Skip to main content

Biological Activities of Selected Mono- and Sesquiterpenes: Possible Uses in Medicine

  • Reference work entry
  • First Online:
Natural Products

Abstract

Reports on the biological properties of mono- and sesquiterpenes (MTs and SQTs) have been on the increase. Although MTs and SQTs are already in wide use as flavoring and antimicrobial agents in cosmetics, perfumes, household and cleansing products, and food additives, many of their pharmacological properties are yet to be discovered. Studies report on their anticancer, antiinflammatory, antinociceptive, antidiabetic, and antimicrobial activities and effects on the central nervous system that make them potential targets for development of new therapeutics and for usage for medical purposes. This chapter provides an overview of the biological activities and aromatherapeutic uses of chemical classes of MTs and SQTs, compiling the scientific achievements mainly from 2010, 2011, and the first part of 2012. Because hundreds of MTs and SQTs and their derivates exist, only some prominent representatives of MT- and SQT-hydrocarbons, -alcohols, -oxides and -carbonyls are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AC:

Adenylate cyclase

AUC:

Area under the plasma level/time curve

cAMP:

Cyclic adenosine monophosphate

CAT:

Catalase

CB receptor:

Cannabinoid receptor

CDK:

Cyclin-dependent kinase

CNS:

Central nervous system

COX:

Cyclooxygenase

CREB:

cAMP response element-binding

CYP:

Cytochrome P450

E-BCP:

(E)-β-Caryophyllene

EO:

Essential oil

ER:

Endoplasmic reticulum

ERK:

Extracellular signal-regulated kinase

GABA:

Gamma-aminobutyric acid

GI:

Gastro-intestinal

HepG2:

Human hepatocellular liver carcinoma

HMG-CoA:

3-Hydroxy-3-methylglutaryl-coenzyme A

IL:

Interleukin

JNK:

C-Jun N-terminal kinase

KATP+ :

ATP-dependent potassium channels

L-NAME:

N-(ω)-nitro-l-arginine methyl ester

LPO:

Lipid peroxidation

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

MAPK p38:

Mitogen-activated protein kinase p38

MDA:

Membrane lipid peroxidation

MPO:

Myeloperoxidase

MT:

Monoterpene

NMDA:

N-methyl-d-aspartate

NFkB:

Nuclear factor “kappa-light-chain-enhancer” of activated B-cells

NO:

Nitric oxide

NOS:

Nitric oxide synthase

PG:

Prostaglandin

ROS:

Reactive oxygen species

SOD:

Superoxide-dismutase

SQT:

Sesquiterpene

TNF-α:

Tumor necrosis factor alpha

TRP:

Transient receptor potential

TRPA1:

TRP Ankyrin 1

TRPM8:

TRP Melastatin 8

TRPV1:

TRP Vanilloid 1

References

  1. Maffei ME (2010) Sites of synthesis, biochemistry and functional role of plant volatiles. S Afr J Bot 76:612–6311

    Article  CAS  Google Scholar 

  2. Maffei ME, Gertsch J, Appendino G (2011) Plant volatiles: production, function and pharmacology. Nat Prod Rep 28:1359–1380

    Article  CAS  Google Scholar 

  3. Buchbauer G (2002) Lavender oil and its therapeutic properties. In: Lis-Balchin M (ed) Lavender. The genus Lavandula. Taylor & Francis, London/New York, pp 124–139

    Google Scholar 

  4. Buchbauer G (2010) Biological activities of essential oils. In: Baser KHC, Buchbauer G (eds) Handbook of essential oils, science, technology and applications. CRC Press/Taylor & Francis, Boca Raton/London/New York, pp 235–280

    Google Scholar 

  5. Adorjan B, Buchbauer G (2010) Biological properties of essential oils: an updated review. Flavor Fragr J 25:407–426

    Article  CAS  Google Scholar 

  6. Dobetsberger C, Buchbauer G (2011) Actions of essential oils on the central nervous system: an updated review. Flavor Fragr J 26:300–316

    CAS  Google Scholar 

  7. Lang G, Buchbauer G (2012) A review on recent research results (2008–2010) on essential oils as antimicrobials and antifungals. A review. Flavor Fragr J 27:13–39

    Article  CAS  Google Scholar 

  8. Heuberger E, Nunes DS, de Moura Linck V, da Silva AL, Figueiro M, Elisabetsky E (2010) Effects of essential oils in the central nervous system. In: Baser KHC, Buchbauer G (eds) Handbook of essential oils, science, technology and applications. CRS Press/Taylor & Francis, Boca Raton/London/New York, pp 281–314

    Google Scholar 

  9. Harris B (2010) Phytotherapeutic uses of essential oils. In: Baser KHC, Buchbauer G (eds) Handbook of essential oils, science, technology and applications. CRS Press/Taylor & Francis, Boca Raton/London/New York, pp 315–351

    Google Scholar 

  10. Müller M, Buchbauer G (2011) Essential oil components as pheromones. A review. Flavour Fragr J 26:357–377

    Article  CAS  Google Scholar 

  11. Ohloff G (1990) Riechstoffe und Geruchssinn. Die molekulare Welt der Düfte. Springer, Berlin/Heidelberg/New York, p 130

    Book  Google Scholar 

  12. Friedman L, Miller JG (1971) Odor incongruity and chirality. Science 172:1044

    Article  CAS  Google Scholar 

  13. Legrum W (2011) Riechstoffe zwischen Gestank und Duft. Vorkommen, Eigenschaften und Anwendung von Riechstoffen und deren Gemischen, Vieweg + Teubner, Wiesbaden, p 45

    Google Scholar 

  14. Roberto D, Micucci P, Sebastian T, Graciela F, Anesini C (2010) Antioxidant activity of limonene on normal murine lymphocytes: relation to H2O2 modulation and cell proliferation. Basic Clin Pharmacol Toxicol 106(1):38–44

    CAS  Google Scholar 

  15. Singh P, Shukla R, Prakash B, Kumar A, Singh S, Mishra PK, Dubey NK (2010) Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL-limonene. Food Chem Toxicol 48(6):1734–1740

    Article  CAS  Google Scholar 

  16. United States Environmental Protection Agency (1994) Prevention, pesticides and toxic substances (7508 W) EPA-738-F-94-030

    Google Scholar 

  17. Chaudhary SC, Siddiqui MS, Athar M, Alam MS (2012) d-Limonene modulates inflammation, oxidative stress and Ras-ERK pathway to inhibit murine skin tumorigenesis. Hum Exp Toxicol. doi:10.1177/0960327111434948

    Google Scholar 

  18. Victor Antony Santiago J, Jayachitra J, Shenbagam M, Nalini N (2012) Dietary d-limonene alleviates insulin resistance and oxidative stress-induced liver injury in high-fat diet and L-NAME-treated rats. Eur J Nutr 51(1):57–68

    Article  CAS  Google Scholar 

  19. Park HM, Lee JH, Yaoyao J, Jun HJ, Lee SJ (2011) Limonene, a natural cyclic terpene, is an agonistic ligand for adenosine A(2A) receptors. Biochem Biophys Res Commun 404(1):345–348

    Article  CAS  Google Scholar 

  20. Fletcher WR, Lea Sanford R, Kapoor R, Andersen OS (2011) Limonene, a natural cyclic terpene, is an agonistic ligand for adenosine A(2A) receptors. Biophys J 100(3 Suppl 1):500a

    Article  Google Scholar 

  21. Komori T, Fujiwara R, Tanida M, Nomura J (1995) Potential antidepressant effects of lemon odor in rats. J Eur Neuropsychopharmacol 5(4):477–480

    CAS  Google Scholar 

  22. de Almeida AA, Costa JP, de Carvalho RB, de Sousa DP, de Freitas RM (2012) Evaluation of acute toxicity of a natural compound (+)-limonene epoxide and its anxiolytic-like action. Brain Res 1448:56–62

    Article  CAS  Google Scholar 

  23. Gertsch J, Leonti M, Raduner S, Racz I, Chen JZ, Xie XQ, Altmann KH, Karsak M, Zimmer A (2008) Beta-caryophyllene is a dietary cannabinoid. Proc Natl Acad Sci USA 105(26):9099–9104

    Article  CAS  Google Scholar 

  24. Reinsvold RE, Jinkerson RE, Radakovits R, Posewitz MC, Basu C (2011) The production of the sesquiterpene β-caryophyllene in a transgenic strain of the cyanobacterium Synechocystis. J Plant Physiol 168(8):848–852

    Article  CAS  Google Scholar 

  25. Sharma GD, He J, Bazan HE (2003) p38 and ERK1/2 coordinate cellular migration and proliferation in epithelial wound healing: evidence of cross-talk activation between MAP kinase cascades. J Biol Chem 278(24):21989–21997

    Article  CAS  Google Scholar 

  26. Horváth B, Mukhopadhyay P, Kechrid M, Patel V, Tanchian G, Wink DA, Gertsch J, Pacher P (2012) β-Caryophyllene ameliorates cisplatin-induced nephrotoxicity in a cannabinoid 2 receptor-dependent manner. Free Radic Biol Med 52(8):1325–1333

    Article  CAS  Google Scholar 

  27. Bento AF, Marcon R, Dutra RC, Claudino RF, Cola M, Leite DF, Calixto JB (2011) β-Caryophyllene inhibits dextran sulfate sodium-induced colitis in mice through CB2 receptor activation and PPARγ pathway. Am J Pathol 178(3):1153–1166

    Article  CAS  Google Scholar 

  28. Leonhardt V, Leal-Cardoso JH, Lahlou S, Albuquerque AA, Porto RS, Celedônio NR, Oliveira AC, Pereira RF, Silva LP, Garcia-Teófilo TM, Silva AP, Magalhães PJ, Duarte GP, Coelho-de-Souza AN (2010) Antispasmodic effects of essential oil of Pterodon polygalaeflorus and its main constituent β-caryophyllene on rat isolated ileum. Fundam Clin Pharmacol 24(6):749–758

    Article  CAS  Google Scholar 

  29. Di Sotto A, Evandri MG, Mazzanti G (2008) Antimutagenic and mutagenic activities of some terpenes in the bacterial reverse mutation assay. Mutat Res 653(1–2):130–133

    Google Scholar 

  30. Legault J, Pichette A (2007) Potentiating effect of beta-caryophyllene on anticancer activity of alpha-humulene, isocaryophyllene and paclitaxel. J Pharm Pharmacol 59(12):1643–1647

    Article  CAS  Google Scholar 

  31. Di Sotto A, Mazzanti G, Carbone F, Hrelia P, Maffei F (2010) Inhibition by beta-caryophyllene of ethyl methanesulfonate-induced clastogenicity in cultured human lymphocytes. Mutat Res 699(1–2):23–28

    Google Scholar 

  32. Neuenschwander U, Czarniecki B, Hermans I (2012) Origin of regioselectivity in α-humulene functionalization. J Org Chem 77(6):2865–2869

    Article  CAS  Google Scholar 

  33. Nissen L, Zatta A, Stefanini I, Grandi S, Sgorbati B, Biavati B, Monti A (2010) Characterization and antimicrobial activity of essential oils of industrial hemp varieties (Cannabis sativa L.). Fitoterapia 81(5):413–419

    Article  CAS  Google Scholar 

  34. Chaves JS, Leal PC, Pianowisky L, Calixto JB (2008) Pharmacokinetics and tissue distribution of the sesquiterpene alpha-humulene in mice. Planta Med 74(14):1678–1683

    Article  CAS  Google Scholar 

  35. Fernandes ES, Passos GF, Medeiros R, da Cunha FM, Ferreira J, Campos MM, Pianowski LF, Calixto JB (2007) Anti-inflammatory effects of compounds alpha-humulene and (−)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. Eur J Pharmacol 569(3):228–236

    Article  CAS  Google Scholar 

  36. Rogerio AP, Andrade EL, Leite DF, Figueiredo CP, Calixto JB (2009) Preventive and therapeutic anti-inflammatory properties of the sesquiterpene alpha-humulene in experimental airways allergic inflammation. Br J Pharmacol 158(4):1074–1087

    Article  CAS  Google Scholar 

  37. El Hadri A, Gomez del Rio MA, Sanz J, Coloma AG, Idaomar M, Ozonas BR, Gonzalez JB, Sanchez Reus MI (2010) Actividad citotóxica del α-humuleno y del tras-cariofileno de Salvia officinalis en dos líneas celulares tumorales animal y humana. Anales de la Real Academia Nacional de Farmacia 76(3):343–356

    CAS  Google Scholar 

  38. Behr A, Johnen L (2009) Myrcene as a natural base chemical in sustainable chemistry: a critical review. ChemSusChem 2(12):1072–1095

    Article  CAS  Google Scholar 

  39. Chan PC, Cesta MF, Sills RC, Bishop JB, Bristol DW, Bucher JR, Chhabra RS, Foster PM, Herbert RA, Hooth MJ, King-Herbert AP, Kissling GE, Malarkey DE, Roycroft JH, Sanders JM, Smith CS, Travlos GS, Walker NJ, Witt KL (2010) NTP technical report on the toxicology and carcinogenesis studies of beta-myrcene (CAS No. 123-35-3) in F344/N rats and B6C3F1 mice (Gavage studies). Natl Toxicol Program Tech Rep Ser 557:1–163

    Google Scholar 

  40. Galeotti N, Di Cesare Mannelli L, Mazzanti G, Bartolini A, Ghelardini C (2002) Menthol: a natural analgesic compound. Neurosci Lett 322(3):145–148

    Article  CAS  Google Scholar 

  41. Kahnert S, Nair U, Mons U, Pötschke-Langer M (2012) Effects of menthol as an additive in tobacco products and the need for regulation. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 55(3):409–415

    Article  CAS  Google Scholar 

  42. Willis DN, Liu B, Ha MA, Jordt SE, Morris JB (2011) Menthol attenuates respiratory irritation responses to multiple cigarette smoke irritants. FASEB J 25(12):4434–4444

    Article  CAS  Google Scholar 

  43. Abobo CV, Ma J, Liang D (2012) Effect of menthol on nicotine pharmacokinetics in rats after cigarette smoke inhalation. Nicotine Tob Res 14(7):801–808

    Google Scholar 

  44. Kreslake JM, Yerger VB (2010) Tobacco industry knowledge of the role of menthol in chemosensory perception of tobacco smoke. Nicotine Tob Res 12(Suppl 2):S98–S101

    Article  Google Scholar 

  45. Kim SH, Nam JH, Park EJ, Kim BJ, Kim SJ, So I, Jeon JH (2009) Menthol regulates TRPM8-independent processes in PC-3 prostate cancer cells. Biochim Biophys Acta 1792(1):33–38

    Article  CAS  Google Scholar 

  46. Bhadania M, Joshi H, Patel P, Kulkarni VH (2012) Protective effect of menthol on β-amyloid peptide induced cognitive deficits in mice. Eur J Pharmacol 681(1–3):50–54

    Article  CAS  Google Scholar 

  47. Hiki N, Kaminishi M, Hasunuma T, Nakamura M, Nomura S, Yahagi N, Tajiri H, Suzuki H (2011) A phase I study evaluating tolerability, pharmacokinetics, and preliminary efficacy of L-menthol in upper gastrointestinal endoscopy. Clin Pharmacol Ther 90(2):221–228

    Article  CAS  Google Scholar 

  48. Topp R, Winchester LJ, Schilero J, Jacks D (2011) Effect of topical menthol on ipsilateral and contralateral superficial blood flow following a bout of maximum voluntary muscle contraction. Int J Sports Phys Ther 6(2):83–91

    Google Scholar 

  49. Topp R, Winchester L, Mink AM, Kaufman JS, Jacks DE (2011) Comparison of the effects of ice and 3.5 % menthol gel on blood flow and muscle strength of the lower arm. J Sport Rehabil 20(3):355–366

    Google Scholar 

  50. Braca A, Siciliano T, D'Arrigo M, Germanò MP (2008) Chemical composition and antimicrobial activity of Momordica charantia seed essential oil. Fitoterapia 79(2):123–125

    Article  CAS  Google Scholar 

  51. Péres VF, Moura DJ, Sperotto AR, Damasceno FC, Caramão EB, Zini CA, Saffi J (2009) Chemical composition and cytotoxic, mutagenic and genotoxic activities of the essential oil from Pipergaudichaudianum Kunth leaves. Food Chem Toxicol 47(9):2389–2395

    Article  CAS  Google Scholar 

  52. Marques AM, Barreto AL, Batista EM, Curvelo JA, Velozo LS, Moreira Dde L, Guimarães EF, Soares RM, Kaplan MA (2010) Chemistry and biological activity of essential oils from Piper claussenianum (Piperaceae). Nat Prod Commun 5(11):1837–1840

    CAS  Google Scholar 

  53. Lapczynski A, Bhatia SP, Letizia CS, Api AM (2008) Fragrance material review on nerolidol (isomer unspecified). Food Chem Toxicol 46(Suppl 11):S247–S250

    Article  CAS  Google Scholar 

  54. Williams AC, Barry BW (2004) Penetration enhancers. Adv Drug Deliv Rev 56(5):603–618

    Article  CAS  Google Scholar 

  55. Cornwell PA, Barry BW, Bouwstrab JA, Gooris GS (1996) Modes of action of terpene penetration enhancers in human skin differential scanning calorimetry, small-angle X-ray diffraction and enhancer uptake studies. Int J Pharm 127(1):9–26

    Article  CAS  Google Scholar 

  56. Wattenberg LW (1991) Inhibition of azoxymethane-induced neoplasia of the large bowel by 3-hydroxy-3,7,11-trimethyl-1,6,10-dodecatriene (nerolidol). Carcinogenesis 12(1):151–152

    Article  CAS  Google Scholar 

  57. Inoue Y, Shiraishi A, Hada T, Hirose K, Hamashima H, Shimada J (2004) The antibacterial effects of terpene alcohols on Staphylococcus aureus and their mode of action. FEMS Microbiol Lett 237(2):325–331

    CAS  Google Scholar 

  58. Lee SJ, Han JI, Lee GS, Park MJ, Choi IG, Na KJ, Jeung EB (2007) Antifungal effect of eugenol and nerolidol against Microsporum gypseum in a guinea pig model. Biol Pharm Bull 30(1):184–188

    Article  CAS  Google Scholar 

  59. Arruda DC, D'Alexandri FL, Katzin AM, Uliana SR (2005) Antileishmanial activity of the terpene nerolidol. Antimicrob Agents Chemother 49(5):1679–1687

    Article  CAS  Google Scholar 

  60. Klopell FC, Lemos M, Sousa JP, Comunello E, Maistro EL, Bastos JK, de Andrade SF (2007) Nerolidol, an antiulcer constituent from the essential oil of Baccharis dracunculifolia DC (Asteraceae). Z Naturforsch C 62(7–8):537–542

    CAS  Google Scholar 

  61. Hollis J (2009) Biopesticides registration action document. Farnesol Nerolidol

    Google Scholar 

  62. Ferreira FM, Palmeira CM, Oliveira MM, Santos D, Simões AM, Rocha SM, Coimbra MA, Peixoto F (2012) Nerolidol effects on mitochondrial and cellular energetics. Toxicol In Vitro 26(2):189–196

    Article  CAS  Google Scholar 

  63. Pículo F, Guiraldeli Macedo C, de Andrade SF, Luis Maistro E (2011) In vivo genotoxicity assessment of nerolidol. J Appl Toxicol 31(7):633–639

    Article  CAS  Google Scholar 

  64. Pammi M, Liang R, Hicks JM, Barrish J, Versalovic J (2011) Farnesol decreases biofilms of Staphylococcus epidermidis and exhibits synergy with nafcillin and vancomycin. Pediatr Res 70(6):578–583

    Article  CAS  Google Scholar 

  65. Décanis N, Tazi N, Correia A, Vilanova M, Rouabhia M (2011) Farnesol, a fungal quorum-sensing molecule triggers Candida albicans morphological changes by downregulating the expression of different secreted aspartyl proteinase genes. Open Microbiol J 5:119–126

    Article  CAS  Google Scholar 

  66. Meigs TE, Simoni RD (1997) Farnesol as a regulator of HMG-CoA reductase degradation: characterization and role of farnesyl pyrophosphatase. Arch Biochem Biophys 345(1):1–9

    Article  CAS  Google Scholar 

  67. Joo JH, Jetten AM (2010) Molecular mechanisms involved in farnesol-induced apoptosis. Cancer Lett 287(2):123–135

    Article  CAS  Google Scholar 

  68. Qamar W, Khan AQ, Khan R, Lateef A, Tahir M, Rehman MU, Ali F, Sultana S (2012) Benzo(a)pyrene-induced pulmonary inflammation, edema, surfactant dysfunction, and injuries in rats: alleviation by farnesol. Exp Lung Res 38(1):19–27

    Article  CAS  Google Scholar 

  69. Khan R, Sultana S (2011) Farnesol attenuates 1,2-dimethylhydrazine induced oxidative stress, inflammation and apoptotic responses in the colon of Wistar rats. Chem Biol Interact 192(3)

    Google Scholar 

  70. de Oliveira Júnior WM, Benedito RB, Pereira WB, de Arruda Torres P, Ramos CA, Costa JP, da Rocha Tomé A, de Sousa DP, de Freitas RM, de Fatima Formiga Melo Diniz M, de Almeida RN (2012) Farnesol: antinociceptive effect and histopathological analysis of the striatum and hippocampus of mice. Fundam Clin Pharmacol. doi:10.1111/j.1472-8206.2012.01030.x

    Google Scholar 

  71. Duncan RE, Archer MC (2008) Farnesol decreases serum triglycerides in rats: identification of mechanisms including up-regulation of PPARalpha and down-regulation of fatty acid synthase in hepatocytes. Lipids 43(7):619–627

    Article  CAS  Google Scholar 

  72. Goto T, Kim YI, Funakoshi K, Teraminami A, Uemura T, Hirai S, Lee JY, Makishima M, Nakata R, Inoue H, Senju H, Matsunaga M, Horio F, Takahashi N, Kawada T (2011) Am J Farnesol, an isoprenoid, improves metabolic abnormalities in mice via both PPARα-dependent and -independent pathways. Physiol Endocrinol Metab 301(5):E1022–E1032

    Article  CAS  Google Scholar 

  73. Cavanagh HMA, Wilkinson JM (2002) Biological activities of lavender essential oil. Phytother Res 16:301–308

    Article  CAS  Google Scholar 

  74. Linck VM, da Silva AL, Figueiró M, Caramão EB, Moreno PR, Elisabetsky E (2010) Effects of inhaled Linalool in anxiety, social interaction and aggressive behavior in mice. Phytomedicine 17(8–9):679–683

    Article  CAS  Google Scholar 

  75. Takahashi M, Satou T, Ohashi M, Hayashi S, Sadamoto K, Koike K (2011) Interspecies comparison of chemical composition and anxiolytic-like effects of lavender oils upon inhalation. Nat Prod Commun 6(11):1769–1774

    CAS  Google Scholar 

  76. Coelho VR, Gianesini J, Von Borowski R, Mazzardo-Martins L, Martins DF, Picada JN, Santos AR, Brum LF, Pereira P (2011) (−)-Linalool, a naturally occurring monoterpene compound, impairs memory acquisition in the object recognition task, inhibitory avoidance test and habituation to a novel environment in rats. Phytomedicine 18(10):896–901

    Article  CAS  Google Scholar 

  77. Sampaio Lde F, Maia JG, de Parijós AM, de Souza RZ, Barata LE (2012) Linalool from rosewood (Aniba rosaeodora Ducke) oil inhibits adenylate cyclase in the retina, contributing to understanding its biological activity. Phytother Res 26(1):73–77

    Article  CAS  Google Scholar 

  78. de Sousa DP, Nóbrega FF, Santos CC, de Almeida RN (2010) Anticonvulsant activity of the linalool enantiomers and racemate: investigation of chiral influence. Nat Prod Commun 5(12):1847–1851

    Google Scholar 

  79. Cho SY, Jun HJ, Lee JH, Jia Y, Kim KH, Lee SJ (2011) Linalool reduces the expression of 3-hydroxy-3-methylglutaryl CoA reductase via sterol regulatory element binding protein-2- and ubiquitin-dependent mechanisms. FEBS Lett 585(20):3289–3296

    Article  CAS  Google Scholar 

  80. Gu Y, Ting Z, Qiu X, Zhang X, Gan X, Fang Y, Xu X, Xu R (2010) Linalool preferentially induces robust apoptosis of a variety of leukemia cells via upregulating p53 and cyclin-dependent kinase inhibitors. Toxicology 268(1–2):19–24

    Article  CAS  Google Scholar 

  81. Rocha NF, Rios ER, Carvalho AM, Cerqueira GS, Lopes Ade A, Leal LK, Dias ML, de Sousa DP, de Sousa FC (2011) Anti-nociceptive and anti-inflammatory activities of (−)-α-bisabolol in rodents. Naunyn Schmiedebergs Arch Pharmacol 384(6):525–533

    Article  CAS  Google Scholar 

  82. Seki T, Kokuryo T, Yokoyama Y, Suzuki H, Itatsu K, Nakagawa A, Mizutani T, Miyake T, Uno M, Yamauchi K, Nagino M (2011) Antitumor effects of α-bisabolol against pancreatic cancer. Cancer Sci 102(12):2199–2205. doi:10.1111/j.1349-7006.2011.02082

    Article  CAS  Google Scholar 

  83. Moura Rocha NF, Venâncio ET, Moura BA, Gomes Silva MI, Aquino Neto MR, Vasconcelos Rios ER, de Sousa DP, Mendes Vasconcelos SM, de França Fonteles MM, de Sousa FC (2010) Gastroprotection of (−)-alpha-bisabolol on acute gastric mucosal lesions in mice: the possible involved pharmacological mechanisms. Fundam Clin Pharmacol 24(1):63–71

    Article  CAS  Google Scholar 

  84. Rocha NF, Oliveira GV, Araújo FY, Rios ER, Carvalho AM, Vasconcelos LF, Macêdo DS, Soares PM, Sousa DP, Sousa FC (2011) (−)-α-Bisabolol-induced gastroprotection is associated with reduction in lipid peroxidation, superoxide dismutase activity and neutrophil migration. Eur J Pharm Sci 44(4):455–461

    Article  CAS  Google Scholar 

  85. Cavalieri E, Rigo A, Bonifacio M, Carcereri de Prati A, Guardalben E, Bergamini C, Fato R, Pizzolo G, Suzuki H, Vinante F (2011) Pro-apoptotic activity of α-bisabolol in preclinical models of primary human acute leukemia cells. J Transl Med 21:9–45

    Google Scholar 

  86. De Siqueira RJ, Freire WB, Vasconcelos-Silva AA, Fonseca-Magalhães PA, Lima FJ, Brito TS, Mourão LT, Ribeiro RA, Lahlou S, Magalhães PJ (2012) In-vitro characterization of the pharmacological effects induced by (−)-α-bisabolol in rat smooth muscle preparations. Can J Physiol Pharmacol 90(1):23–35

    Article  Google Scholar 

  87. Alves Ade M, Gonçalves JC, Cruz JS, Araújo DA (2010) Evaluation of the sesquiterpene (−)-alpha-bisabolol as a novel peripheral nervous blocker. Neurosci Lett 472(1):11–15

    Article  CAS  Google Scholar 

  88. Jayakumar S, Madankumar A, Asokkumar S, Raghunandhakumar S, Gokula Dhas K, Kamaraj S, Divya MG, Devaki T (2012) Potential preventive effect of carvacrol against diethylnitrosamine-induced hepatocellular carcinoma in rats. Mol Cell Biochem 360(1–2):51–60

    Article  CAS  Google Scholar 

  89. Austgulen LT, Solheim E, Scheline RR (1987) Metabolism in rats of p-cymene derivatives: carvacrol and thymol. Pharmacol Toxicol 61(2):98–102

    Article  CAS  Google Scholar 

  90. Xu H, Delling M, Jun JC, Clapham DE (2006) Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat Neurosci 9(5):628–635

    Article  CAS  Google Scholar 

  91. Parnas M, Peters M, Dadon D, Lev S, Vertkin I, Slutsky I, Minke B (2009) Carvacrol is a novel inhibitor of Drosophila TRPL and mammalian TRPM7 channels. Cell Calcium 45(3):300–309

    Article  CAS  Google Scholar 

  92. Hotta M, Nakata R, Katsukawa M, Hori K, Takahashi S, Inoue H (2010) Carvacrol, a component of thyme oil, activates PPARalpha and gamma and suppresses COX-2 expression. J Lipid Res 51(1):132–139

    Article  CAS  Google Scholar 

  93. Liu Y, Song M, Che TM, Bravo D, Pettigrew JE (2012) Anti-inflammatory effects of several plant extracts on porcine alveolar macrophages in vitro. J Anim Sci. doi:10.2527/jas.2011-4304

    Google Scholar 

  94. Guimarães AG, Xavier MA, de Santana MT, Camargo EA, Santos CA, Brito FA, Barreto EO, Cavalcanti SC, Antoniolli AR, Oliveira RC, Quintans-Júnior LJ (2012) Carvacrol attenuates mechanical hypernociception and inflammatory response. Naunyn Schmiedebergs Arch Pharmacol 385(3):253–263

    Article  CAS  Google Scholar 

  95. Boskabady MH, Tabanfar H, Gholamnezhad Z, Sadeghnia HR (2011) Inhibitory effect of Zataria multiflora Boiss and carvacrol on histamine (H(1) ) receptors of guinea-pig tracheal chains. Fundam Clin Pharmacol. doi:10.1111/j.1472-8206.2011.00971.x

    Google Scholar 

  96. Aristatile B, Al-Numair KS, Al-Assaf AH, Pugalendi KV (2011) Pharmacological effect of carvacrol on D:-galactosamine-induced mitochondrial enzymes and DNA damage by single-cell gel electrophoresis. J Nat Med 65(3–4):568–577

    Article  CAS  Google Scholar 

  97. Yin QH, Yan FX, Zu XY, Wu YH, Wu XP, Liao MC, Deng SW, Yin LL, Zhuang YZ (2012) Anti-proliferative and pro-apoptotic effect of carvacrol on human hepatocellular carcinoma cell line HepG-2. Cytotechnology 64(1):43–51

    Article  CAS  Google Scholar 

  98. Dong RH, Fang ZZ, Zhu LL, Liang SC, Ge GB, Yang L, Liu ZY (2012) Investigation of UDP-glucuronosyltransferases (UGTs) inhibitory properties of carvacrol. Phytother Res 26(1):86–90. doi:10.1002/ptr.3525

    Article  CAS  Google Scholar 

  99. Yu H, Zhang ZL, Chen J, Pei A, Hua F, Qian X, He J, Liu CF, Xu X (2012) Carvacrol, a food-additive, provides neuroprotection on focal cerebral ischemia/reperfusion injury in mice. PLoS One 7(3):e33584

    Article  CAS  Google Scholar 

  100. Azizi Z, Ebrahimi S, Saadatfar E, Kamalinejad M, Majlessi N (2012) Cognitive-enhancing activity of thymol and carvacrol in two rat models of dementia. Behav Pharmacol 23(3):241–249

    Article  CAS  Google Scholar 

  101. Nostro A, Papalia T (2012) Antimicrobial activity of carvacrol: current progress and future prospectives. Recent Pat Antiinfect Drug Discov 7(1):28–35

    Article  CAS  Google Scholar 

  102. Inamuco J, Veenendaal AK, Burt SA, Post JA, Tjeerdsma-van Bokhoven JL, Haagsman HP, Veldhuizen EJ (2011) Sub-lethal levels of carvacrol reduce Salmonella Typhimurium motility and invasion of porcine epithelial cells. Vet Microbiol 157(1–2):200–207

    Google Scholar 

  103. Archana PR, Nageshwar Rao B, Satish Rao BS (2011) Modulation of gamma ray-induced genotoxic effect by thymol, a monoterpene phenol derivative of cymene. Integr Cancer Ther 10(4):374–383

    Article  CAS  Google Scholar 

  104. Satooka H, Kubo I (2012) Effects of thymol on b16-f10 melanoma cells. J Agric Food Chem 60(10):2746–2752

    Article  CAS  Google Scholar 

  105. Kaji I, Karaki S, Kuwahara A (2011) Effects of luminal thymol on epithelial transport in human and rat colon. Am J Physiol Gastrointest Liver Physiol 300(6):G1132–G1143

    Article  CAS  Google Scholar 

  106. Engelbertz J, Lechtenberg M, Studt L, Hensel A, Verspohl EJ (2012) Bioassay-guided fractionation of a thymol-deprived hydrophilic thyme extract and its antispasmodic effect. J Ethnopharmacol 141(3):848–853

    Article  CAS  Google Scholar 

  107. Xuan NT, Shumilina E, Schmid E, Bhavsar SK, Rexhepaj R, Götz F, Gulbins E, Lang F (2010) Role of acidic sphingomyelinase in thymol-mediated dendritic cell death. Mol Nutr Food Res 54(12):1833–1841

    Article  CAS  Google Scholar 

  108. Hsu SS, Lin KL, Chou CT, Chiang AJ, Liang WZ, Chang HT, Tsai JY, Liao WC, Huang FD, Huang JK, Chen IS, Liu SI, Kuo CC, Jan CR (2011) Effect of thymol on Ca2+ homeostasis and viability in human glioblastoma cells. Eur J Pharmacol 670(1):85–91

    Article  CAS  Google Scholar 

  109. Chang HT, Hsu SS, Chou CT, Cheng JS, Wang JL, Lin KL, Fang YC, Chen WC, Chien JM, Lu T, Pan CC, Cheng HH, Huang JK, Kuo CC, Chai KL, Jan CR (2011) Effect of thymol on Ca2+ homeostasis and viability in MG63 human osteosarcoma cells. Pharmacology 88(3–4):201–212

    Article  CAS  Google Scholar 

  110. Satooka H, Kubo I (2011) Effects of thymol on mushroom tyrosinase-catalyzed melanin formation. J Agric Food Chem 59(16):8908–8914

    Article  CAS  Google Scholar 

  111. Deb DD, Parimala G, Saravana Devi S, Chakraborty T (2011) Effect of thymol on peripheral blood mononuclear cell PBMC and acute promyelotic cancer cell line HL-60. Chem Biol Interact 193(1):97–106

    Article  CAS  Google Scholar 

  112. Archana PR, Nageshwar Rao B, Satish Rao BS (2011) In vivo radioprotective potential of thymol, a monoterpene phenol derivative of cymene. Mutat Res 726(2):136–145

    Article  CAS  Google Scholar 

  113. Garcia DG, Amorim LM, de Castro Faria MV, Freire AS, Santelli RE, Da Fonseca CO, Quirico-Santos T, Burth P (2010) The anticancer drug perillyl alcohol is a Na/K-ATPase inhibitor. Mol Cell Biochem 345(1–2):29–34

    Article  CAS  Google Scholar 

  114. da Fonseca CO, Simão M, Lins IR, Caetano RO, Futuro D, Quirico-Santos T (2011) Efficacy of monoterpene perillyl alcohol upon survival rate of patients with recurrent glioblastoma. J Cancer Res Clin Oncol 137(2):287–293

    Article  CAS  Google Scholar 

  115. da Fonseca CO, Schwartsmann G, Fischer J, Nagel J, Futuro D, Quirico-Santos T, Gattass CR (2008) Preliminary results from a phase I/II study of perillyl alcohol intranasal administration in adults with recurrent malignant gliomas. Surg Neurol 70(3):259–266, Discussion 266–7

    Article  Google Scholar 

  116. de Saldanha da Gama Fischer J, Costa Carvalho P, da Fonseca CO, Liao L, Degrave WM, da Gloria da Costa Carvalho M, Yates JR, Domont GB (2011) Chemo-resistant protein expression pattern of glioblastoma cells (A172) to perillyl alcohol. J Proteome Res 10(1):153–160

    Article  CAS  Google Scholar 

  117. da Silveira FD, Lopes BD, da Fonseca CO, Quirico-Santos T, de Palmer Paixão IC, de Amorim LM (2012) Analysis of EGF + 61A > G polymorphism and EGF serum levels in Brazilian glioma patients treated with perillyl alcohol-based therapy. J Cancer Res Clin Oncol. doi:10.1007/s00432-012-1203-5

    Google Scholar 

  118. Khan AQ, Nafees S, Sultana S (2011) Perillyl alcohol protects against ethanol induced acute liver injury in Wistar rats by inhibiting oxidative stress, NFκ-B activation and proinflammatory cytokine production. Toxicology 279(1–3):108–114

    Article  CAS  Google Scholar 

  119. Kirsch F, Beauchamp J, Buettner A (2012) Time-dependent aroma changes in breast milk after oral intake of a pharmacological preparation containing 1,8-cineole. Clin Nutr

    Google Scholar 

  120. Datenblatt Merck’s 1,8-cineole data sheet, called up 3.5.2012

    Google Scholar 

  121. Juergens UR, Dethlefsen U, Steinkamp G, Gillissen A, Repges R, Vetter H (2003) Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: a double-blind placebo-controlled trial. Respir Med 97(3):250–256

    Article  CAS  Google Scholar 

  122. Juergens UR, Engelen T, Racké K, Stöber M, Gillissen A, Vetter H (2004) Inhibitory activity of 1,8-cineol (eucalyptol) on cytokine production in cultured human lymphocytes and monocytes. Pulm Pharmacol Ther 17(5):281–287

    Article  CAS  Google Scholar 

  123. Worth H, Schacher C, Dethlefsen U (2009) Concomitant therapy with Cineole (Eucalyptole) reduces exacerbations in COPD: a placebo-controlled double-blind trial. Respir Res 10:69

    Article  CAS  Google Scholar 

  124. Rahimi-Nasrabadi M, Ahmadi F, Batooli H (2012) Chemical composition of essential oil and in vitro antioxidant activities of the essential oil and methanol extracts of Eucalyptus loxophleba. Nat Prod Res 26(7):669–674

    Article  CAS  Google Scholar 

  125. Culić M, Keković G, Grbić G, Martać L, Soković M, Podgorac J, Sekulić S (2009) Wavelet and fractal analysis of rat brain activity in seizures evoked by camphor essential oil and 1,8-cineole. Gen Physiol Biophys 28:33–40

    Google Scholar 

  126. Yoshimura H, Sawai Y, Tamotsu S, Sakai A (2011) 1,8-cineole inhibits both proliferation and elongation of BY-2 cultured tobacco cells. J Chem Ecol 37(3):320–328

    Article  CAS  Google Scholar 

  127. Tomsheck AR, Strobel GA, Booth E, Geary B, Spakowicz D, Knighton B, Floerchinger C, Sears J, Liarzi O, Ezra D (2010) Hypoxylon sp., an endophyte of Persea indica, producing 1,8-cineole and other bioactive volatiles with fuel potential. Microb Ecol 60(4):903–914

    Article  CAS  Google Scholar 

  128. Alkhateeb H, Bonen A (2010) Thujone, a component of medicinal herbs, rescues palmitate-induced insulin resistance in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 299(3):R804–R812

    Article  CAS  Google Scholar 

  129. Lachenmeier DW, Uebelacker M (2010) Risk assessment of thujone in foods and medicines containing sage and wormwood–evidence for a need of regulatory changes? Regul Toxicol Pharmacol 3:437–443

    Article  CAS  Google Scholar 

  130. Raal A, Orav A, Arak E (2007) Composition of the essential oil of Salvia officinalis L. from various European countries. Nat Prod Res 21(5):406–411

    Article  CAS  Google Scholar 

  131. National Toxicology Program (2011) Toxicology and carcinogenesis studies of alpha, beta-thujone (CAS No. 76231–76–0) in F344/N rats and B6C3F1 mice (gavage studies). Natl Toxicol Program Tech Rep Ser 570:1–260

    Google Scholar 

  132. Abass K, Reponen P, Mattila S, Pelkonen O (2011) Metabolism of α-thujone in human hepatic preparations in vitro. Xenobiotica 41(2):101–111

    Article  CAS  Google Scholar 

  133. Szczot M, Czyzewska MM, Appendino G, Mozrzymas JW (2012) Modulation of GABAergic synaptic currents and current responses by α-thujone and dihydroumbellulone. J Nat Prod 75(4):622–629

    Article  CAS  Google Scholar 

  134. Biswas R, Mandal SK, Dutta S, Bhattacharyya SS, Boujedaini N, Khuda-Bukhsh AR (2011) Thujone-rich fraction of Thuja occidentalis demonstrates major anti-cancer potentials: evidences from in vitro studies on A375 cells. Evid Based Complement Altern Med 2011:568148

    Google Scholar 

  135. Siveen KS, Kuttan G (2011) Thujone inhibits lung metastasis induced by B16F-10 melanoma cells in C57BL/6 mice. Can J Physiol Pharmacol 89(10):691–703

    Article  CAS  Google Scholar 

  136. Laciar A, Ruiz ML, Flores RC, Saad JR (2009) Antibacterial and antioxidant activities of the essential oil of Artemisia echegarayi Hieron. (Asteraceae). Rev Argent Microbiol 41(4):226–231

    CAS  Google Scholar 

  137. Jankelowitz S, Mohamed A, Burke D (2009) Axonal effects of camphor poisoning. J Clin Neurosci 16(12):1639–1641

    Article  Google Scholar 

  138. Kumar M, Ando Y (2007) Carbon nanotubes from camphor: an environment-friendly nanotechnology. J Phys Conf Ser 61:643. doi:10.1088/1742-6596/61/1/129

    Article  CAS  Google Scholar 

  139. Pearce JM (2008) Leopold Auenbrugger: camphor-induced epilepsy - remedy for manic psychosis. Eur Neurol 59(1–2):105–107

    Article  CAS  Google Scholar 

  140. Peters AL, Dekker E, Michels WM (2011) Camphor poisoning following ingestion of mothballs ‘for headache’. Ned Tijdschr Geneeskd 155(42):A3676

    Google Scholar 

  141. Moqrich A, Hwang SW, Earley TJ, Petrus MJ, Murray AN, Spencer KS, Andahazy M, Story GM, Patapoutian A (2005) Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307(5714):1468–1472

    Article  CAS  Google Scholar 

  142. Marsakova L, Touska F, Krusek J, Vlachova V (2012) Pore helix domain is critical to camphor sensitivity of transient receptor potential vanilloid 1 channel. Anesthesiology 116(4):903–917

    Article  CAS  Google Scholar 

  143. Nikolić B, Mitić-Ćulafić D, Vuković-Gačić B, Knežević-Vukčević J (2011) Modulation of genotoxicity and DNA repair by plant monoterpenes camphor, eucalyptol and thujone in Escherichia coli and mammalian cells. J Food Chem Toxicol 49(9):2035–2045

    Article  CAS  Google Scholar 

  144. Modak T, Mukhopadhaya A (2011) Effects of citral, a naturally occurring antiadipogenic molecule, on an energy-intense diet model of obesity. Indian J Pharmacol 43(3):300–305

    Article  Google Scholar 

  145. Devi RC, Sim SM, Ismail R (2011) Spasmolytic effect of citral and extracts of Cymbopogon citratus on isolated rabbit ileum. J Smooth Muscle Res 47(5):143–156

    Article  Google Scholar 

  146. Katsukawa M, Nakata R, Takizawa Y, Hori K, Takahashi S, Inoue H (2010) Citral, a component of lemongrass oil, activates PPARα and γ and suppresses COX-2 expression. Biochim Biophys Acta 1801(11):1214–1220

    Article  CAS  Google Scholar 

  147. Bachiega TF, Sforcin JM (2011) Lemongrass and citral effect on cytokines production by murine macrophages. J Ethnopharmacol 137(1):909–913

    Article  Google Scholar 

  148. Ortiz MI, González-García MP, Ponce-Monter HA, Castañeda-Hernández G, Aguilar-Robles P (2010) Synergistic effect of the interaction between naproxen and citral on inflammation in rats. Phytomedicine 18(1):74–79

    Article  CAS  Google Scholar 

  149. Chaimovitsh D, Rogovoy Stelmakh O, Altshuler O, Belausov E, Abu-Abied M, Rubin B, Sadot E, Dudai N (2012) The relative effect of citral on mitotic microtubules in wheat roots and BY2 cells. Plant Biol (Stuttg) 14(2):354–364

    Article  CAS  Google Scholar 

  150. Echeverrigaray S, Michelim L, Longaray Delamare AP, Andrade CP, Pinto da Costa SO, Zacaria J (2008) The effect of monoterpenes on swarming differentiation and haemolysin activity in Proteus mirabilis. Molecules 13(12):3107–3116

    Article  CAS  Google Scholar 

  151. Aiemsaard J, Aiumlamai S, Aromdee C, Taweechaisupapong S, Khunkitti W (2011) The effect of lemongrass oil and its major components on clinical isolate mastitis pathogens and their mechanisms of action on Staphylococcus aureus DMST 4745. Res Vet Sci 91(3):e31–e37

    Article  CAS  Google Scholar 

  152. Somolinos M, García D, Condón S, Mackey B, Pagán R (2010) Inactivation of Escherichia coli by citral. J Appl Microbiol 108(6):1928–1939

    CAS  Google Scholar 

  153. Machado M, Pires P, Dinis AM, Santos-Rosa M, Alves V, Salgueiro L, Cavaleiro C, Sousa MC (2012) Monoterpenic aldehydes as potential anti-leishmania agents: activity of Cymbopogon citratus and citral on L. infantum, L. tropica and L. major. Exp Parasitol 130(3):223–231

    Article  CAS  Google Scholar 

  154. Da Rocha MS, Dodmane PR, Arnold LL, Pennington KL, Anwar MM, Adams BR, Taylor SV, Wermes C, Adams TB, Cohen SM (2012) Mode of action of pulegone on the urinary bladder of F344 rats. Toxicol Sci. doi:10.1093/toxsci/kfs135

    Google Scholar 

  155. National Toxicology Program (2011) Toxicology and carcinogenesis studies of pulegone (CAS No. 89-82-7) in F344/N rats and B6C3F1 mice (gavage studies). Natl Toxicol Program Tech Rep Ser 563:1–201

    Google Scholar 

  156. de Sousa DP, Nóbrega FF, de Lima MR, de Almeida RN (2011) Pharmacological activity of (R)-(+)-pulegone, a chemical constituent of essential oils. Z Naturforsch C 66(7–8):353–359

    Article  Google Scholar 

  157. de Cerqueira SV, Gondim AN, Roman-Campos D, Cruz JS, Passos AG, Lauton-Santos S, Lara A, Guatimosim S, Conde-Garcia EA, de Oliveira ED, de Vasconcelos CM (2011) R(+)-pulegone impairs Ca2+ homeostasis and causes negative inotropism in mammalian myocardium. Eur J Pharmacol 672(1–3):135–142

    Article  CAS  Google Scholar 

  158. Umezu T (2010) Evidence for dopamine involvement in ambulation promoted by pulegone in mice. Pharmacol Biochem Behav 94(4):497–502

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Buchbauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Buchbauer, G., Ilic, A. (2013). Biological Activities of Selected Mono- and Sesquiterpenes: Possible Uses in Medicine. In: Ramawat, K., Mérillon, JM. (eds) Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_183

Download citation

Publish with us

Policies and ethics