Article  CAS  Google Scholar 

  43. Capasso R, Izzo AA, Borrelli F, Russo A, Sautebin L, Pinto A et al (2002) Effect of piperine, the active ingredient of black pepper, on intestinal secretion in mice. Life Sci 71:2311–2317

    Article  CAS  Google Scholar 

  44. Johri RK, Thusu N, Khajuria A, Zutshi U (1992) Piperine-mediated changes in the permeability of rat intestinal epithelial cells: status of γ-glutamyl transpeptidase activity, uptake of amino acids and lipid peroxidation. Biochem Pharmacol 43:1401–1407

    Article  CAS  Google Scholar 

  45. Khajuria A, Thusu N, Zutshi U (2002) Piperine modulates permeability characteristics of intestine by inducing alterations in membrane dynamics: influence on brush border membrane fluidity, ultrastructure and enzyme kinetics. Phytomedicine 9:224–231

    Article  CAS  Google Scholar 

  46. Prakash UNS, Srinivasan K (2010) Beneficial influence of dietary spices on the ultra structure and fluidity of intestinal brush border in experimental rats. Br J Nutr 104:31–39

    Article  CAS  Google Scholar 

  47. Prakash UNS, Srinivasan K (2012) Enhanced intestinal uptake of trace minerals in spice pretreated rats. J Trace Elem Med Biol (in press)

    Google Scholar 

  48. Veda S, Srinivasan K (2009) Influence of dietary spices – black pepper, red pepper and ginger on the uptake of β-carotene by rat intestines. J Funct Food 1:394–398

    Article  CAS  Google Scholar 

  49. Veda S, Srinivasan K (2011) Influence of dietary spices on the in vivo absorption of ingested β-carotene in experimental rats. Br J Nutr 105:1429–1438

    Article  CAS  Google Scholar 

  50. Vazquez-Olivencia W, Shah P, Pitchumoni CS (1992) The effect of red and black pepper on orocecal transit time. J Am Coll Nutr 11:228–231

    CAS  Google Scholar 

  51. Bajad S, Bedi KL, Singla AK, Johri RK (2001) Antidiarrhoeal activity of piperine in mice. Planta Med 67:284–287

    Article  CAS  Google Scholar 

  52. Mittal R, Gupta RL (2000) In vitro antioxidant activity of piperine. Exp Clin Pharmacol 22:271–274

    CAS  Google Scholar 

  53. Reddy ACP, Lokesh BR (1992) Studies on spice principles as antioxidants in the inhibition of lipid peroxidation of rat liver microsomes. Mol Cell Biochem 111:117–124

    CAS  Google Scholar 

  54. Gülçin I (2005) The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds. Int J Food Sci Nutr 56:491–499

    Article  CAS  Google Scholar 

  55. Naidu KA, Thippeswamy NB (2002) Inhibition of human low density lipoprotein oxidation by active principles from spices. Mol Cell Biochem 229:19–23

    Article  CAS  Google Scholar 

  56. Prasad NS, Raghavendra R, Lokesh BR, Naidu KA (2004) Spice phenolics inhibit human PMNL 5-lipoxygenase. Prostagl Leukotr Essent Fatty Acids 70:521–528

    Article  CAS  Google Scholar 

  57. Khajuria A, Thusu N, Zutshi U, Bedi KL (1998) Piperine modulation of carcinogen induced oxidative stress in intestinal mucosa. Mol Cell Biochem 189:113–118

    Article  CAS  Google Scholar 

  58. Rauscher FM, Sanders RA, Watkins JB (2000) Effects of piperine on antioxidant pathways in tissues from normal and streptozotocin-induced diabetic rats. J Biochem Mol Toxicol 14:329–334

    Article  CAS  Google Scholar 

  59. Vijayakumar RS, Surya D, Nalini N (2004) Antioxidant efficacy of black pepper (Piper nigrum L.) and piperine in rats with high fat diet induced oxidative stress. Redox Rep 9:105–110

    Article  CAS  Google Scholar 

  60. Selvendiran K, Senthilnathan P, Magesh V, Sakthisekaran D (2004) Modulatory effect of Piperine on mitochondrial antioxidant system in benzo(α)pyrene-induced experimental lung carcinogenesis. Phytomedicine 11:85–89

    Article  CAS  Google Scholar 

  61. Selvendiran K, Sakthisekaran D (2004) Chemopreventive effect of piperine on modulating lipid peroxidation and membrane bound enzymes in benzo(α)pyrene induced lung carcinogenesis. Biomed Pharmacother 58:264–267

    Article  CAS  Google Scholar 

  62. Hamss E, Idaomar M, Alonso-Moraga A, Munoz-Serrano A (2003) Antimutagenic properties of bell and black peppers. Food Chem Toxicol 41:41–47

    Article  Google Scholar 

  63. Sunila ES, Kuttan G (2004) Immunomodulatory and antitumor activity of Piper longum Linn. and piperine. J Ethnopharmacol 90:339–346

    Article  CAS  Google Scholar 

  64. Singh J, Reen RK, Wiebel FJ (1994) Piperine, a major ingredient of black and long peppers, protects against AFB1-induced cytotoxicity and micronuclei formation in H4IIEC3 rat hepatoma cells. Cancer Lett 86:195–200

    Article  CAS  Google Scholar 

  65. Reen RK, Wiebel FJ, Singh J (1997) Piperine inhibits aflatoxin B1-induced cytotoxicity and genotoxicity in V79 Chinese hamster cells genetically engineered to express rat cytochrome P4502B1. J Ethnopharmacol 58:165–173

    Article  CAS  Google Scholar 

  66. Wongpa S, Himakoun L, Soontornchai S, Temcharoen P (2007) Antimutagenic effects of piperine on cyclophosphamide-induced chromosome aberrations in rat bone marrow cells. Asian Pac J Cancer Prev 8:623–627

    Google Scholar 

  67. Nalini N, Manju V, Menon VP (2006) Effect of spices on lipid metabolism in 1,2-dimethyl hydrazine-induced rat colon carcinogenesis. J Med Food 9:237–245

    Article  CAS  Google Scholar 

  68. Unnikrishnan MC, Kuttan R (1990) Tumour reducing and anticarcinogenic activity of selected spices. Cancer Lett 51:85–89

    Article  CAS  Google Scholar 

  69. Pradeep CR, Kuttan G (2002) Effect of piperine on the inhibition of lung metastasis induced B16F-10 melanoma cells in mice. Clin Exp Metastasis 19:703–708

    Article  CAS  Google Scholar 

  70. Selvendiran K, Singh JP, Krishnan KB, Sakthisekaran D (2003) Cytoprotective effect of piperine against benzo[α]pyrene induced lung cancer with reference to lipid peroxidation and antioxidant system in Swiss albino mice. Fitoterapia 74:109–115

    Article  CAS  Google Scholar 

  71. Selvendiran K, Banu SM, Sakthisekaran D (2004) Protective effect of piperine on benzo (α)pyrene-induced lung carcinogenesis in Swiss albino mice. Clin Chim Acta 350:73–78

    Article  CAS  Google Scholar 

  72. Loder JW, Moorhouse A, Russel GV (1984) Tumor inhibitory plants: amides of pepper novaehollandiae. Aust J Chem 22:1531–1538

    Article  Google Scholar 

  73. Selvendiran K, Banu SM, Sakthisekaran D (2005) Oral supplementation of piperine leads to altered phase II enzymes and reduced DNA damage and DNA-protein cross links in Benzo(a)pyrene induced experimental lung carcinogenesis. Mol Cell Biochem 268:141–147

    Article  CAS  Google Scholar 

  74. Selvendiran K, Padmavathi R, Magesh V, Sakthisekaran D (2005) Preliminary study on inhibition of genotoxicity by piperine in mice. Fitoterapia 76:296–300

    Article  CAS  Google Scholar 

  75. Daware MB, Mujumdar AM, Ghaskadbi S (2000) Reproductive toxicity of piperine in Swiss albino mice. Planta Med 66:231–236

    Article  CAS  Google Scholar 

  76. Piyachaturawat P, Pholpramool C (1997) Enhancement of fertilization by piperine in hamsters. Cell Biol Int 21:405–409

    Article  CAS  Google Scholar 

  77. Piyachaturawat P, Sriwattana W, Damrongphol P, Pholpramool C (1991) Effects of piperine on hamster sperm capacitation and fertilization in vitro. Int J Androl 14:283–290

    Article  CAS  Google Scholar 

  78. Malini T, Manimaran RR, Arunakaran J, Aruldhas MM, Govindarajulu P (1999) Effects of piperine on testis of albino rats. J Ethnopharmacol 64:219–225

    Article  CAS  Google Scholar 

  79. Mujumdar AM, Dhuley JN, Deshmukh VK, Raman PH, Naik SR (1990) Anti-inflammatory activity of piperine. Jpn J Med Sci Biol 43:95–100

    CAS  Google Scholar 

  80. Koul IB, Kapil A (1993) Evaluation of the liver protective potential of piperine, an active principle of black and long peppers. Planta Med 59:413–417

    Article  CAS  Google Scholar 

  81. Lin Z, Hoult JR, Bennett DC, Raman A (1999) Stimulation of mouse melanocyte proliferation by Piper nigrum fruit extract and its main alkaloid – piperine. Planta Med 65:600–603

    Article  CAS  Google Scholar 

  82. Wattanathorn J, Chonpathompikunlert P, Muchimapura S, Priprem A, Tankamnerdthai O (2008) Piperine, the potential functional food for mood and cognitive disorders. Food Chem Toxicol 46:3106–3110

    Article  CAS  Google Scholar 

  83. Li S, Wang C, Li W, Koike K, Nikaido T, Wang MW (2007) Antidepressant-like effects of piperine and its derivative, antiepilepsirine. J Asian Nat Prod Res 9:421–430

    Article  CAS  Google Scholar 

  84. Wang L, Zhao D, Zhang Z (1999) Trial of antiepilepsirine in children with epilepsy. Brain Dev 21:36–40

    Article  CAS  Google Scholar 

  85. D'cruz SC, Mathur PP (2005) Effect of piperine on the epididymis of adult male rats. Asian J Androl 7:363–368

    Article  CAS  Google Scholar 

  86. Kawada T, Sakabe S, Watanabe T, Yamamoto M, Iwai K (1988) Some pungent principles of spices cause the adrenal medulla to secrete catecholamine in anesthetized rats. Proc Soc Exp Biol Med 188:229–233

    CAS  Google Scholar 

  87. Reanmongkol W, Janthasoot W, Wattanatorn W, Dhumma-Upakorn P, Chudapongse P (1988) Effects of piperine on bioenergetic functions of isolated rat liver mitochondria. Biochem Pharmacol 37:753–757

    Article  CAS  Google Scholar 

  88. Jamwal DS, Singh J (1993) Effects of piperine on enzyme activities and bioenergetic functions in isolated rat liver mitochondria and hepatocytes. J Biochem Toxicol 8:167–174

    Article  CAS  Google Scholar 

  89. Bhat BG, Chandrasekhara N (1986) Studies on the metabolism of piperine: absorption, tissue distribution and excretion of urinary conjugates in rats. Toxicology 40:83–92

    Article  CAS  Google Scholar 

  90. Suresh D, Srinivasan K (2007) Studies on the in vitro absorption of spice principles – curcumin, capsaicin and piperine in rat intestines. Food Chem Toxicol 45:1437–1442

    Article  CAS  Google Scholar 

  91. Bhat BG, Chandrasekhara N (1987) Metabolic disposition of piperine in the rat. Toxicology 44:99–106

    Article  CAS  Google Scholar 

  92. Bajad S, Coumar M, Khajuria R, Suri OP, Bedi KL (2003) Characterization of a new rat urinary metabolite of piperine by LC/NMR/MS studies. Eur J Pharm Sci 19:413–421

    Article  CAS  Google Scholar 

  93. Khajuria A, Zutshi U, Bedi KL (1998) Permeability characteristics of piperine on oral absorption – an active alkaloid from peppers and a bioavailability enhancer. Indian J Exp Biol 36:46–50

    CAS  Google Scholar 

  94. Suresh D, Mahesha HG, Rao AGA, Srinivasan K (2007) Binding of bioactive phytochemical piperine with human serum albumin: a spectrofluorometric study. Biopolymers 86:265–275

    Article  CAS  Google Scholar 

  95. Govindarajan VS (1986) Capsicum – production, technology, chemistry and quality: chemistry of colour, aroma and pungency stimuli. Crit Rev Food Sci Nutr 24:245–355

    Article  CAS  Google Scholar 

  96. Fujiwake H, Suzuki T, Oka S, Iwai K (1980) Enzymatic formation of capsaicinoid from vanillylamine and iso-type fatty acids by cell-free extracts of Capsicum annuum var. annuum. Agric Biol Chem 44:2907–2912

    Article  CAS  Google Scholar 

  97. Surh YJ, Lee SS (1995) Capsaicin, a double-edged sword: toxicity, metabolism, and chemo-preventive potential. Life Sci 56:1845–1855

    Article  CAS  Google Scholar 

  98. Majid M, Badmaev V, Lakshmi P, Natarajan S, Gopinathan S (1997) Capsaicin, the antiarthritic phytochemical. Nutriscience Publishers, Piscataway

    Google Scholar 

  99. Sambaiah K, Satyanarayana MN, Rao MVL (1978) Effect of red pepper and capsaicin on fat absorption and liver fat in rats. Nutr Rep Int 18:521–529

    CAS  Google Scholar 

  100. Srinivasan MR, Sambaiah K, Satyanarayana MN, Rao MVL (1980) Influence of red pepper and capsaicin on growth, blood constituents and nitrogen balance in rats. Nutr Rep Int 21:455–467

    CAS  Google Scholar 

  101. Srinivasan MR, Satyanarayana MN (1987) Influence of capsaicin, curcumin and ferulic acid in rats fed high fat diets. J Biosci 12:143–152

    Article  CAS  Google Scholar 

  102. Monsereenusorn S (1983) Subchronic toxicity studies of capsaicin and capsicum in rats. Res Comm Chem Pathol Pharmacol 41:95–100

    CAS  Google Scholar 

  103. Kawada T, Hagihara K, Iwai K (1986) Effects of capsaicin on lipid metabolism in rats fed a high fat diet. J Nutr 116:1272–1278

    CAS  Google Scholar 

  104. Sambaiah K, Satyanarayana MN (1980) Hypocholesterolemic effect of red pepper and capsaicin. Indian J Exp Biol 18:898–899

    CAS  Google Scholar 

  105. Kempaiah RK, Srinivasan K (2002) Integrity of erythrocytes of hypercholesterolemic rats during spices treatment. Mol Cell Biochem 236:155–161

    Article  CAS  Google Scholar 

  106. Babu PS, Srinivasan K (1997) Influence of dietary capsaicin and onion on the metabolic abnormalities associated with diabetes mellitus. Mol Cell Biochem 175:49–57

    Article  CAS  Google Scholar 

  107. Srinivasan K, Sambaiah K (1991) Effect of spices on cholesterol-7α-hydroxylase activity and on serum and hepatic cholesterol levels in the rat. Int J Vitam Nutr Res 61:364–369

    CAS  Google Scholar 

  108. Negulesco JA, Young RM, Ki P (1983) Capsaicin lowers plasma cholesterol and triglycerides of lagomorphs. Artery 12:301–311

    Google Scholar 

  109. Ki P, Negulesco JA, Murnane M (1982) Decreased total serum myocardial and aortic cholesterol levels following capsaicin treatment. IRCS Med Sci 10:446–447

    CAS  Google Scholar 

  110. Negulesco JA, Noel SA, Newman HA, Naber EC, Bhat HB, Witiak DT (1987) Effects of pure capsaicinoids (capsaicin and dihydrocapsaicin) on plasma lipids and lipoprotein concentrations of turkey poults. Atherosclerosis 64:85–90

    Article  CAS  Google Scholar 

  111. Gupta RS, Dixit VP, Dobhal MP (2002) Hypocholesterolemic effect of the oleoresin of Capsicum annum L. in gerbils (Meriones hurrianae Jerdon). Phytother Res 16:273–275

    Article  CAS  Google Scholar 

  112. Srinivasan MR, Satyanarayana MN (1988) Influence of capsaicin, eugenol, curcumin and ferulic acid on sucrose induced hypertriglyceridemia in rats. Nutr Rep Int 38:571–581

    CAS  Google Scholar 

  113. Srinivasan K, Sambaiah K, Chandrasekhara N (1992) Loss of active principles of common spices during domestic cooking. Food Chem 43:271–274

    Article  CAS  Google Scholar 

  114. Suresh D, Manjunatha H, Srinivasan K (2007) Effect of heat processing of spices on the concentrations of their bioactive principles: turmeric (Curcuma longa), red pepper (Capsicum annuum) and black pepper (Piper nigrum). J Food Compos Anal 20:346–351

    Article  CAS  Google Scholar 

  115. Manjunatha H, Srinivasan K (2008) Hypolipidemic and antioxidant potency of heat processed turmeric and red pepper in experimental rats. Afr J Food Sci 2:1–6

    Google Scholar 

  116. Bhat BG, Srinivasan MR, Chandrasekhara N (1984) Influence of curcumin and capsaicin on the composition and secretion of bile in rats. J Food Sci Technol 21:225–227

    CAS  Google Scholar 

  117. Hussain MS, Chandrasekhara N (1992) Effect of curcumin on cholesterol gallstone induction in mice. Indian J Med Res 96:288–291

    CAS  Google Scholar 

  118. Hussain MS, Chandrasekhara N (1993) Influence of curcumin and capsaicin on cholesterol gallstone induction in hamsters and mice. Nutr Res 13:349–357

    Article  CAS  Google Scholar 

  119. Hussain MS, Chandrasekhara N (1994) Biliary proteins from hepatic bile of rats fed curcumin or capsaicin inhibit cholesterol crystal nucleation in supersaturated model bile. Indian J Biochem Biophys 31:407–412

    CAS  Google Scholar 

  120. Shubha MC, Reddy RLR, Srinivasan K (2011) Anti-lithogenic influence of dietary capsaicin and curcumin during experimental induction of cholesterol gallstone in mice. Appl Physiol Nutr Metab 36:201–209

    Article  CAS  Google Scholar 

  121. Hussain MS, Chandrasekhara N (1994) Effect of curcumin and capsaicin on the regression of pre-established cholesterol gallstones in mice. Nutr Res 14:1561–1574

    Article  CAS  Google Scholar 

  122. Cazana FJD, Puyol MR, Caballero JP, Jimenez AJ, Duarte AM (1990) Effect of dietary hyperlipidemia-hypercholesterolemia on rat erythrocytes. Int J Vitam Nutr Res 60:393–397

    Google Scholar 

  123. Kempaiah RK, Srinivasan K (2005) Influence of dietary spices on the fluidity of erythrocytes in hypercholesterolemic rats. Br J Nutr 93:81–91

    Article  CAS  Google Scholar 

  124. Kempaiah RK, Srinivasan K (2006) Beneficial influence of dietary curcumin, capsaicin and garlic on erythrocyte integrity in high-fat fed rats. J Nutr Biochem 17:471–478

    Article  CAS  Google Scholar 

  125. Salimath BP, Sundaresh CS, Srinivas L (1986) Dietary components inhibit lipid peroxidation in erythrocyte membrane. Nutr Res 6:1171–1178

    Article  CAS  Google Scholar 

  126. Okada Y, Okajima H (2001) Antioxidant effect of capsaicin on lipid peroxidation in homogeneous solution, micelle dispersions & liposomal membranes. Redox Rep 6:117–122

    Article  CAS  Google Scholar 

  127. Kogure K, Goto S, Nishimura M, Yasumoto M, Abe K, Ohiwa C et al (2002) Mechanism of potent antiperoxidative effect of capsaicin. Biochim Biophys Acta 1573:84–92

    Article  CAS  Google Scholar 

  128. Lee CY, Kim M, Yoon SW, Lee CH (2003) Short-term control of capsaicin on blood and oxidative stress of rats in vivo. Phytother Res 17:454–458

    Article  CAS  Google Scholar 

  129. Kempaiah RK, Srinivasan K (2004) Influence of dietary curcumin, capsaicin and garlic on the antioxidant status of red blood cells and the liver in high-fat-fed rats. Ann Nutr Metab 48:314–320

    Article  CAS  Google Scholar 

  130. Kempaiah RK, Srinivasan K (2004) Antioxidant status of red blood cells and liver in hypercholesterolemic rats fed hypolipidemic spices. Int J Vitam Nutr Res 74:199–208

    Article  CAS  Google Scholar 

  131. Reddy ACP, Lokesh BR (1994) Studies on anti-inflammatory activity of spice principles and dietary n-3 polyunsaturated fatty acids on Carrageenan induced inflammation in rats. Ann Nutr Metab 38:349–358

    Article  CAS  Google Scholar 

  132. Joe B, Lokesh BR (1997) Prophylactic and therapeutic effects of n-3 PUFA, capsaicin & curcumin on adjuvant induced arthritis in rats. J Nutr Biochem 8:397–407

    Article  CAS  Google Scholar 

  133. Joe B, Lokesh BR (1997) Effect of curcumin and capsaicin on arachidonic acid metabolism and lysosomal enzyme secretion by rat peritoneal macrophages. Lipids 32:1173–1180

    Article  CAS  Google Scholar 

  134. Surh YJ, Kundu JK, Na HK, Lee JS (2005) Redox-sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidative phytochemicals. J Nutr 135(suppl):2993S–3001S

    CAS  Google Scholar 

  135. Surh YJ, Lee RC, Park KK, Mayne ST, Liem A, Miller JA (1995) Chemoprotective effects of capsaicin and diallyl sulfide against mutagenesis or tumorigenesis by vinyl carbamate and N-nitrosodimethylamine. Carcinogenesis 16:2467–2471

    Article  CAS  Google Scholar 

  136. Mori A, Lehmann S, O'Kelly J, Kumagai T, Desmond JC, Pervan M et al (2006) Capsaicin, a component of red peppers, inhibits the growth of androgen-independent, p53 mutant prostate cancer cells. Cancer Res 66:3222–3229

    Article  CAS  Google Scholar 

  137. Ito K, Nakazato T, Yamato K, Miyakawa Y, Yamada T, Hozumi N et al (2004) Induction of apoptosis in leukemic cells by homovanillic acid derivative, capsaicin, through oxidative stress: implication of phosphorylation of p53 at Ser-15 residue by reactive oxygen species. Cancer Res 64:1071–1078

    Article  CAS  Google Scholar 

  138. Archer VE, Jones DW (2002) Capsaicin pepper, cancer and ethnicity. Med Hypotheses 59:450–457

    Article  CAS  Google Scholar 

  139. Tsui H, Razavi R, Chan Y, Yantha J, Dosch HM (2007) Sensing autoimmunity in type 1 diabetes. Trends Mol Med 13:405–413

    Article  CAS  Google Scholar 

  140. Brown M, Vale W (2011) Effects of neurotensin and substance P on plasma insulin, glucagon and glucose levels. Endocrinology 98:819–822

    Article  Google Scholar 

  141. Razavi R, Chan Y, Afifiyan FN, Liu XJ, Wan X, Yantha J et al (2006) TRPV1+ sensory neurons control β-cell stress and islet inflammation in autoimmune diabetes. Cell 127:1123–1135

    Article  CAS  Google Scholar 

  142. Lejeune MPG, Eva M, Kovacs MR, Westerterp-Plantenga MS (2003) Effect of capsaicin on substrate oxidation and weight maintenance after modest body-weight loss in human subjects. Br J Nutr 90:651–659

    Article  CAS  Google Scholar 

  143. Westerterp-Plantenga MS, Smeets A, Lejeune MPG (2004) Sensory and gastrointestinal satiety effects of capsaicin on food intake. Int J Obes 29:682–688

    Article  CAS  Google Scholar 

  144. Diepvens K, Westerterp KR, Westerterp-Plantenga MS (2007) Obesity and thermogenesis related to the consumption of caffeine, ephedrine, capsaicin, and green tea. Am J Physiol Regul Integr Comp Physiol 292:R77–R85

    Article  CAS  Google Scholar 

  145. Yoneshiro T, Aita S, Kawai Y, Iwanaga T, Saito M (2012) Non-pungent capsaicin analogs (capsinoids) increase energy expenditure through the activation of brown adipose tissue in humans. Am J Clin Nutr 95:845–850

    Article  CAS  Google Scholar 

  146. Pande S, Srinivasan K (2012) Potentiation of hypolipidemic and weight reducing influence of dietary tender cluster bean (Cyamopsis tetragonoloba) by capsaicin in high-fat fed rats. J Agric Food Chem 60:8155–8162

    Article  CAS  Google Scholar 

  147. López-Carrillo L, López-Cervantes M, Robles-Díaz G, Ramírez-Espitia A, Mohar-Betancourt A, Meneses-García A et al (2003) Capsaicin consumption, Helicobacter pylori positivity and gastric cancer in Mexico. Int J Cancer 106:277–282

    Article  CAS  Google Scholar 

  148. Buiatti E, Palli D, Decarli A, Amadori D, Avellini C, Bianchi S et al (1989) A case-control study of gastric cancer and diet in Italy. Int J Cancer 44:611–616

    Article  CAS  Google Scholar 

  149. Satyanarayana MN (2006) Capsaicin and gastric ulcers. Crit Rev Food Sci Nutr 46:275–328

    Article  CAS  Google Scholar 

  150. Kang JY, Yeoh KG, Chia HP, Lee HP, Chia YW, Guan R, Yap I (1995) Chilli protective factor against peptic ulcer? Dig Dis Sci 40:576–579

    Article  CAS  Google Scholar 

  151. Jancso G, Kiraly E, Jancso-Gabor A (1977) Pharmacologically induced selective degeneration of chemosensitive primary neurones. Nature 270:741–743

    Article  CAS  Google Scholar 

  152. Park JS, Choi MA, Kim BS, Han IS, Kurata T, Yu R (2000) Capsaicin protects against ethanol-induced oxidative injury in the gastric mucosa of rats. Life Sci 67:3087–3093

    Article  CAS  Google Scholar 

  153. Deal CL (1991) Effect of topical capsaicin: a double blind trial. Clin Ther 13:383–395

    CAS  Google Scholar 

  154. McCarthy GM, McCarthy DJ (1991) Effect of topical capsaicin in the therapy of painful osteoarthritis of the hand. J Rheumatol 19:604–607

    Google Scholar 

  155. Bernstein JE (1989) Treatment of chronic post-herpetic neuralgia with topical capsaicin. Am J Dermatol 21:265–270

    Article  CAS  Google Scholar 

  156. The Capsaicin Study Group (1992) Effect of treatment with capsaicin on daily activities of patients with painful diabetic neuropathy. Diabet Care 15:159–165

    Article  Google Scholar 

  157. Derry S, Lloyd R, Moore RA, McQuay HJ (2009) Topical capsaicin for chronic neuropathic pain in adults (Review). Cochrane Database Syst Rev, Issue 4. Art. No.: CD007393

    Google Scholar 

  158. Glinski W, Glinska-Ferenz M, Pierozynska-Dubowska M (1991) Neurogenic inflammation induced by capsaicin in patients with psoriasis. Acta Derm Venereol 71:51–54

    CAS  Google Scholar 

  159. Arnold WP, van de Kerkhof PC (1993) Topical capsaicin in pruritic psoriasis. J Am Acad Dermatol 29:438–442

    Article  Google Scholar 

  160. Fraenkel L, Bogardus ST, Concato J, Wittink DR (2004) Treatment options in knee osteoarthritis: the patient’s perspective. Arch Intern Med 164:1299–1304

    Article  Google Scholar 

  161. Story GM, Crus-Orengo L (2007) Feel the burn. Am Sci 95:326–333

    Google Scholar 

  162. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  CAS  Google Scholar 

  163. Geppetti P, Nassini R, Materazzi S, Benemei S (2008) The concept of neurogenic inflammation. BJU Int 101:2–6

    Article  CAS  Google Scholar 

  164. Kissin I (2008) Vanilloid-induced conduction analgesia: selective, dose-dependent, long-lasting, with a low level of potential neurotoxicity. Anesth Analg 107:271–281

    Article  CAS  Google Scholar 

  165. Fuller RW, Dixon CMS, Barnes PJ (1985) Broncho-constrictor response to inhaled capsaicin in humans. J Appl Physiol 58:1080–1084

    Article  CAS  Google Scholar 

  166. Toth B, Gannett P (1992) Carcinogenicity of lifelong administration of capsaicin of hot pepper in mice. In Vivo 6:59–63

    CAS  Google Scholar 

  167. Philip G, Baroody FM, Proud D, Naclerio RM, Togias AG (1994) The human nasal response to capsaicin. J Allergy Clin Immunol 94:1035–1045

    Article  CAS  Google Scholar 

  168. Kawada T, Suzuki T, Takahashi M, Iwai K (1984) Gastrointestinal absorption and metabolism of capsaicin and dihydrocapsaicin in rats. Toxicol Appl Pharmacol 72:449–456

    Article  CAS  Google Scholar 

  169. Akagi A, Sano N, Uehara H, Minami T, Otsuka H, Izumi K (1998) Non-carcinogencity of capsaicinoids in B6C3F1 mice. Food Chem Toxicol 36:1065–1071

    Article  CAS  Google Scholar 

  170. Richeux R, Cascante M, Ennamany R, Sabureau D, Creppy EE (1999) Cytotoxicity and genotoxicity of capsaicin in human neuroblastoma cells SHSY-5Y. Arch Toxicol 73:403–409

    Article  CAS  Google Scholar 

  171. Chanda S, Sharper VA, Hoberman AM, Bley K (2006) Developmental toxicity study of pure trans-capsaicin in rats and rabbits. Int J Toxicol 25:205–217

    Article  CAS  Google Scholar 

  172. Reilly CA, Yost GS (2006) Metabolism of capsaicinoids by P450 enzymes: a review of recent findings on reaction mechanisms, bio-activation, and detoxification processes. Drug Metab Rev 38:685–706

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnapura Srinivasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Srinivasan, K. (2013). Biological Activities of Pepper Alkaloids. In: Ramawat, K., Mérillon, JM. (eds) Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_184

Download citation

Publish with us

Policies and ethics