Skip to main content

Pyrethrins and Synthetic Pyrethroids: Use in Veterinary Medicine

  • Reference work entry
  • First Online:
Natural Products

Abstract

Pyrethrins and synthetic pyrethroids are used extensively as insecticides and acaricides for the treatment of a broad range of ectoparasites in large and small animals, as well as in nonmammalian species such as birds, fish, and honeybees. These compounds are used in veterinary medicine in different formulations including spot-on, sprays, ear tags, dips (immersion), soluble powders, and shampoos to control fleas, mite, lice, and ticks between other insect infestations both outside and inside the house. The synthetic pyrethroids have been classified in two classes: type I and type II; the addition of the alpha-cyano group to the 3-phenoxybenzyl alcohol group in type II has increased the insecticidal potency. The mode of action of these compounds suggests that the voltage-dependent sodium channel in the nerve membrane is the common target in insects and mammals. The pharmacokinetic/toxicokinetic properties of these compounds are also presented. This chapter also reviews the antiparasitic activities and the veterinary applications (uses) of pyrethrins and synthetic pyrethroids in several animal species. The clinical signs of poisoning in particular in the cats by permethrin are described. The chapter also provides the EU’s maximum residue limits (MRLs) established for the pyrethroids as antiparasitic agents in food-producing animals; the MRLs are necessary to establish the withdrawal/withholding periods of the final veterinary drug formulations containing these chemical compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CNS:

Central nervous system

EU:

European Union

MRLs:

Maximum residue limits

References

  1. Bowers WS (1985) Phytochemical resources for plant protection. In: Janes NF (ed) Recent advances in the chemistry of insect control. The Royal Society of Chemistry, (Great Britain), pp 272–292, Special Publication No. 53

    Google Scholar 

  2. Casida JE, Quistad GB (1998) Golden age of insecticide research: past, present, or future?. Annu Rev Entomol 43:1

    Article  CAS  Google Scholar 

  3. Valentine VM, Beasley VR (1989) Pyrethrins and pyrethroids. In: Kik RW, Bonagura JD (eds) Current veterinary therapy X. Small animal practice. WB Saunders, Philadelphia, pp 137–140

    Google Scholar 

  4. Anadón A, Martínez-Larrañaga MR, Martínez M (2009) Use and abuse of pyrethrins and synthetic pyrethroids in veterinary medicine. Vet J 182:7

    Article  Google Scholar 

  5. Gassner B, Wuthrich A, Scholtysik G, Solioz M (1997) The pyrethroids permethrin and cyhalothrin are potent inhibitors of the mitochondrial complex I. J Pharmacol Exp Ther 281:855

    CAS  Google Scholar 

  6. Miyamoto J, Kaneko H, Tsuji R, Okuno Y (1995) Pyrethroids, nerve poisons: how their risks to human health should be assessed. Toxicol Lett 82/83:933

    Article  CAS  Google Scholar 

  7. Verschoyle RD, Aldridge WN (1980) Structure-activity relationships of some pyrethroids in rats. Arch Toxicol 45:325

    Article  CAS  Google Scholar 

  8. Gray AJ (1985) Pyrethroid structure-toxicity relationships in mammals. Neurotoxicology 6:127

    CAS  Google Scholar 

  9. Vijverberg HPM, Van den Bercken J (1990) Neurotoxicological effects and the mode of action of pyrethroid insecticides. Crit Rev Toxicol 21:105

    Article  CAS  Google Scholar 

  10. Narahashi T (1985) Nerve membrane ionic channels as the primary target of pyrethroids. Neurotoxicology 6:3

    CAS  Google Scholar 

  11. Lawrence LJ, Casida JE (1983) Stereospecific action of pyrethroid insecticides on the gamma-aminobutyric acid receptor-ionophore complex. Science 221:1399

    Article  CAS  Google Scholar 

  12. Bradberry SM, Cage SA, Proudfoot AT, Vale JA (2005) Poisoning due to pyrethroids. Toxicol Rev 24:93

    Article  CAS  Google Scholar 

  13. Lund AE, Narashashi T (1982) Dose-dependent interaction of the pyrethroid isomers with sodium channels of squid axon membranes. Neurotoxicology 3:11

    CAS  Google Scholar 

  14. Narahashi T (1986) Mechanisms of action of pyrethroids on sodium and calcium channel gating. In: Ford MG, Lund GG, Reay RC, Usherwood PNR (eds) Neuropharmacology of pesticide action. Ellis Horwood, Chichester, pp 36–40

    Google Scholar 

  15. Zlotkin E (1999) The insect voltage-gated sodium channel as target of insecticides. Annu Rev Entomol 44:429

    Article  CAS  Google Scholar 

  16. Franciolini F, Petris A (1990) Chloride channels of biological membranes. Biochim Biophys Acta 1031:247

    Article  CAS  Google Scholar 

  17. Forshaw PJ, Lister T, Ray DE (2000) The role of voltage-gated chloride channels in type II pyrethroid insecticide poisoning. Toxicol Appl Pharmacol 163:1

    Article  CAS  Google Scholar 

  18. Bloomquist JR, Adams PM, Soderlund DM (1986) Inhibition of gamma-aminobutyric acid-stimulated chloride flux in mouse brain vesicles by polychloroalkane and pyrethroid insecticides. Neurotoxicology 7:11

    CAS  Google Scholar 

  19. Crofton KM, Reiter LW (1987) Pyrethroid insecticides and the gamma-aminobutyric acid receptor complex: Motor activity and the acoustic startle response in the rat. J Pharmacol Exp Ther 243:946

    CAS  Google Scholar 

  20. Enan E, Matsumura F (1993) Activation of phosphoinositide protein kinase C pathway in rat brain tissue by pyrethroids. Biochem Pharmacol 45:703

    Article  CAS  Google Scholar 

  21. Forshaw PJ, Lister T, Ray DE (1993) Inhibition of a neuronal voltage-dependent chloride channels by the Type II pyrethroid, deltamethrin. Neuropharmacology 32:105

    Article  CAS  Google Scholar 

  22. Gammon DW, Lawrence LJ, Casida JE (1982) Pyrethroid toxicology: protective effects of diazepam and phenobarbital in the mouse and the cockroach. Toxicol Appl Pharmacol 66:290

    Article  CAS  Google Scholar 

  23. Anadón A, Martínez-Larrañaga MR, Díaz MJ (1987) Changes in neuromuscular transmission of guinea pig vas deferens produced by decamethrin treatment. Toxicol Appl Pharmacol 90:96

    Article  Google Scholar 

  24. Clark JM, Brooks MW (1989) Neurotoxicology of pyrethroids: single or multiple mechanism of action?. Environ Toxicol Chem 8:361

    CAS  Google Scholar 

  25. Martínez-Larrañaga MR, Anadón A, Martínez MA, Martínez M, Castellano VJ, Díaz MJ (2003) 5-HT loss in rat brain by type II pyrethroid insecticides. Toxicol Ind Health 19:147

    Article  Google Scholar 

  26. Appel KE, Michalak H, Gericke S (1994) Health risks from pyrethroids? Data on their neurotoxicity, toxicokinetics and human health disorders.Wiss. Wiss Umw 2:95

    Google Scholar 

  27. Gray AJ, Rickard J (1982) The toxicokinetics of deltamethrin in rats 612 after intravenous administration of a toxic dose. Pestic Biochem Physiol 18:205

    Article  CAS  Google Scholar 

  28. Anadón A, Martinez-Larrañaga MR, Diaz MJ, Bringas P (1991) Toxicokinetics of permethrin in the rat. Toxicol Appl Pharmacol 110:1

    Article  Google Scholar 

  29. Anadón A, Martinez-Larrañaga MR, Fernandez-Cruz ML, Diaz MJ, Fernandez MC, Martínez MA (1996) Toxicol Appl Pharmacol 141:8

    Google Scholar 

  30. Soderlund DM, Casida JE (1977) Effects of pyrethroid structure on rates of hydrolysis and oxidation by mouse liver microsomal enzymes. Pestic Biochem Physiol 7:391

    Article  CAS  Google Scholar 

  31. Smith IH, Casida JE (1981) Epoxychrysanthemic acid as an intermediate in metabolic decarboxylation of chrysanthemate insecticides. Tetrahedron Lett 22:203

    Article  CAS  Google Scholar 

  32. Vais H, Williamson MS, Devonshire AL, Usherwood PNR (2001) The molecular interactions of pyrethroid insecticides with insect and mammalian sodium channels. Pest Manag Sci 57:877

    Article  CAS  Google Scholar 

  33. Rothwell JT, Morgan JAT, James PJ, Brown GM, Guerrero FD, Jorgensen WK (2011) Mechanism of resistance to synthetic pyrethroids in buffalo flies in south-east Queensland. Aust Vet J 89:70

    Article  CAS  Google Scholar 

  34. Mehlhorn H, Schumacher B, Jatzlau A, Abdel-Ghaffar F, Al-Rasheid KAS, Klimpel S, Pohle H (2011) Efficacy of deltamethrin (Butox® 7.5 pour on) against nymphs and adults of ticks (Ixodes ricinus, Rhipicephalus sanguineus) in treated hair of cattle and sheep. Parasitol Res 108:963

    Article  Google Scholar 

  35. Papadopoulos E, Bartram D, Carpenter S, Mellor P, Wall R (2009) Efficacy of alphacypermethrin applied to cattle and sheep against the biting midge Culicoides nubeculosus. Vet Parasitol 163:110

    Article  CAS  Google Scholar 

  36. Papadopoulos E, Rowlinson M, Bartram D, Carpenter S, Mellor P, Wall R (2010) Treatment of horses with cypermethrin against the biting flies Culicoides nubeculosus, Aedes aegypti and Culex quinquefasciatus. Vet Parasitol 169:165

    Article  CAS  Google Scholar 

  37. Marsella R (1999) Advances in flea control. Vet Clin North Am Small Anim Pract 29:1407

    CAS  Google Scholar 

  38. Reithinger R, Teodoro U, Davies CR (2001) Topical insecticide treatments to protect dogs from sand fly vectors of leishmaniasis. Emer Infect Dis 7(5):872

    CAS  Google Scholar 

  39. Pan B, Liang D, Zhang Y, Wang H, Wang M (2009) Comparative efficacy of oil solution and wettable powder of lambda-cyhalothrin to naturally occurring Ornithonyssus sylviarum infestation of chickens. Vet Parasitol 164:353

    Article  CAS  Google Scholar 

  40. MacDonald JM (1995) Flea control: An overview of treatment concepts for North America. Vet Dermatol 6:121

    Article  Google Scholar 

  41. Williams DL (2000) A veterinary approach to the European honey bee (Apis mellifera). Vet J 160:61

    Article  CAS  Google Scholar 

  42. Endris RG, Hair JA, Anderson G, Rose WB, Disch D, Meyer JA (2003) Efficacy of two 65% permethrin spot-on formulations against induced infestations of Ctenocephalides felis (Insecta: Siphonaptera) and Amblyomma americanum (Acari: Ixodidae) on beagles. Vet Ther 4(1):47

    Google Scholar 

  43. Gfeller RG, Messonnier SP (2004) Handbook of small animal toxicology and poisonings, 2nd edn. Mosby, St. Louis

    Google Scholar 

  44. Whitten T (1995) Pyrethrin and pyrethroid insecticide intoxications in cats. The Compendium. Compend Contin Educ Vet Pract 17:489

    Google Scholar 

  45. Sutton NM, Bates N, Campbell A (2007) Clinical effects and outcome of feline permethrin spot-on poisonings reported to the Veterinary Poisons Information Service (VPIS), London. J Feline Med Sur 9:335

    Article  Google Scholar 

  46. Mauck WL, Olson LE, Marking LL (1976) Toxicity of natural pyrethrins and five pyrethroids to fish. Arch Environ Contam Toxicol 4:18

    Article  CAS  Google Scholar 

  47. WHO (1989) International programme on chemical safety. Environmental health criteria 92. Resmethrins – resmethrin, bioresmethrin, cisresmethrin. United Nations Environment Programme, the International Labour Organization, and the World Health Organization, Geneva

    Google Scholar 

  48. Anadón A, Martínez-Larrañaga MR, Castellano V (2011) Regulatory aspects for the drugs and chemicals used in food producing animals, Chapter 10. In: Gupta RC (ed) Veterinary toxicology, 2nd edn. Elsevier/Academic, San Diego, pp 135–157

    Google Scholar 

  49. EC (2009) Commission Regulation (EC) No. 470/2009 of the European Parliament and of the Council of 6 May 2009 concerning laying down Community procedures for the establishment of residue limits of pharmacologically active substances in foodstuffs of animal origin, repealing Council regulation (EEC) No. 2377/90 and amending Directive 2001/82/EC of the European Parliament and of the Council and Regulation. (EC) No. 726/2004 of the European Parliament and of the Council (OJ L 152, 16.6.2009)

    Google Scholar 

  50. EEC (1990) Council Regulation 90/2377/EEC laying down a Community procedure for the establishment of maximum residue limits of veterinary medicinal products in foodstuffs of animal origin (OJ L 224, 12.8.90)

    Google Scholar 

  51. EU (2010) Commission Regulation (EU) No. 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin (OJ L 15, 20.1.2010)

    Google Scholar 

Download references

Acknowledgments

This chapter was supported by the Universidad Complutense de Madrid, Comunidad de Madrid, and Ministerio de Educación y Ciencia, Projects Refs. UCM-BSCH/GR35/10-A and S2009/AGR-1469, and Consolider-Ingenio 2010 Ref. CSD/2007/00063 (FUN-C-FOOD), Madrid, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Anadón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Anadón, A., Arés, I., Martínez, M.A., Martínez-Larrañaga, M.R. (2013). Pyrethrins and Synthetic Pyrethroids: Use in Veterinary Medicine. In: Ramawat, K., Mérillon, JM. (eds) Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_131

Download citation

Publish with us

Policies and ethics