Skip to main content

Alkaloids Derived from Lysine: Quinolizidine (a Focus on Lupin Alkaloids)

  • Reference work entry
  • First Online:
Book cover Natural Products

Abstract

Quinolizidine alkaloids (QAs) are usually known as lupin alkaloids because they mainly occur in lupin species and other plants of the Genisteae tribe. They are secondary metabolites synthesized by plants from lysine, for defense against pathogens and other predators. QAs are biosynthesized in green tissues of the plant, transported via phloem and stored in all organs of the plant, including seeds. QAs content depends on genotype, presence of pathogens, and pedo-climatic conditions such as environmental effects and soil characteristics. More than 170 QAs have been identified in different Lupinus species, being the alkaloid pattern highly variable among species; sparteine and lupanine are the most common ones. QAs show neurotoxicity and for this reason Food Authorities of some countries have fixed a limit of 200 mg kg−1 of total QAs in lupin seeds and foods. The level of QAs in lupin seeds can be reduced by debittering processes involving soaking or washing with water; moreover, some lupin varieties producing low levels of QAs have been selected and bred.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BW:

Body weight

DM:

Dry matter

FID:

Flame ionization detector

GC-MS:

Gas chromatography–mass spectrometry

NACE:

Nonaqueous capillary electrophoresis

NOEL:

No observed effect level

LD:

Lethal dose

MOS:

Margin of safety

MRL:

Minimal risk level

QA:

Quinolizidine alkaloid

SPE:

Solid phase extraction

TDI:

Tolerable daily intake

TLC:

Thin-layer chromatography

References

  1. Wink M (1992) The role of quinolizidine alkaloids in plant insects interaction. In: Beranys EA (ed) Insect-plant interactions, vol 4. CRC Press, Boca Raton, pp 131–166

    Google Scholar 

  2. Wink M (1993) Allelochemical properties or the raison d’etre of alkaloids. In: Brossi A (ed) The alkaloids, vol 43. Academic, New York, pp 1–118

    Google Scholar 

  3. Wink M (1998) Chemical ecology of alkaloid. In: Roberts MF, Wink M (eds) Alkaloid: biochemistry, ecology, and medicinal application. Plenum Press, New York, pp 265–300

    Google Scholar 

  4. Aniszewski T, Ciesiolka D, Gulewicz K (2001) Equilibrium between basic nitrogen compounds in lupin seeds with differentiated alkaloid content. Phytochemistry 57:43–50

    Article  CAS  Google Scholar 

  5. Wink M, Witte L (1985) Quinolizidine alkaloids as nitrogen source for lupin seedlings and cell suspension cultures. Z Naturforsch 40:767–775

    Google Scholar 

  6. Wink M, Gamal IAM (2003) Evolution of chemical defense traits in Leguminoseae: mapping on distribution patterns of secondary metabolites on a molecular phylogeny inferred from the nucleotide sequences of rbcL gene. Biosyst Ecol 31:897–917

    Article  CAS  Google Scholar 

  7. Wink M (1987) Quinolizidine alkaloids: biochemistry, metabolism, and function in plants and cell suspension cultures (review). Planta Med 53:509–514

    Article  CAS  Google Scholar 

  8. Wink M, Meißner C, Witte L (1995) Patterns of quinolizidine alkaloids in 56 species of the genus lupines. Phytochem 38:139–153

    Article  CAS  Google Scholar 

  9. Wink M (1993) Quinolizidine alkaloids. In: Waterman P (ed) Methods in plant biochemistry, vol 8. Academic, London, pp 197–239

    Google Scholar 

  10. Wink M, Carey DB (1994) Variability of quinolizidine alkaloid profiles of Lupinus argenteus (Fabaceae) from North America. Biochem Syst E 22:663–669

    Article  CAS  Google Scholar 

  11. Wang SF, Liu AY, Ridsdill-Smith TJ, Ghisalberti EL (2000) Role of alkaloids in resistance of yellow lupin to red-legged earth mite Halotydeus destructor. J Chem Ecol 26:429–441

    Article  CAS  Google Scholar 

  12. Hatzold T, Elmadfa I, Gross R, Wink M, Hartmann T, Witte L (1983) Quinolizidine alkaloids in seeds of Lupinus mutabilis. J Agric Food Chem 31:934–938

    Article  CAS  Google Scholar 

  13. Bunsupa S, Okada T, Saito K, Yamazaki M (2011) An acyltransferase-like gene obtained by differential gene expression profiles of quinolizidine alkaloid-producing and nonproducing cultivars of Lupinus angustifolius. Plant Biotechnol 28:89–94

    Article  Google Scholar 

  14. Von Baer D, Perez I (1991) Quality standard propositions for commercial grain of white lupin (Lupinus albus). In: Proceeding of the 6th International Lupin Conference, Temuco-Pucon, Chile, 1991, pp 158–167

    Google Scholar 

  15. Boschin G, Annicchiarico P, Resta D, D’Agostina A, Arnoldi A (2008) Quinolizidine alkaloids in seeds of lupin genotypes of different origin. J Agric Food Chem 56:3657–3663

    Article  CAS  Google Scholar 

  16. Culvenor CJ, Petterson DS (1986) Lupin toxins-alkaloids and phomopsin. In: Proceedings 4th International lupin conference, Geraldton Australia, pp 188–198

    Google Scholar 

  17. Australia New Zealand Food Authority (2001) Lupin alkaloids in food. A toxicological review and risk assessment, Techn. Rep. Series 3. pp 1–21. http://www.foodstandards.gov.au/_srcfiles/TR3.pdf

  18. Bulletin Officiel n° 98/27 du Conseil superieur d’hygiene publique de France, 1998.

    Google Scholar 

  19. ACNFP Report on seeds from narrow leafed lupin, Appendix IX, MAFF Publications, London, GB, 1996, p 107

    Google Scholar 

  20. Saito K, Koike Y, Suzuki H, Murakoshi I (1993) Biogenetic implication of lupin alkaloid biosynthesis in bitter and sweet forms of Lupinus luteus and Lupinus albus. Phytochemistry 34:1041–1044

    Article  CAS  Google Scholar 

  21. Wink M, Hartmann T (1982) Enzymatic synthesis of quinolizidine alkaloid esters: a tigloyl-CoA:13-hydroxylupanine O-tigloyltransferase from Lupinus albus L. Planta 156:560–565

    Article  CAS  Google Scholar 

  22. Wink M, Roberts M (1998) Compartmentation of alkaloid synthesis, transport and storage. In: Roberts MF, Wink M (eds) Alkaloids: biochemistry, ecology and medicinal applications. Plenum, New York, pp 239–262

    Google Scholar 

  23. Bunsupa S, Katayama K, Ikeura E, Oikawa A, Toyooka K, Saito K, Yamazaki M (2012) Lysine decarboxylase catalyzes the first step of quinolizidine alkaloid biosynthesis and coevolved with alkaloid production in leguminosae. Plant Cell 24:1202–1216

    Article  CAS  Google Scholar 

  24. Facchini PJ (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu Rev Plant Physiol Plant Mol Biol 52:29–66

    Article  CAS  Google Scholar 

  25. Wink M, Hartmann T (1985) Enzymology of quinolizidine alkaloid biosynthesis. In: Zalewski RI, Skolik JJ (eds) Natural products chemistry. Elsevier, Amsterdam, pp 511–520

    Google Scholar 

  26. Wink M, Hartmann T (1981) Sites of enzyme synthesis of quinolizidine alkaloids and their accumulation in Lupinus polyphyllus. J Plant Physiol 102:337–344

    CAS  Google Scholar 

  27. Lee MJ, Pate JS, Harris DJ, Atkins CA (2007) Synthesis, transport and accumulation of quinolizidine alkaloids in Lupinus albus L. and L. angustifolius L. J Exp Bot 58:935–946

    Article  CAS  Google Scholar 

  28. Zamora-Natera F, García-López P, Ruiz-López M, Rodríguez-Macías R, Salcedo-Pérez E (2009) Composición y concentración de alcaloides en Lupinus exaltatus Zucc. durante su crecimiento y desarrollo. Interciencia 34:672–676

    Google Scholar 

  29. De Cortes SM, Altares P, Pedrosa MM, Burbano C, Cuadrado C, Goyoaga C, Muzquiz M, Jimenez-Martinez C, Davila-Ortiz G (2005) Alkaloid variation during germination in different lupin species. Food Chem 90:347–355

    Article  Google Scholar 

  30. Muzquiz M, Cuadrado C, Ayet G, de la Cuadra C, Burbano C, Osagie A (1994) Variation of alkaloid components of lupin seeds in 49 genotypes of Lupinus albus L. from different countries and locations. J Agric Food Chem 42:1447–1450

    Article  CAS  Google Scholar 

  31. Cowling WA, Tarr A (2004) Effect of genotype and environment on seed quality in sweet narrow-leafed lupin (Lupinus angustifolius L.). Aust J Agric Res 55:745–751

    Article  Google Scholar 

  32. Christiansen JL, Jornsgard B, Buskov S, Olsen CE (1997) Effect of drought stress on content and composition of seed alkaloids in narrow-leafed lupin, Lupinus angustifolius L. Eur J Agron 7:307–314

    Article  CAS  Google Scholar 

  33. Gremigni P, Wong MTF, Edwards LK, Harris DJ, Hambiln J (2001) Potassium nutrition effects on seed alkaloid concentrations, yield and mineral content of lupins (Lupinus angustifolius). Plant Soil 234:131–142

    Article  CAS  Google Scholar 

  34. Ciesiolka D, Muzquiz M, Burbano C, Altares P, Pedrosa MM, Wysocki W, Folkman W, Popenda M, Gulewicz K (2005) An effect of various nitrogen forms used as fertilizer on Lupinus albus L. yield and protein, alkaloid and α-galactosides content. J Agron Crop Sci 191:458–463

    Article  CAS  Google Scholar 

  35. Gremigni P, Hambiln J, Harris DJ, Cowling WA (2003) The interaction of phosphorus and potassium with seed alkaloid concentrations, yield and mineral content in narrow-leafed lupin (Lupinus angustifolius). Plant Soil 253:413–427

    Article  CAS  Google Scholar 

  36. Michael JP (2007) Indolizidine and quinolizidine alkaloids. Nat Prod Rep 24:191–222

    Article  CAS  Google Scholar 

  37. Stobiecki M, Wojtaszek P, Gulewicz K (1997) Application of solid phase extraction for profiling quinolizidine alkaloids and phenolic compounds in Lupinus albus. Phytochem Anal 8:153–158

    Article  CAS  Google Scholar 

  38. Chludil HD, Del Vilarino MP, Franco ML, Leica SR (2009) Changes in Lupinus albus and Lupinus angustifolius alkaloid profiles in response to mechanical damage. J Agric Food Chem 57:6107–6113

    Article  CAS  Google Scholar 

  39. Yovo K, Huguet F, Pothier J, Durand M, Breteau M, Narcisse G (1984) Comparative pharmacological study of sparteine and its ketonic derivative lupanine from seeds of Lupinus albus. Planta Med 50:420–424

    Article  CAS  Google Scholar 

  40. Petterson DS, Ellis ZI, Harris DJ, Spadek ZE (1987) Acute toxicity of major alkaloids of cultivated Lupinus angustifolius seed to rats. J Appl Toxicol 7:51–53

    Article  CAS  Google Scholar 

  41. Stobiecki M, Blaszczyk B, Kowalczyk-Bronisz SH, Gulewicz K (1993) The toxicity of seed extracts and their fractions from Lupinus angustifolius and L. albus. J Appl Toxicol 13:347–352

    Article  CAS  Google Scholar 

  42. Petterson DS, Greirson BN, Allen DG, Harris DJ, Power BM, Dusi LJ, Ilett KF (1994) Disposition of lupanine and 13-hydroxylupanine in man. Xenobiotica 24:933–941

    Article  CAS  Google Scholar 

  43. Ballester D, Yanez E, Garcia R, Erazo S, Lopez F, Haardt E, Cornejo S, Lopez A, Pikniak J, Chichester CO (1980) Chemical composition, nutritive value, and toxicological evaluation of two species of sweet lupine (Lupinus albus and L. luteus). J Agric Food Chem 28:402–405

    Article  CAS  Google Scholar 

  44. Butler WH, Ford GP, Creasy DM (1996) A 90 day feeding study of lupin (Lupinus angustifolius) flour spiked with lupin alkaloids in the rat. Food Chem Toxicol 34:531–536

    Article  CAS  Google Scholar 

  45. Pothier J, Cheav L, Galand N, Viel C (1998) A comparative study of the effects of sparteine, lupanine and lupin extract on the central nervous system of the mouse. J Pharm Pharmacol 50:949–954

    Article  CAS  Google Scholar 

  46. Di Grande A, Paradiso R, Amico S, Fulco G, Fantauzza B, Noto P (2004) Anticholinergic toxicity associated with lupin seed ingestion: case report. Eur J Emerg Med 11:119–120

    Article  Google Scholar 

  47. Litkey J, Dailey MW (2007) Anticholinergic toxicity associated with the ingestion of lupini beans. Case Rep 25:215–216

    Google Scholar 

  48. Marquez LR, Guitierrez-Rave M, Miranda FI (1991) Acute poisoning by lupine seed debittering water. Vet Hum Toxicol 33:265–267

    Google Scholar 

  49. Jimenez-Martinez C, Mora-Escobedo R, Cardador Martinez A, Mercedes M, Martin Pedrosa M, Davila-Ortiz G (2010) Effect of aqueous, acid, and alkaline thermal treatments on antinutritional factors content and protein quality in Lupinus campestris seed flour. J Agric Food Chem 58:1741–1745

    Article  CAS  Google Scholar 

  50. Panter KE, James LF, Gardner DR (1999) Lupines, poison hemlock and Nicotiana spp. toxicity and teratogenicity in livestock. J Nat Toxins 8:117–134

    CAS  Google Scholar 

  51. Lee ST, Cook D, Panter KE, Gardner DR, Ralps MH, Motteram ES, Pfister JA, Gay CC (2007) Lupine induced “crooked calf disease” in Washington and Oregon: identification of the alkaloid profiles in Lupinus sulphureus, Lupinus leucophyllus, and Lupinus sericeus. J Agric Food Chem 55:10649–10655

    Article  CAS  Google Scholar 

  52. Montes Hernandez E, Corona Rangel ML, Encarnacion Corona A, Cantor del Angel JA, Sanchez Lopez JA, Sporer F, Wink M, Bermudez Torres K (2011) Quinolizidine alkaloid composition in different organs of Lupinus aschenbornii. Rev Bras Farmacogn 21:824–828

    Article  Google Scholar 

  53. Wippich C, Wink M (1985) Biological properties of alkaloids. Influence of quinolizidine alkaloids and gramine on the germination and development of powderly mildew, Erysiphe graminis f. sp. hordei. Experientia 41:1477–1479

    Article  CAS  Google Scholar 

  54. Garcia-Lopez PM, de la Mora PG, Wysocka W, Maiztegui B, Alzugaray ME, Del Zotto H (2004) Quinolizidine alkaloids isolated from Lupinus species enhance insulin secretion. Eur J Pharmacol 504:139–142

    Article  CAS  Google Scholar 

  55. Erdemoglu N, Ozkan S, Tosun F (2007) Alkaloid profile and antimicrobial activity of Lupinus angustifolius L. alkaloid extract. Phytochem Rev 6:197–201

    Article  CAS  Google Scholar 

  56. Borelli MI (2004) Quinolizidine alkaloids isolated from Lupinus species enhance insulin secretion. Eur J Pharmacol 504:139–142

    Article  Google Scholar 

  57. Bermudez Torres K, Martinez Herrera J, Figueroa Brito R, Wink M, Legal L (2009) Activity of quinolizidine alkaloids from three Mexican Lupinus against the lepidopteran crop pest Spodoptera frugiperda. BioControl 54:459–466

    Article  CAS  Google Scholar 

  58. Santana FC, Empis J (2001) Bacterial removal of quinolizidine alkaloids from Lupinus albus flours. Eur Food Res Technol 212:217–224

    Article  CAS  Google Scholar 

  59. Jimenez-Martinez C, Hernandez-Sanchez H, Alvarez-Manilla G, Robledo-Quintos N, Martinez-Herrera J, Davila-Ortiz G (2001) Effect of aqueous and alkaline thermal treatments on chemical composition and oligosaccaride, alkaloid and tannin contents of Lupinus campestris seeds. J Sci Food Agric 81:421–428

    Article  CAS  Google Scholar 

  60. Jimenez-Martinez C, Hernandez-Sanchez H, Davila-Ortiz G (2007) Diminution of quinolizidine alkaloids, olisaccharides and phenolic compounds from two species of Lupinus and soybean seeds by the effect of Rhizopus oligosporus. J Sci Food Agric 87:1315–1322

    Article  CAS  Google Scholar 

  61. Reinhard H, Rupp H, Sager F, Streule M, Zoller O (2006) Quinolizidine alkaloids and phomopsins in lupin seeds and lupin containing food. J Chromatogr A 1112:353–360

    Article  CAS  Google Scholar 

  62. Chen X, Yi C, Li M, Lu X, Li Z, Wang X (2002) Determination of sophoridine and related lupin alkaloids using tris(2,2′-bipyridine)ruthenium electrogenerated chemiluminescence. Anal Chim Acta 446:79–86

    Article  Google Scholar 

  63. Ganzera M, Kruger A, Wink M (2010) Determination of quinolizidine alkaloids in different Lupinus species by NACE using UV and MS detection. J Pharm Biomed Anal 53:1231–1235

    Article  CAS  Google Scholar 

  64. Resta D, Boschin G, D’Agostina A, Arnoldi A (2008) Evaluation of total quinolizidine alkaloid content in lupin flours, lupin-based ingredients and foods. Mol Nutr Food Res 52:490–495

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Boschin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Boschin, G., Resta, D. (2013). Alkaloids Derived from Lysine: Quinolizidine (a Focus on Lupin Alkaloids). In: Ramawat, K., Mérillon, JM. (eds) Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_11

Download citation

Publish with us

Policies and ethics